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Scattering and Absorption of Scalar and Pseudoscalar Mesons by Nucleons
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Cross sections have been calculated for scattering of pi-mesons by nucleons and for absorption of the
charge of the meson in the scattering process. Computations are carried out to second order in g, using
scalar and pseudoscalar fields with scalar and pseudoscalar coupling, respectively. It is found that there
are strong qualitative differences in the cross sections depending upon field type and upon the type of
mixture where neutral mesons are concerned.

L INTRODUCTION

HE present status of the weak-coupling meson
theories of nuclear forces is far from satisfactory.

Many theories agree qualitatively with the experimental
information, but no theory has yet been devised which
presents a consistent quantitative interpretation of all
the well established observations. It is most reasonable
to attribute the failures of the theories to large coupling
constants. However, it has not yet been possible to
formulate a strong coupling theory in a relativistic
manner, and in the absence of any other model of
action-at-a-distance forces, it seems useful to investigate
further the consequences of the weak-coupling theories
in the hopes of 6nding some clearcut agreement or
disagreement.

It is entirely possible that the difhculties encountered
in the past are a result of considering the relatively
complicated problem of forces between nucleons and
then deducing the properties of the rnesons in an
indirect way. This hypothesis could be tested by per-
forming experiments dealing directly with mesons. Such
experiments, while characteristically more dificult to
carry out in the laboratory, show at least some prospect
of unambiguous theoretical interpretation. The purpose
of this paper is to study the theoretically simplest
problem of the latter kind; the second order scattering
of mesons by nucleons.

We shall assume that pi-mesons of mass 276m, are
the only 6eld particles interacting with nucleons, re-
garded as Dirac particles of mass 1836m,. Ke shall be
concerned primarily with charged mesons, and shall
assume that neutral rnesons diGer from them only in
their lack of charge. Finally, we shall deal with spinless
mesons (i.e., scalar and pseudoscalar fields) whose

coupling constant will be assumed to be small in spite
of the indirect experimental evidence to the contrary.
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as a four-vector. y„y„+y„y„=2g„„where g44 ——1, gi 1 ——gmq

=g33 = —i, and all other g„„=0.Thus by our convention
p„p„=+4. p~ =y,pmyap4 and its adjoint ps=y4psy&y,
=+y5. U a is an ordinary four-vector, a =a„y„=a4y4
—e&y2 —a2y2 —a3y3. Boldface capitals like M will
denote transition matrix elements. In the scattering
problem, k =(k, ru) is the momentum-energy vector of
the incident meson, k'=(ir', &o') that of the scattered
meson, and similarly p=(p, E) and p'=(y', E') for the
nucleon. We use natural units throughout, i.e. k =c=1,
g in esu.

The Feynman diagrams for the scattering process are
shown in Fig. i. Picture 1 refers to the scattering of a
positive meson by a neutron or of a negative meson by
a proton. Picture 2 is for scattering of a negative meson
by a neutron or a positive meson by a proton. For
scattering of a neutral meson or for conversion of a
charged to a neutral meson in the scattering process,
the amplitudes for the two diagrams must be added
with the appropriate relative phase.

The matrix elements for these diagrams are given by
Feynman' for pseudoscalar and scalar mesons respec-
tively as'

where M is the nucleon mass, e, I' the Dirac spinors
(normalized so uu =1) of the initial and final state and
u, u' their adjoints (u =u*P). g is used for the pi-meson
mass.

IL THE MATMX ELEMENTS

We shall use the following notation. Three-vectors
are represented in ordinary boldface, 4-vectors in
italics. The time component is real, and we use the
convention u b =u4b4 —a b a is the length of the three-
vector a. We treat the matrices y„=Pa„(p= 1, 2, 3, 4)
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' R. P. Feynman, Phys. Rev. 76, 769 (1949).
~ The absolute sign of the matrix element does not enter the

problem to second order, and will not be elaborated upon here.
Actually, if the expansion coefBcient —ig~ is used, following the
formalism of quantum electrodynamics, it becomes necessary to
use ys for emission and ps for absorption in the pseudosca3ar
theory, and 1 and -1 in the scalar theory.

425



MURRAY PESHKIN

((p—M)sc= (p' —M)N' =0), the matrix elements can be
simpli6ed to read

Mtr =+(sc'fsc)(i s+2k P)-'

Ms~= —(s7"bc)(pcs—2k' P) '

Mrs =(re[2M+ f]sc)(ics+2k p) '

Mss =(re[2M —fjN)(pcs —2k' p) '.

(6)

Fjo. I. The Feynman diagrams for second-order scattering.
Picture 1 refers to sccctteriuy of w+ by E or w by P, while Picture
2 refers to scattering of ~ by I' or ~ by N. For any process
involving neutral mesons, the amplitudes for the taro processes
must be added.

By using the momentum conditions (p'=p"=3P,
k'=k"=p', p+k=p'+k') and the Dirac equation

The cross sections are proportional to }M~s, and
since we are not interested in the spin states of the
nucleons (which can never be turned over by a spinless

meson), it will be most convenient to calculate one-half

the trace of the operator Qh. 'MA, where the projection
operator A = (&+M)/2M and A' = (P'+M)/2M.

The traces are readily evaluated to give the invariant
forms

where
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III. THE DIFFERENTIAL CROSS SECTIONS

The relation between differential cross sections and
the matrix elements in the Feynman notation is most
usefully written in the covariant form

In the laboratory system, Kq. (13) reads

do k' M M o) k—=gc— T+——cos8
dQ k co' ao' co' k'

(14)

dcr 1 g' M M k' y'. lr' '
0 ~ sv A ~

dQ e a)a)' E E' ou' E'k'
(13)

e is the velocity diBerence and dQ is the element of
solid angle corresponding to the scattering angle 8.

Relation (13) can be derived from the Lagrangian
method' or from the relation to the S-matrix. 4 It is
easily understood in terms of the ordinary perturbation
theory, since T is proportional to the usual

~

H ~'. The
factors ce ' and M/E arise from normalization of the
initial state, and all the rest, except 1/e for the initial
state, is proportional to the density of normalized anal
states per energy interval. The numerical coeKcient
can be obtained by requiring conservation of proba-
bility.

I R. P. Feynman, Phys. Rev. 80, 440 {iNO).
4 F. J. Dyson, Phys. Rev. 75, 1736 (1949).
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(16)

Equations (9) through (12) can be put into (14) to
give the differential cross sections in the laboratory
system.
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daps ~gsq
'

~ SMP(M —cp') q dcrpP

=I —Ii 1+
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It is instructive to examine the limiting forms of the
differential cross sections for very high and very low

energies. In the nonrelativistic limit, the cross sections
are most conveniently written in terms of the fractional
momentum transfer q=(k —k')/k, which is related to
the scattering angle by

cos8 = [1—-'(1+p/M) q'][1—(p/M) q']

Then Eq. (14) takes the form

where
dn/dQ =L(q) T, (19)N.R.

L(q) =g'(1—0.150q') &(1—0.0862q') ' (20)N.R.

TP =0.216M '[1+0.070(k/p)'
—0.081(k/p)'q']

TpP =0.292M '[1—0.081(k/p)'
+0.0815(k/p)'q ]

Tcs p'[——1 0 86—0(k. /p)' 000—04(k/p)' q]

Tp = p '[1—1.16(k/p)'+0. 18(k/p)'q'].

(21)N.R.

(22)N.R.

(23)N.R.

(24)N.R.

d02P ——doss ——+~pro'ou 'a)' 'd~'. (27)E.R.

In the extreme relativistic limit, virtually all the
mesons come out in the forward direction because of
the motion of the center of gravity. In this case it is
more useful to look at the energy distribution of the
scattered meson, which can be obtained from Eq. (14)
and reads

do d cosa der (M) '
=2s —=2srp'~ —

~
T, (25)E.R.

dcp' dcd' dQ

where r p =g'/M, the effective nucleon radius for mesons.
Then

(26)E.R.

0 c I c I I I I I
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Fro. 2. Angular distributions in the laboratory system for co=2@,.

It should be noted that ro depends upon g and will be
di8erent for the scalar and pseudoscalar cases, and that
these equations are valid only for cp'»M, so that (27)
must not be integrated down to low energies.

The angular distributions for co =2p are displayed in
Flg. 2.

IV. THE TOTAL CROSS SECTIONS

The total cross sections are obtained most easily by
carrying out the integration in the center-of-mass
system, where Eq. (13) reads

do,/dQ. =g'M'(cp. +E.) 'T.
The subscript, c, refers to the center-of-mass system.
T, and the total cross section, cr, axe invariants. Ke
have then the following relations.

2ccgp 2cp E +(2cp,E,—p )(cp —lF)

(~c+R)' [(~p+Ec)'—M']P

mgP4 2pp, E,+2cd '—p' 2cp.E.+2cpc' —3g'
~ P + ln

( yE )p (2cp E —pp)' —4(cp '—y')' 4(cp '—p,') 2cpX.—2cp '+cc'

2~gsc 2~ 'E '+(2~.E I P)(~ '—
c ')+8M—'E.(~ +E.)

(cp,+E,)' [(cp.+E,)'—M']'

sgs' (4jP—p')' (cp.+E.)'—93P 2cp&,+2cp '—3cc'
~ S + ln

(~ +E )' (2~ E —~')' —4(~ '—~')' 4(~'—&') 2~ E —2& '+&'

(28)

(29)

(3o)

(31)

(32)E.R.

ccrc = crp ——ps rp'cp ' ln[2Mcp/(M' —p') ], (33)E.R.

These results can be taken over into the laboratory In the extreme cases they become, for co&&M,

system, making use of the following formulas
0' = 0' = Ãt' CO

cp.+E.= (3P+Ic'+2Mcu) &,

cp. = (y'+M pp)/(pp, +E,).
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The diGerential cross section for the mjxed 6eld is
given by cr, =ccrc&+ucr2&]2 .The relative sign follows
from Eqs. (5) through (8), and. is negative in the scalar
but positive in the pseudoscalar theory. The cross term
is integrated in the manner discussed in Sec. IV to
yield the result

2&g~
~ P ~ P+cc2cr P+g

(~.+E.)'

X
4Dc»,+E.)' M'](—c»P p2)—
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FIG. 3. Total cross section (in units of the nucleon "area") for
nuclear scattering es. energy of tjxe incident meson (in units of its
mass) for processes 1 and 2, using scalar and pseudoscalar theories.
The effect of Coulomb forces has been neglected.

and for ag —p44p, ,

crcP = 2cr»2t 0.654—0.216(c»—p)/p], (34)N.R.

cr2P =2rr»2[0. 889—0.127(c»—y)/p], (35)N.R.

crea =2rr»2L136 —265(c»—p)/p], (36)N.R.

cr2 =2rr»2[136—272(c» —p)/p]. (37)N.R.

The behavior of the total cross sections as functions
of eo are shown in Fig. 3.

2',E,+2o) '—3p,'
Xin, (38)
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These results are plotted as functions of co in Fig. 4.
In every case cr, =u~r2 in the limit of very high

energies, but at low energies there are great diBerences.
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Y. CONVERSIOÃ PROCESSES

There is also the possibility that a charged meson will
lose its charge to the nucleon in the scattering process
and be re-emitted as a neutral meson. To calculate the
cross section for this conversion it is necessary to
include both Feynman diagrams of Fig. j.. The matrix
element will then be M, =Mz+ccM2, where c2 depends
on the coupling assumed between mesons and nucleons
of the two kinds. In Kemmer's charge-symmetric
theory, where the coupling constant of the neutron is
equ. al and opposite to that of the proton, u= —1. On
the other hand, if we assume "ordinary" neutral mesons
(i.e., nucleons having the same coupling constants for
neutral and for charged mesons), then a=+1. Values
other than +1are very unlikely, since they would make
the neutron-neutron force diGerent from the proton-
proton force, contrary to the experience with ~ivor
nuclei.

.OI
I

FIG. 4. Total cross section (in units of the nucleon "area") for
charge absorption in the scattering process es. energy of the
incident meson {in units of its mass), using scalar and pseudo-
scalar theories. Subscript A refers to the charge-symmetric
mixture, B to the "ordinary" ~lecture.
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The "ordinary" mixture leads to cross sections given
by the formulas

0 r =s ra'[3 06. 0—76. (a) p—)/p], (40)N.R.

0 =sra'[1.4(co—p)'/p'], (41)N.R.

while the charge-symmetric theory gives

0 ~ = s.ro'[0.0174+0.0176(a)—p)/p], (42)N.R.
0.s pro'[544 1077(Cd ~)/jl] (43)N R

VI. RESULTS

There are certain strong qualitative differences among
the cases calculated. By comparison of these results with
scattering and conversion data, it should be possible to
determine whether charged mesons are scalar or pseudo-
scalar and to 6nd how the neutral mesons are coupled
to nucleons of both kinds, provided that neutral and
charged mesons are of the same type.

The diBerence between scalar and pseudoscalar
mesons are most striking at low energies. The absolute
cross sections will be nearly the same in the two theories
despite the apparent disparity because the coupling
constants must be adjusted to 6t the binding energy of
the deuteron. However, it will be about proportional
to ~ ' for scalar mesons and to co~' for pseudoscalar.
An additional possible distinction is that the total
scattering cross sections for scattering of positive and
negative mesons by the same type of nucleon are equal
for scalar, but differ by about 14 percent for pseudo-
scalar mesons.

The influence of the mixture on the conversion cross
sections is very great at very low energies. The most
important feature is that for pseudoscalar theory, the
"ordinary" mixture leads to a conversion cross section
of four times the scattering cross section, while the
charge-symmetric mixture predicts virtually no pro-
duction of neutral mesons. In the scalar theory, the
situation is reversed. This is a particularly useful result
since it provides a sensitive measurement of a in case
the mixture is of neither of these limiting types.

At intermediate energies, like co=2', it becomes
possible to get information from the angular distribution
as well as the total cross section. Then the total cross
section for scattering is still an appreciable fraction of
the zero-energy cross section for pseudoscalar, but is
very much smaller for scalar mesons. %'bile the diBer-
ential cross section at zero energy is in every case
isotropic in the center of gravity system, at somewhat
higher energies the pseudoscalar theory gives a stronger
backward cross section for process 1 and an equally
stronger forward cross section for process 2. The scalar

theory shows instead a very weak backward preference
for process 1 and an extremely strong forward prefer-
ence for process 2. In the laboratory system, this means
that for ~~, cr2, and r~, the cross section is peaked
forward, while for 028 it is very Qat.

The conversion cross section at intermediate energies
is again very sensitive to the mixture. For pseudoscalar
mesons it rises with the energy in the charge-symmetric
mixture, and falls in the "ordinary" theory. For scalar
mesons the situation is again reversed.

At extremely high energies, or)&35, it is no longer
interesting to look at difkrential cross sections, since
the angular distribution is essentially caused by the
motion of the center of gravity, and even the energy
spectrum is independent of the theory used. However,
the total cross section is now most usefu1. , the pseudo-
scalar being over 100 times larger than the scalar. In
each case the conversion cross section is just u' times
the cross section for scattering by process 2. The
absolute sign of a can be determined easily from the
direction of the correction due to the linear term in u,
as given by Eqs. (38) and (39).

VII. LIMITATIONS

The two principal modihcations of these results will
arise from radiative corrections and Coulomb efkcts,
the former being both more important and much more
di8icult to obtain than the latter.

The scattering of charged mesons by protons must,
of course, be modi6ed by the Coulomb scattering.
Except for very low energies, this will only add some
forward scattering. The sign of the interference term
between Coulomb and nuclear scattering, if observable,
might be of interest because the nuclear scattering of
negative mesons by protons (process 1) has the opposite
sign for scalar and pseudoscalar theories.

The main limitation of our theory is the neglect of
radiative corrections. Some fourth-order corrections
have been calculated in the nonrelativistic limit. ' These
indicate that the corrections will be considerable at low
energies if g' is of the order of unity. Unfortunately
there is not at present any estimate of what inhuence
the fourth order has at intermediate or high energies.
Higher orders than the fourth, even in the Thomson
limit, wouM be extremely dHBcult to obtain.
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