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TAsI.E II. R values and calculated energy displacements
for ground states.

r=0.46
r =0.32

+C» ground

—0.187—0.169

RNis ground

—0.212—0.178

(10-is
erg-cm)

0.57
0.96

(one-level
estimate)

(kev)

195
155

at least with respect to order of magnitude, by using a
one-level formula with y' being estimated from the
first excited state of N" by I' = 2k&'A '. (Although this
is not exactly applicable here, it can be used for such
an order of magnitude estimation. ) The results are
also listed in the table. The y' thus obtained is still
about 0.25 of 3k'/23fa, which may very well be larger
than the y' appropriate for the ground state, so that
the dE listed in Table II may be too large. At any
rate, the displacement is in the direction to cut down
the displacement of the 6rst excited levels relative to
the ground states here explained.

IV. CONCLUSIONS

It has been shown that the boundary condition
postulate introduced here predicts a displacement of

the 6rst excited levels of C" with respect to N" in the
right direction, and of sufhcient magnitude to explain
the experimentally known displacement. The critical
dependence on the nuclear radius rules out any very
de6nite result. It may be, of course, that there exist as
yet undiscovered levels in C" and N" which would

alter the whole analysis, and that the 3.j.O-Mev level
of C" is not really the one which corresponds to the
2.35-Mev level in N". Recent experiments on the
elastic scattering of protons by C" up to a proton
energy of about 4 Mev (with energy resolution of order
1 kev) have failed to reveal additional N" levels in the
range in question here. "

It is a pleasure to thank Professor signer for sug-

gesting this problem, and for continued advice and
encouragement, I also wish to thank Professor Sherr
for his interesting discussions of the experimental
aspects of this problem, and Professor Breit for making
available to me his tables of conQuent hypergeometric
functions.

"The author wishes to thank G. Goldhaber and R. VMliamson
for informing him of their results prior to publication.
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The efFect of a speculatively considered internal excitation of nucleons on the scattering of elementary
particles is examined by means of a schematic model. It is found that the relation between the integral of the
square of the wave function describing the normal nucleonic state and the apparent range of force difFers
from that expected on the ordinary potential energy description. The efFect is of the order of eight percent
if one assumes the excitation to be 275 me~. The direction of the efFect is such as to decrease the apparent
range as though the meson mass were increased, somewhat as indicated by a comparison of the mass of a
pi-meson with experiments on scattering. A possible necessity of corrections for the velocity dependence of
nuclear forces which is considered above is briefly discussed in connection with the correlation of data on
scattering with that on binding energies.

I. INTRODUCTION

T has become customary to describe interactions
between nuclear particles by means of potential

energies. That such a description is of a provisory char-
acter has been well realized since the first introduction of
exchange forces by Heisenberg' and Majorana. ' These
forces can, of course, be introduced by means of certain
additive terms in the Hamiltonian without any reference
to their origin. Nevertheless, Heisenberg's arguments
were partly based on an expected analogy to inter-
actions between atoms which take place in molecules.

*AEC predoctoral fellow.
t Assisted by the joint program of the ONR and ABC.
'%. Heisenberg, Z. Physik 77, 1 {1932).' E. Majorana„Z. Physik 82, 137 (1933).

The same general feature is present in meson theories
of nuclear forces. ' According to these theories the origin
of the force is not the interaction between nucleons with
each other but a more primary type of process con-
sisting in the production of mesons by nucleons. Only
in special cases can the static part of the nuclear poten-
tial be split o8 from the relativistic part by a de6nite
transformation. In the general Manlier-Rosenfeld mix-
ture, the potential employed in attempts to explain
scattering or binding energies is only a part of a more
general interaction which has not been evaluated on

sH. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
C. Mgller and L. Rosenfeld, Proc. Cop. 17, No. 8. G. Wentzel,
EiefNhrleg is die Quegteetheoric der Wellmfdder (Franz Deuticke,
%'ien, 1943).
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account of internal inconsistencies of meson Geld

theories. On the other hand the usual interpretations by
means of potential energies without any other velocity
dependence than that implied in the use of exchange
forces lead to an apparently simple picture. The
hypothesis of charge independence of nuclear forces
appears to be veriGed rather accurately by the more
recent experimental' and theoretical work~ provided a
long tail' is assumed to exist in the nuclear potential, as
is expected from the meson theory of nuclear forces,
Thus on the one hand one starts out with a Geld theo-
retic description of nuclear forces which is mathe-
matically inconsistent and on the other hand success
results from an application of partial results of the
theory to experimental material in a rather detailed and
literal manner. The situation appears to be still more
paradoxical if it is remembered that the agreement of
the observed mass of the pi-meson with the apparent
range of nuclear force as derived from proton-proton
scattering is not very good. It may be permissible,
therefore, to regard the successes of the empirical
approach as being due, at least in part, to an accidental
inclusion in present treatments of some essential fea-
tures of the correct explanation. It appears reasonable
to attempt to look into other approaches to the bridging
of the gap between the Geld theoretic formalism and the
potentials used for the treatment of experiments on
scattering. In view of the possibility of relating infor-
mation on scattering to that on binding energies of the
lighter nuclei it appears especially desirable to consider
whether the features of the nuclear interaction deter-
mined by scattering are necessarily related to binding
energies in the same manner as the potential energy
viewpoint appears to indicate. It has been known' very
early in the development of scattering theory that the
rate of change of the phase shift with energy is essen-
tially determined by

I'dr,
Jo

where I is r times the radial wave function and r is the
distance between the particles. This integral determines
the rate of change of the logarithmic derivative of the
wave function with energy and its value is therefore one
of the main data derivable from scattering experiments
on the assumption of a potential energy curve explana-
tion. It is clear, on the other hand, that such a rela-
tionship cannot hold for general velocity dependent
potentials because with such general assumptions one
can vary the logarithmic derivative in an arbitrary way
and produce arbitrary changes in the phase shift. It

4 E. Melkonian, Phys. Rev. 76, 1744 (1949).Hughes, Burgy, and
Ringo, Phys. Rev. 77, 291 (1950).

~ J. Schwinger, Phys. Rev. 78, 135 (1950).
6L. Rosenfeld, at the international Colloquium on Nuclear

Physics and Fundamental Particles, Paris, April, 1950. J. M.
Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

~ Breit, Condon, and Present, Phys. Rev. 50, 825 (1936).Breit,
Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939). G. Breit and
%'. G. Bouricious, Phys. Rev. 75, 1029 (1949).

appears desirable to look into this matter more quan-
titatively.

Since the meson mass does not agree with a literal
interpretation by means of the Yukawa relation a
slight modiGcation of the view is taken here. It is sup-
posed that there exists a state of internal excitation of
one of the nucleons somewhat as in the strong coupling
formulation of meson theories. In view of the many
unsatisfactory features of the existing forms of strong
coupling theories the internal excitation is here intro-
duced ad hoc so as not to confuse the feature of such
an hypothesis with details of the strong coupling
theories. It appears to the writers that an internal excita-
tion may have physical signiGcance quite apart from the
strong coupling theories and that it merits considera-
tion also from another viewpoint. While there is
practically no doubt' that mesons have some connection
with nucleon-nucleon interactions the evidence for con-
sidering the primary process to consist in the production
of virtual or real mesons is very weak. Were one to
consider the meson emission as occurring at a later
stage, the divergence diKculties would be reduced and
possibly eliminated. For then an isolated nucleon would
not have to be supposed as capable of producing mesons;
this property could in fact be assigned to special nu-
cleonic states which arise only as a consequence of
nucleon-nucleon interactions. There would then be no
mesic self-energy of a nucleon. In order to have such
a theory in a satisfactory form, one would have to
formulate it relativistically and the presence of nucleons
in states of negative energy would o8er a possible dif-
Gculty. The interactions responsible for the formation
of internally activated states would have to be treated
in such a way as not to introduce the self-energy
didBculty over again through collisions with particles in
negative energy states. The fact, however, that the
separation of states in accordance with the sign of
energy is relativistically invariant makes it possible to
postulate that the property of activation is peculiar to
collisions between particles having energies with the
same sign. It is realized that there would be some dif-
Gculty in avoiding a divergence on account of collisions
of particles in negative energy states with each other.
The reduced probability of these particles occupying the
same volume in phase space is of help at this point,
however. Also the situation is different from that in
the non-activation types of Geld theories because the
meson Geld is produced only by activated nucleonic
states having a smaller density than that of nucleons
in normal states. No attempt is being made to develop
such a theory in the present paper. That it may be
possible to do so has been one of the reasons for carrying
through the calculations, however.

~Burfening, Gardner, and Lattes, Phys. Rev. 75, 382 (1949).
%.H. Barkas, Phys. Rev. 75, 1467 (1949).S. B.Jones and R. S.
%hite, Phys. Rev. 75, 1468 (1949); 76, 588 (1949). Kaplon,
Peters„and Bradt, Phys. Rev. %, 1735 (1949). Smith, Gardner,
and Bradner, Phys. Rev. 77, 552 (1950).
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The model used is highly schematic. A state of
internal excitation of the composite system consisting
of tvro nucleons is introduced. It is supposed that the
chance of formation of such a state exists only vrhen

the two particles are su6iciently close to each other. No
attempt is made to derive the lavr which determines the
manner with vrhich the transition probability to acti-
vated states depends on the internudeonic distance.
For purposes of simplicity it is supposed in most of the
calculations presented here that the matrix element
responsible for the transition is energy independent and
in most of the work this value is taken as independent
of r for r&b and to have the value 0 for r&b. It is
found that the integral over the square of the radial
function is no longer quite so simply related to the
apparent range of force, and that there is an appreciable
correction arising from this circumstance. The eGect of
taking the correction into account is to increase the
apparent meson mass by roughly 9 percent if the
internal excitation energy is ~275 tnc' where m is the
electronic mass and c is the velocity of light. Such a
correction cannot be of direct quantitative signi6cance,
there being other possible modi6cations in the theory.
For example there might be more than one state of
internal excitation, the assumptions concerning the
variation of the transition probability with distance

may be in error etc. The fact that the meson mass cor-
responding to observation for proton-proton scattering

( 320 te) agrees somewhat better with the corrected
rather than the uncorrected apparent range of force
has presumably only qualitative signi6cance. The exist-
ence of the correction and its approximate magnitude

may be, however, more pertinent to the physical situ-
ation. The 6rute extension of the region vrithin which

the interaction matrix element has a nonvanishing value
is not in itself in contradiction with relativity since it
would be possible to assign the lavr of formation for the
activated state arbitrarily in the rest frame and to
derive from it the behavior of the system in other
frames. It is admittedly objectionable, however, to
introduce this lavr in the arbitrary manner in vrhich this
is done below.

The general nature of the range correction considered
can be seen from the fact that if the interaction could

be treated by second-order perturbation theory, a
velocity dependence would be brought in through the
variation of the energy differences occurring in the
denominators of usual formulas. The estimates of these
effects made on p. 1062 of the paper by Sreit, Thaxton,
and Eisenbud~ indicate that a progressive increase in

depth of roughly 1.6 percent per 2.4 mc' change in the
energy of relative motion is approximately equivalent
to a shortening of the range by the factor (21.6/16)&
=1.16, vrhich corresponds to a 16 percent eBect. A nine

percent e6'ect on range should correspond, therefore,
roughly to a progressive increase in depth of 0.9 percent
in 2.4 M. An energy difference of 2.4'' is 0.87 percent
of the meson mass energy, 275 nsc, in agreement vrith

estimates of velocity dependence sects on range made
below. The eGect is thus approximately such as though
it were caused by variations in the energy denominators.
It appeared vrorth vrhile nevertheless to make somewhat
more systematic and independent calculations because
the accuracy of the second order perturbation approxi-
mation is somevrhat uncertain in this case.

H. GENERAL RELATIONS

In order to estimate the possible eGect of the internal
excitation of nucleons the following schematic treatment
will be used. The state of the system vrill be described by

0' = taco(r)gp+lp](r)N]+ ' ' (1)

vrhere e~, um, ~ are functions of internal coordinates
vrhile r is the relative displacement vector of the
nucleons. The internal coordinates refer to states of
mesons. These will be denoted schematically by xq„.
The Hamiltonian contains operators acting on the r
and xg . Phenomenologically one is sure that in the part
of con6guration space corresponding to large distances,

there are well defmed functions I;(xr„) which represent
internal states of excitation of the. nucleons and that
the corresponding P; are then solutions of the free
particle equations for two bodies. In regions of con-
Gguration space vrithin vrhich the nucleons interact the
functions I; will be taken to be the same as for the
larger r. The Hamiltonian will be supposed to have the
form

h'
H= 6,+Hr +H-',—

2p

where p=reduced mass=M/2, M=mass of nucleon,
Hq =Hamiltonian describing the formation of mesons
around individual nucleons, and H'=remainder of the
Hamiltonian vrhich, is, therefore, responsible for the
speci6c nuclear interaction.

The operator HI„ is such that

HzssQp =Eg&p~ (1.2)

where E; is the internal excitation energy of nucleons
vrhen they are vrell separated. The functions I; form a
complete orthonormal set for the xl . Substitution of
Eq. (1.1) into Eq. (1) gives

k'
Z,mr — 6, E+Eg fg+Z;H—'f,mg

—0, ——
2p

so that

h'
h,f;+E,g;+&;—(I—;, H' p,e;) =Ep;. (1.3)

2p

The scalar products in the last term do not contain the
internal coordinates of the meson system and are func-
tions of r only. The symbol x is used in the subscript
because x-mesons are pres~ably connected or possibly
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responsible for the interaction. For a Gxed r

(I;(».), H'(r, » )f;(r)N;(» ))

where the Green's function

G(r, r') = Im[—«lr —r'l]I/[4~1r —r'I] (2 3)

=A(r)(~'(»-), &'(r, »-)I'(»-))-=&' (r)A(«) with
« =[M(E~—E)/ko]~ (2.4)The last scalar product is a function of r and of i, j

only. One has, therefore,

jP&—0'+EN+~ &-'(r)4'(r) =Et
2Jtk

is such that
[6 «o+—b(r r')—]G(r, r') =0. (2.5)

a coupled system of equations involving interactj. on
matrix elements B; which themselves depend on r and
functions f,(r) which have to be determined by solving
Eq. (1.4). The subscript « in 6 will be dropped from
now on.

The diagonal elements of ~~B;,'~~ contribute terms of
the potential energy type. If only such terms were
present one wouM have independent solutions for each i.
This situation is analogous to the behavior of a diatomic
molecule when its motion of vibration is describable by
a potential energy curve. The presence of nondiagonal
terms produces coupling between states of motion along
dHFerent potential energy curves.

In order to simplify the treatment only two potential
energy curves will be considered. The system is then
described by

~+If oo(r) fo(r)+f ol(r)A(r) =Ego(r),
2p

(2)
h'

+++ 11(r) 0'1(r)++ lo(r)f o(r) (E El)4'1(r).
2p

e "/«= (1/2o«') [e' '/(«'+k')]8k

and the expansion

e'~' = ZJo~(2L+1)PI (kr/k«) Fq(k«)/(k«),

where the I'I. are Legendre functions and the Fr„are
standard expressions in Bessel functions of half-integral
order, one obtains

G(r, r') = (1/2o«o) Z~( —)~(2L+1)P~(rr'/««')

[F~(k«)FI,(k«')/««'](ko+«') 'dk (2.6)
p

which gives the expansion of G in terms of Legendre
functions of the cosine of the angle between r and r'.
For L =0 the sum on the right of Eq. (2.6) contributes
the spherically symmetric part

(G(r, r') )= (e '"/4o««««') sinh(««'), («)«'), (2.7)

the latter expression being readily obtainable directly
from the definition of G.

Assuming for simplicity that fo is spherically sym-
metric and introducing

The internal energy is here standardized by Ep ——0.
By employing diferent assumptions about Hpp Bpy',

H&~' one can obtain a variety of conditions intermediate
between the extreme situation of the strict potential
energy curve description and that of the interaction
being caused mainly by Hp~'. The latter condition is
farthest from the usual assumptions and will, therefore,
be considered 6rst. The notation

one has

d'F/d«o+k'F —t s(«, «')F(«')d«'=0,
~Jp

(1.4) It is assumed here that « is real which implies that
E&Eg.

~ By means of the Fourier representation

Hog'(r) =B'D(r)
will be used. Here H' is a constant which is in general
complex while D(r) is a real function. Since fo, f~ must
satisfy standard regularity conditions at r=0 and
«= oo, one may solve the second line of Eq. (2) for fq
by the formula

Pg(r) = —(MH'o/4o«k'))tD(r')
~
r—r'~

X[exp(—«~ r—r'
~
)]go(r')dr' (2.1)

and the problem becomes describable by an integro-
di8erential equation in one variable:
—(k'/M) hPo(r) —D(r) (M

~

B'
~
'/k')

X I G(r, r')D(r')Po(r')dr'=Ego(r), (2.2)

k'= (M/k')E,

with the convention that F stands for F(«) unless
otherwise specified. The quantity e is given by

s(«, «') = —A'D(«)D(«')[exp( —
«~ «—«'~ )—exp( —«I «+«'l)]/(2«) (3 2)

where
Ao =(M/ko)o [

a'[o (3 3)

For scattering at E&E~ the function Ii has to be
continued from «=0 to «= oo. According to Eq. (2.1)
the corresponding f&(r) is spherically symmetric and
vanishes rapidly at r = ~.With the simplifying assump-
tions made here the solution of the scattering problem
reduces, therefore, to the determination of the loga-
rithmic derivative of Ii at a value of r, r=b beyond
which the last term in Eq. (3) is negligible. One finds
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by a repetition of the usuai9 Green's theorem proof type Instead of Eqs. (3), (3.2) one has then the equivalent
of calculation that

r+
d'F/dr'+k'F — sg(r, r')F(r')dr'=0, (5.1)

Pa(8F/F8r)/8(k')], m —F——'(k) F'dr
Jp

sq(r, r') = —A«D(r)D(r')Lexp( —«!r—r'! )]/(2«). (5.2)

+F '(k) F(r)[8s(r, r')/8(k')]F(r')drdr'. (3.4)

The presence of the last term is characteristic of the
velocity dependence of e which is caused by the de-
pendence of a on the energy of the system.

In order to apply this result to the scattering of
protons by protons it suKces to introduce

u =Cpg/slI1K0, u' =Cpp/slQKO,

where Xp is the phase shift and the notation is as in
Breit and Hatcher. " The function 5 now replaces F
of the charge free case while P, E; are the modifica-
tions of g and Eo for the standard reference potential
which is eventually made to have zero range. In terms
of the function

f= (Ca'/g) cotXo+qo/rl —2 lng

of Breit, Condon, and Present~ in the notation of Yost,
%heeler, and Breit" a combination of the argument
which led to Eq. (3.4) with the steps contained between
Breit and Hatcher's Eqs. (2.7), (5) yields

u' 2—u' r

The advantage of Eq. (5.1) is that for suSciently large
a the contributions to the integral are more obviously
localized near r. Accordingly the integro-diGerential
equation can be approximated by a differential equa-
tion. Expansion of D(r')F(r') in a Taylor series around
r and integration term by term give

d' F/dr'+ k'F+ A'D(r) [1/«'+d'/«4dr'
+d'/«'dr'+ . . ]D(r)F(r) =0, (5.3)

which may be also written symbolically as

d'F/dr'+k'F+(A'D/K')(1 «'d'/d—r') 'DF =0. (5.4)

To a 6rst approximation the interaction is such as
though the potential energy were

—LA' D(r) /«](k'/M) (5.5)

The correction term to the equivalent range is ob-
tainable from

)00 00

u(r)s(r, r', «)u(r')drdr'
4p 4p

p+00 +00

= —(A«/4«)
J

D(r)D(r')

Xe '~' "~u(r)u(r')drdr' (5.6)
fO f%

+
J J

u(")L8s(" ")/8(k )]u(~)d"dr
!

& (4'1) so that taking into account the relation 8/8(k')
8/(2«8«—) one has

where the right side is to be evaluated for E=O. Since
8f'/8(k') =0 the right side of Eq. (4.1) gives the slope
of the f curve plotted against F.. Jp

u(r)[je(r, r', «)/8(k )]u(r')drdr'

IH. EFFECT ON APPARENT RANGE

Since 8f/8(k') is approximately proportional to the
range parameter and since without velocity dependence
the first (single) integral alone gives the whole eGect
the ratio of the double to the single integral in Eq. (4.1)
gives an eGect characteristic of the velocity dependence.
This ratio will now be estimated. To do so the equation
determining F(r) which is also satisfied by u(r) will
6rst be changed into a more transparent form. This is
accomplished by noting that the second of the two
terms in Eq. (3.2) can be obtained from the first by
changing the sign of the 6rst term and changing the
sign of one of the two quantities r or r'. This suggests
extending the problem to negative r and dining

D(—r) =D(r), F(—r) = F(r). —
~ G. Breit and E. signer, Phys. Rev. 53, 998 (1938}.
'o G. Breit md R. D. Hat@her, Phys. Rev. 78, 110 (19SO).
"Yost, %heeler, and Sreit, Phys. Rev. 49, 174 (1936}.

+QO p+00

=(A2/8«) I D(r)D( )

X {8L« ' exp( «!r r'! )]—/8«! u—(r)u(r')drdr'. (5.7)

On expanding D(r')u(r') in a Taylor's series and
integrating over r' this expression becomes

—(A 2/2) D(r)u(r) L1/«4+ 2dm/««dr«

+3d /«dr + ~ ]D(r)u(r)dr, (5.8)

and hence for large a

p 00 gC)

J u(r)L8s(r& r', «)/8(k')]u(r')drdr'
0

(A'/2«4) I— LD(r) (r)u]'dr. (5.9)
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On the other hand, it follows from Eq. (5.3) that

(A'/»') [D(r)Pu(r) ——d'u(r)/dr' —k'u(r)

and hence, according to Eq. (5.9),

(6) /I

u(r) [Bz/8(k') ju(r')drdr'
~, J,

[(u')' —u'gr

Oe ~00

u(r)[Bz(r, r', K)/a(k') ju(r')drdr'
o Jo

—(1/2«')
J

~ u[d'u/dr'+k'u)dr (6..1)

The two terms on the right side of Eq. (4.1) can be
thus expressed in terms of single integrals involving
u(r) and a factor 1/»'. Except for this factor, the
quantity ~' enters implicitly in the present approxima-
tion. It will be noted that for E=O, the term O'I on
the right side of Eq. (6.1) vanishes.

An approximate evaluation of the two terms can be
carried through readily for a square well in the absence
of Coulomb interaction i.e. for proton-neutron scat-
tering. For zero energy the wavelength inside the well
will be denoted by 2»/E, the radius of the well will be
referred to by b and the notation s=Eb will be used.
For r& h the function u(r) varies linearly with r and can
be expressed as

u(r) =1+r/a1, (k =0), (7)

since the absolute value of u(r) does not matter in the
comparison of the two terms. The homogeneous loga-
rithmic derivative at r =b has the value

——0.098

and the effect may be expected to vary approximately
inversely with the internal excitation energy.

The estimate made above is subject to various ob-
jections some of which are concerned with the approxi-
mations made in Eq. (6.1).Without further calculation
it is especially unsatisfactory not to have available some
estimate of the effect of the change in the shape of the
function u(r), produced by the coupling of the function
without excitation, p«, to that with excitation, p1. The
expansion in powers of 1/»' is not a good one for
jb—r~/b&&1 because of the discontinuity in D(r) at
r =b. For these reasons more accurate calculations have
also been made by means of two independent methods.

The 6rst method amounts to an exact solution for the
special case of D(r) having the value 0 when r) h and a
constant nonvanishing value for r&b. The constant
value of A D(r) in 0&r &h will be referred to as V so that

V =AD(r), (r&b). (8)

The coupled system of equations already dealt with
under Eq. (2) assumes the form

(d'/dr'+k')F(r)+VG(r) =0,
(8 1

VF(r)+ (d'/dr' —»')G(r) =0,

Y = (rdF/Fdr) „~=z cotz

and one 6nds that
a1/b = (1—Y)/Y

(7.1)

(7 2)

where F(r), G(r) replace f«, f1. The general solution of
these equations subject to I' =G =0 at r =0 is

F =C1 sin(ra1r)+C«sinh([e«( r),
and G = [C1(ruP —k') sin(&o, r) (r&h) (82)

u s (u')'dr= (a1/3)[1+b/a, —(1+b/a, )-«j
~o

=(b/3Y)[1 —(1—Y)'j. (7.3)

The other two integrals on the right side of Eq. (4.1)
are

where

+C,( P—k ) siW(~,
~
r) ]/V,

and where only the case

co2'&0

(g1 k = —KP'/2+ [(KP«/2) +V«j~
(a«« —k' = —««'/2 —[(» '/2)'+ V'1& (8.3)

(8 4)
u ' u'dr = (z—s1nz cosz)/(2E sin'z) 7.4

is being considered. The quantity

~00 00

u «u(r)[8z(r, r', »)/8(k') ju(r')drdr'., J,
=—E(z—s1nz cosz)/(2»' sin'z). (7.5)

~b
(u')'dr e'dr = 1.83

Substitution of numbers corresponding to a square well

depth of the ordinary potential theory D =11.33 Mev,
an internal excitation Ej.=21'5 mc', a square well width
b=s/nsc' gives z=1.471, Y=0.1472

»«' =k'+»' =ME1/h' (8.5)

c1= cos(C01h)& $1 =S1I1(671k)&

sh«-sinh(] c««[ b), eh«=cosh(J coz] h). (8 7)

The condition just mentioned gives the ratio C1/C«

is independent of the energy E. For r&b the function
G is of the form const exp( —»r) and the continuity of
the logarithmic derivative of G at r=b gives the con-
dition

—» = [C1(&uP—k') ru1c11C«(ra«« —k')
i ru« i ch«]/

[C1((v1«—k')s1+C«((o«« —k')shzj, (8.6)
where
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and determines the solution within a constant factor.
A reasonably lengthy calculation yields

" F(r)[a./a(k2)]Fy)dry
J, J,

[
2»CI ( sill(2sl) )

!=(V2/4»)—
(»'+~12)' E 2~1

4~CgC2 1

~12+1~212-(»2+~12)2 (»2+~22)2-

X[!cp2! s,ck,—pplclsh2]

2»C2' ( sinh(2s2) )
! b+- !+=-. (8.»

(»2+cp22) 2 E 2!cp2! ) !

which enable a simplification to be made in the form
of the denominators in Eqs. (8.8), (8.82). It is thus
found for k' =0, in the limit of exp( —z2)«1 that

F00 00

J, J, F(r) [Bz/8(k2)]F(r')drdr'

=Cl'b[(Vb') '/(4i')][ —21 z2
—'(1—slcl/Zl)

4—1 q(» '+S2 )(S2sl zlcl)/(zl +S2 )

2f ql('zl Z2)+~/C12k'], (9.2)
where

~/(Cl'b') ——2 ( [(1—Zl'f' ')sl+2zlCI]/Z2'

+q(l+S2) /(f» )![Slcl/S2 qz2/zl ] (9.3)

in the notation

and with
ZI =cplb, sl =!cp2! b (8 81) The remaining integrals simplify as follows,

(9.31)

(«—cp12» ')sl+2cplcl= —2 Cg
(»2+~ 2)2

(»—cp22»-')sh2+2! cp2! ch2
+C2

(»'+ cp22)'

cplcl !cp2! ckl
X Cl +C; . (8.82)

«2+cp12 «'+cp22
Similarly

( sin(2z, ) )
Fsdr=)CIS! b-

Jp ( 2cp, )

!cp2! slck2 —cplclsk2
+2CIC2

cPI + lcP21

+x2C22! —b+ !, (8.9)
E

I F,'dr= (Clsl+Clshl)'[(b'/3)+alb(al+b)]/(al+b)'.
Jp

(8.91)

In applying these formulas a simplification results from
the fact that s2 is a number of the order of 5 so that one
may set tanhs~=i. In this approximation it is con-
venient to introduce the quantity

q = (C2/Cl) Slnhsp~ (9)

which has the signi6cance of the ratio of the contribu-
tion to the wave function Ii at r=b arising from the
term in sinh(! cp2! b) to the amplitude of the sinusoidal
part of Ii. One has some further simplifications arising
in the case O'=0 on account of the relation

(9.1)

and

Z2 = (Zl'+f')I

q=(zl /s2 )(lsi+zlcl)l(l +S2) q

F=(»cl+qz2)/(»+ q)

(Fb2)2 z 2Z 2

(10)

(10.1)

(10.2)

(10.3)

Equations (10), (10.1) supply all the quantities on the
right side of Eq. (10.2) as functions of zl. The left side
of Eq. (10.2) is known from experiment and hence sl
can be determined by adjusting it so that Eq. (10.2) is
satisfied. An alternative procedure is to introduce

FI——sg cotsg. (10.4)

It follows from Eqs. (10), (10.1), (10.2) that

Fl=[F+Sl f(FZ2 —Z2 )/(f +Z2))/
[1+zp(Z2-' —Fsl ')/(1'+z2)] (10.5)

which is suitable for the determination of z~ by suc-
cessive approximations. A trial value of s~ on the right
side gives a value of F~ which determines an improved
z& which may again be used on the right side of Kq.
(10.4).

Corresponding to D = 11.33 Mev, b =c'/222C2, EI =275
222C', F=0.1472, is the value f =5.17. Equation (10.5),

[1/(Cl'b)]J F'dr —$(1—slcl/s, )
0

+2q(zlsl —zlcl)/(zl'+Z2')+q /(2s2), (9.4)

~b

L1/(Cl'b)]
Jo

=(sl+q)'[(b'/3)+al(al+b)]/(al+b)'. (9.5)

In order to apply these relations for preassigned F,
f and sl, it is necessary to be able to determine s2 and q
from 1 and sl. This may be done by means of
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for the above values, is satisfied for 2~=1.62 and
F~= —0.079. Substitution of these numbers in the
above equations gives

and

I (u')'dr ~ u'dr =1.76,
Jp

u(r) [as/b(k') ]u(«') drdr'
4p 0«jP

U(r, r') =[exp( «Ir «'I) exp( «Ir+r'I)j/(2«).
(11.2)

Equation (3) assumes the form

[d'/dr'+ k'ju, (r)
+A Z;,;u;a;b(r r,)U(r, r;)u, (r;—) =0. (11.3)

corresponding to an 8.8 percent decrease in f&'& and
therefore approximately to the same fractional amount
in the value of the range parameter.

In the second of the two methods supplementing Eq.
(6.1) the potential is adjusted so as to represent by
means of N the wave function for a square well of the
ordinary, potential energy curve, theory. The physical
model is thus difkrent from that just considered. A
comparison of numerical results obtained by the two
methods will be seen to show that the value of the cor-
rection for energy dependence is relatively insensitive
to the details of the model. The representation of the
square well wave function is carried out only approxi-
mately. At each stage in the process the function e is
approximated by a function e, consisting of a number
of straight line segments joining each other continuously
at a set of preassigned values r denoted here as r;,
(i =1, 2, , n). The function u, is continuous every-
where but the derivative du, /dr is discontinuous at the
points r;. The possibility of employing straight line
segments in the representation of N owes its origin to the
fact that it suffices to make the evaluations for E=O.
The discontinuities in du, /dr are treated as the limiting
forms of conditions approached by functions having
very high curvature in the vicinity of the values r =r;.
Such a condition can be reproduced by making D(r)
have the value zero except in the vicinity of the values
r =r;, where D(r) is made to have very large values. The
limiting form of D(r) leading to the desired behavior of
Q,b ls

D(r) =Z;a;b(r —r;), (11)

where 8 is Dirac's 8 function and the u„are a set of
adjustable parameters. In a,ccordance with Eq. (3.2)

0(«, r') = —A«Z;, ,a;a; b(r r,)b(r' r) U(r, r'), —(11.1)—

According to this equation N is a sine function with
wavelength 2s/k except at the values r =r;, where

r;+0
du /dr

r-—0
= —A'a;Z;U(r;, r;)a,u, (r;). (11.4)

For E=O this equation can be used to determine the
quantities u; in such a way as to represent a preassigned
set of values of the u, (r;). In fact the u («~) determine
the left side of Eq. (11.4) and hence one is dealing with
n simultaneous quadratic equations in the n unknowns
u;. Denoting temporarily by Z the sum occurring in Eq.
(11.4), one may regard these equations as n linear
equations with Z entering as a parameter. The solution
of these equations gives the u; as expressions propor-
tional to 1/Z and their substitution into the formula
giving Z as a linear expression in the u; furnishes a
value of Z'. The u; are, therefore, determined to within
a sign common to all of them. The correction term for
velocity dependence which enters Eq. (4.1) is not
aGected by a change of sign of all of the u;, however, and
is, therefore, uniquely determined by the choice of
u, (r) The v.alue of A is seen to be immaterial in this
procedure because the whole matter can be put entirely
in terms of the products Au;. Explicitly

(u, '—u') dr =0.
p

For n& 1 these requirements alone are not sufhcient to
determine N, . However u, is chosen so as to approximate
u as closely as possible for a preassigned n.

For n=1 calculation shows a decrease in range of
about five percent. For n=2 one obtains a decrease in
range of between about five percent and seven percent
depending on the r; chosen. These figures are of the
same order of magnitude as those obtained above but
are smaller.

It may be shown however that this diGerence is not
unexpected. It is seen from Eq. (5.7) that

8[exp(» I
«—«'

I )/«j/b»

is the desired quantity. Difkrentiation yields

—(1+«[r—«'I) em( —«Ir —r'I)/".
In the applications of the method just presented, which
have been carried out, the term «I r—r'I is not given

u(r)[80(r, r'; «)/8(k')]u(r')drdr'
0 0

= —A Z„;a;a;U(r;, r;)u(r, )u(r;)

X[1+«r& «r &co—th«r& j/(2«'), (11.5)

where r&, r& are respectively the smaller and greater of
the pair of values r;, r;. For n=1 the function N, is
uniquely determined by the value of du/dr for r&b
and by the requirement



a full chance to appear because for the relatively small
number of segments chosen the importance of con-
tributions due to r =r' is exaggerated as a consequence
of the rapid decay of the exponential function con-
taining x. In fact for m = 1 the term is totally lacking.
Since

Lexp( —«lr —r'I) jdlr —r'I
Jo

one would expect this term to give an effect of close to
a factor of 2. The fact that the limits go from 0 only to
b modifies this figure somewhat.

A rough evaluation of this effect for m=1 can be
made making use of the fact that if the term in «

I
r—r'

I

were neglected the contributions to the integral repre-
senting the correction for range would have relative
weights sin'zdr where z is the phase of the internal
function. A numerical estimate shows that about half
of csin'sdr is caused by contributions arising in
0&r&3b/4. Through most of this range of values of r
the value of expl —«I &b—rl } is small compared to
unity and the inclusion of «(r r

I
in ad—dition to 1 in

the factor multiplying the exponential may be expected
practically to double this contribution, since the limits
of integration for r' may be replaced by +~. In the
range 3b/4&r&b the contributions arising from
—b&r'&r may again be treated approximately as
though the lower limit of integration were —~ giving
rise to a doubling of a quarter of the whole effect. Con-
tributions from r&r'(b are harder to refine by this
consideration and will be left out of account. The
expected correction factor is thus 2(1/2)+2(1/4) =1.5
which would lead to an effect on f"~ and approximately
on the range parameter of 5(1.5) =7.5 percent in
reasonably good agreement with other estimates. These
considerations indicate that the effect is relatively
insensitive to the choice of D(r), this choice having
been made in one of the calculations so as to have D(r)
constant, in 0&r&b and in another so as to reproduce
the square well wave function.

IV. DISCUSSION

The general viewpoint of the present paper could
perhaps be objected to on the grounds that in some
forms of meson theories it is possible to eliminate a set
of variables by a contact transformation and that the
static interaction occurs then in the equations without

velocity dependence. To take into account the energy
of meson formation would appear to be superBuous,
therefore. The method of removing field variables is not
capable of dealing with the whole interaction, however,
and is applicable only in special cases. This objection
to the consideration of velocity dependence would
appear to be especially inapplicable if the formation of
mesons involves the excitation of a nucleon as a pre-
liminary step.

It appears to be very desirable to emphasize that the
calculations made in the present paper cannot be
interpreted as indicating in a definite way an improved
agreement between the range of nuclear force derived
from proton-proton scattering and the mass of the
pi-meson through the Yukawa formula. In the tentative
form of theory attempted above the connection of the
meson field with the shape of the nuclear potential is
replaced by the introduction of the function D(r) which
might itself be explained perhaps as in the strong
coupling forms of meson theory. Without a more com-
plete view regarding the origin of D(r) a quantitative
comparison is not meaningful. It appears reasonable to
claim on the other hand that if one adjusts D(r) so as
to reproduce the Fermi intercept expected for the
Yukawa potential by means of the function called F
in the present paper then the velocity dependence of the
force gives rise to an apparent shortening of the range
of force when the latter is inferred from scattering
experiments.

The equations considered above are not equivalent
to the ordinary way of describing nucleons. There is
present an additional component of the wave functions
for each spin direction and in terms of the component
describing relative motion in the unactivated state the
differential equation is not an ordinary differential
equation of the second order as is clear from Eqs. (5.3),
(5.4). Scattering experiments and observations on
binding energies will be connected, therefore, in a some-
what different way from that expected for standard
types of forces. Exact adjustments of potential well
parameters to fit both sets of phenomena would not be
adequate for obtaining a true picture and such phe-
nomenologic parameters would not even be expected to
be obtainable quite consistently from different data.

In view of the qualitative rather than quantitative
interest of the present problem the values of the
parameters employed for the nuclear potential well
were only approximate and the effects for proton-proton
scattering were inferred from the somewhat similar
situation for the proton-neutron case.


