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On the Displacement of Corresponding Energy Levels of C" and N"
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It is investigated to what extent the change in boundary conditions at the nuclear surface due to Coulomb
wave function distortion in the external region can explain the relative displacement of the Grst excited
states of C"and N'I. It is found that the calculated displacement is in the right direction and of a suKciently
large magnitude, but rather sensitively dependent on the de6nition of nuclear radius.

I. INTRODUCTION
' T is well known that the energy differences between
~ ~ the ground states of the members of a pair of
mirror nuclei can be explained, apart from the neutron-
hydrogen mass difference, as due to the Coulomb
repulsion existing between a pair of protons. This means
that the nuclear radii as calculated from the Coulomb
energy differences can be expressed by an equation of
the form

r =rod&, (1)
where A is the mass number of the nucleus, and ro is
fairly constant for all mirror nuclei, being equal to
about 1.45&10—"cm. Moreover, the spins and parities
are presumed to agree for both mirror nuclei, and there
seems to be no deinite experimental evidence to
contradict this assumption.

These circumstances may be explained by assuming
that the force between two protons is the same as that
between two neutrons except for the Coulomb repulsion.
From this assumption it would then seem to be plausible
to anticipate that also in the excited states of mirror
nuclei there will be a similar correspondence in the
positions of energy levels, provided that the radii in
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the excited states are the same as in the ground states.
Now, while in the ground states the energy differences
can be 6tted with the above-indicated variation of the
nuclear radius to within 100 Irev (except in the case of
AP~ —Si", where' it is 150 kev), in the excited states
there appear some very large discrepancies.

In the case of C"—N", the 6rst two excited levels'
of the two nuclei lie at about 3.10 Mev and 3.91 Mev
for C", and at 2.35 Mev and 3.49 Mev for N" (Fig. 1).
A level in C" at 0,8 Mev found by the reaction
B"(a,p)C" has not been found by other reactions and
will not be considered here. If we now make the tenta-
tive assumption that the above mentioned levels are
really corresponding levels in the two nuclei, then, at
Grst sight, it would appear that not only must the
nuclear radius be considered to be larger in the excited
states than in the ground states, but this change of
radius would not even be monotonic in going from
one level to the next.

However, a more careful analysis indicates that the
displacement between the corresponding energy levels
should not be due entirely to a Coulomb energy differ-
ence varying inversely as the nuclear radius and
otherwise independent of energy. It is postulated that
the elements of the dispersion-theoretic E-matrix on the
nuclear surface as a function of energy may be the
same for both mirror nuclei, once the ordinary Coulomb
energy difference has been taken into account. If there
were no Coulomb repulsion between a proton pair, and
exact equality of e-e and p-p forces, then the nuclear
levels would occur at the same energies (except for the
constant neutron-hydrogen mass difference displace-
ment) and the two nuclei would be described by the
same wave functions at any energy, the Hamiltonian
being symmetric in the exchange of a neutron with a
proton. In this case, the E matrix would certainly be
the same function of energy for both mirror nuclei.
Now, for light nuclei the Coulomb forces inside the
nucleus are very much smaller than are the purely
nuclear forces, so that they will hardly infiuence the
nuclear wave function inside the nucleus. Their only
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appreciable eGect will be a constant displacement of the
energy levels. This will result in a displacement of the
R matrix curves along the energy axis by a constant
amount. If the assumption is made that the protons are
distributed. uniformly throughout a sphere of radius r,
then the above displacement,

6 =6Ze'/5r, (2)

where Z and 2+1 are the numbers of protons in the
two mirror nuclei. The radius thus obtained has about
the A & dependence on mass number, as discussed below.
This postulate is therefore a reasonable form in which
to express an assumption concerning the equality of
n nand p--p forces, without using any model to discuss
wave functions in the interior of the nucleus. (In the
case of the shell model this would mean that the shapes
of the potentials in the nuclear interior are the same,
the potential for the proton being displaced upward by
a constant amount with respect to that for the neutron. )

On the basis of the above assumption, a calculation
has been carried out to determine to what extent the
750-kev discrepancy between the first excited states of
C" and N" can be explained while adhering to the
assumption that the excited state radius is equal to the
ground state radius. In applying the above mentioned
postulate there is some ambiguity as to the exact value
which ought to be taken for the radius of the nuclear
surface along that channel of the configuration space
which is of interest. For a system which, in the dissoci-
ated state, consists of two nuclei, of mass numbers Aj
and A&, it may be most reasonable to take r=rp(Ag~
+As&). In the present case, A~=12 and Am=1. How-
ever, there may be effects which tend to decrease or
increase this value, for example, taking some sort of
auxiliary potential in the interior of the nucleus to
represent electrostatic repulsion in the case of the
proton, and polarization of the C" core, respectively.
Moreover, the results obtained here depend rather
critically on the value taken for the radius. The calcu-
lations were carried out for a very low value, r =ra(12) &,

and for the higher value r=roL(12)&+(1)&j. Here ro

was taken to be 1.40X10 "cm, which is a rather low

value, and also as 1.46X10 "cm in the only important
case, to show the critical dependence on the radius.
The value r =ra(12) & will turn out to be quite unusable.

The boundary condition postulate predicts a shift in
the positions of the energy levels of C" with respect to
the corresponding levels of N", in addition to the ordi-
nary Coulomb energy diBerence and the neutron-
hydrogen mass difference, especially for states near the
dissociation energy. It turns out that for the 6rst
excited state this shift is in the right direction to explain
the experimentally observed results. The ground state,
however, shows a shift in the same direction, although
a smaller one, thus reducing the energy discrepancy
between the first excited states which this consideration
is able to explain. This means that the ordinary Cou-
lomb energy difference is smaller than the actual energy

difference, the remainder constituting a "boundary
condition energy difference" which arises as a result of
the Coulomb wave function distortion, as compared
with the neutron case, in the external region of configur-
ation space. If the ordinary Coulomb energy difference
is still to be given by the old formula, a somewhat larger
than the usual value of the nuclear radius must be
assumed in the ground state.

II. FORMALISM OF THE R MATRIX FORMALISM

The following derivation employs the results of the
article of Wigner and Kisenbud, 4 and that of Feshbach,
Peaslee, and Weisskopf. ' In a system having two
channels of disintegration, let q denote r times the
radial part of the wave function. Now in each channel
let radial wave functions D and V be de6ned so that

(rD) ~„,=0 (d/dr)(rD) ~„,=(M/k)~,
(«) I-=(2dlk)' (d/«)(«) I.- =0

where M is the reduced mass for the channel, and a is
the nuclear radius. Then, for each channel, equations
of the form'

s x=(rD)i+Re(«)i+%2(rV)s (4a)

e s = (rD) s+Rmg(r V)g+R2, (rV) 2 (4b)

can be used to define an R matrix. It can easily be
shown that, like the R matrix of Wigner and Kisenbud,
our R matrix also can be written as

R =P), (y~X y),)/(&), —&),

where y)„E~ are independent of energy. One then
de6nes the quantities

B=k&(F"+G")& A = (i) 'k &(G+iF), -
a) =(—i)'(F'+iG')(F"+G") ~, C= GG' FF', — —

where the prime means d/d(kr); i is the orbital angular
momentum; and F and G represent the regular and
irregular confluent hypergeometric functions defined
according to the convention of Yost, Wheeler, and
Breit. ' All functions are to be evaluated for the argu-
ment equal to ka. Let u and e be incoming and outgoing
waves with the asymptotic behavior s—& exp(Wikr) at
infinity, s being the velocity at infinity. If p is to
represent that function which has an incoming and an
outgoing wave in channel 1, but only an outgoing wave
in channel 2, then one can write @=@~+3'.q2, and
obtain 3'. by equating to zero the coefEcient of N2 on

' E. P. Wigner and L. Eisenbud, Phys. Rev. ?2, 29 (1947).
~ Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).
~ In Kq. (4a) and below, suitably normalized functions of the

angular and of the internal variables have been omitted for the
sake of brevity of notation, since no confusion arises. In detail,
Eq. (4a) should read

~1= t (.D) I+%I{.V)17~1+5%,(.V),g~„
where cuI depends on the internal and angular variables of channel
1, and similarly for au&.

~ Yost, Wheeler, and Breit, Phys. Rev. && 174 (1936).
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the right-hand side of the following equation:

P =L(ra) 1+Rll(rv) 1+R12(&v)2]
+3'-L(rD),+R„(rv),+R„(rv),]

=-', iLA, (—i) ~~»—A,*(+i)~~»]

+sR11Lfl1~1 ( ~) +1+~1~1(+~) sl]
+sR1RÃ2+s ( $) In+82(02(+1) sg]
+s i3.'LA 2(—i) 'w2 —A g*(+i) 'w,]
+sR2&X(&g~g'( ~)—'~N,+S,~,(+s)'~v,]
+sRasRP&s(am*( i)'Wa+&u(um(+a)'wg] (7)

Therefore,

f(E) =a/(Rn —%2'(Rmg+ik2 —')-'),

or, since k2 '&&R22,

(9)

assumption will not enter the final result. Only the
smallness of the y-ray width and p-ray wave number
(compared with a nuclear wave number) will be em-
ployed. ) Hence, C2 =0, A2A2*= km ', k2 being the y-ray
wave number. If one next defines y to be that part of
the previously defined p referring to channel 1 only,
and f(E) =a+ 'dy/dr, then it follows by straight-
forward calculation that

K = —Rg2LRgm+aA2(Bg(um )-')-'. (8) f(E) =a(Rn+~k2Rgm') '. (10)
In the application to be made here, the second channel
will refer to the emission of a photon. Since the p-ray
width will be extremely small compared with the width
for channel 1 (elastic proton or neutron scattering), it
will be sufBcient for the present derivation to treat the
photon as if it were described by the Schrodinger
equation for zero angular momentum and no Coulomb
6eid. (It will turn out that the exact nature of this

If f(E) =fo(E) ik(E—), where f and k are real, then

fo(E) =oRn(Rn'+k2'Ru') '™aR11' (11a)

k(E) =kma&2'(R&P+4'R&2') '—k2a(R&2/R»)'. (11b)

The absorption cross section (transition from channel 1
to channel 2) becomes, on noting that km(Rqm/Rn)'
«k(G'+F') ':

4m k2u(Rg2/Ru)'(G'+F') '
o,b, =—(21+1)ka

k'
I ku(G'+F') —']'+L(o/Rn) —ka(GG'+FF')(G'+F') ']' (12)

l being the orbital angular momentum in channel 1.
(The confluent hypergeometric functions are, of course,
to be evaluated for the argument ku. ) For low kinetic
energies and high potential barrier (Coulomb and
centrifugal), F and F' are negligible compared with G
and G', and the expression for (1/Rn)„, becomes the
same as the one which would be obtained for resonance
if only elastic scattering were considered,

(1/Rn) ...= (kG'/G) „„(13a)
the Ii and Ii' having already been neglected. However,
the variation of k, G, and G' between E„,and E„,+s I'
cannot be neglected' in the computation of the variation

ALE l. E values and calculated energy displacements for
6rst excited states.

Displace- Displace-
ment for ment for
R linear R-I linear

Rreg +)p Rgb in E (kev) in E (kev)

3=0
r ~0.48 0.55814 0.55338 0.355 750 1160

l=0
r =O.46

L=O
r=0.32

r=0.32

0.53720 0.53417 0.355 1050 1570

0.42423 0.42494 0355

0.32027 032178 0.266

0.23446 0.23526 0.224

The author wishes to thank Mr. R. G. Thomas, whose work
parallels the present discussion in some respects, for bringing this
essential point, to his attention (see Phys. Rev. 80, 136 (1950)).

of R. Hence,
- /1 kG' ' k' p2k'~I+-

ER G ) G' z„,+yr EG') s„,.
f(E) is proportional to the logarithmic derivative of

the wave function in channel 1, while the R matrix has
elements referring to all channels. Equation (9) shows
the relation between them. The absorption cross section,
of course, could have been obtained directly from the
ratio of the coeKcients of s2 and I& in Eq. (7).

From these equations and a knowledge of the location
of the maximum and of the width of the absorption
resonance, it is possible to determine Rj~ for two values
of the energy. The matrix element Rj.2 is not necessary
for this consideration for the reasons already mentioned
above, while R22 is even more negligible.

For a bound state, R» is easily determined by using
the Schrodinger wave functions, whose asymptotic
behavior for large r is similar to exp( —Pr). In the
neutron case, these functions are of the form
exp( —Pr) P(Pr), where P(Pr) is a polynomial in (Pr) '.
In the proton case, these functions are the functions
Wq, „(s) given by Whittaker and. Watson, ' where
s=2Pr, m=l+s, and k= —ZZ'eM/k2P2 Ze and Z'e
being the charges, M the reduced mass of the system,
and —k'P'/2M its energy.

If a diagonal element of the R matrix given by Eq.
(5) is approximated by summing only over those terms
for which E~ is smaller than a given value Eo, the result
will be algebraically smaller than the correct value,

9Whittaker and Watson, Modern Analysis (Cambridge Uni-
versity Press, 1927), fourth edition, p. 340.
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and will increase less rapidly as a function of E than
the correct function as long as E is less than Eo. In
particular, in an energy range in which only one Eq lies
below E, a one-level approximation to R with that Eg
gives an increase of R with E slower than the correct
one. This turns out to be important in interpreting
the results of the calculation given in the next section.

GI. RESULTS

Table I lists the values of R~~ in units of 10 ~ cm
corresponding to the N" nucleus at 2.35 Mev (E„.)
and at (2.35+0.0175) Mev, which is E„,+2I', and to
the C" nucleus at 3.10 Mev. The cases considered are
l =0 with r =0.32, 0.46, and 0.48X10—"cm, and l =1
with r=0.32 and 0.46X10 " cm. The cases in l=1
and the case l =0, r =0.32X10 "cm must be ruled out,
since they make dRn/dE negative. If, for ¹',R~q were
known to be a function of E involving only two param-
eters, these two could then be determined from the two
known points of the curve, for E=2.35 Mev and
E= (2.35+0.0175) Mev. The energy at which Rn for
N" attains the value which it actually has for C" at
3.10 Mev is then called the position of the energy level
predicted for C", since this value of R~~ is the boundary
condition which is experimentally known to be required
for a level. (Rn will henceforth be written as R.)

Table I shows that the calculated correction depends
quite sensitively on the value taken for the "radius. "
Since the 2.35-Mev level of N~~ is of even parity (l =0),
while the ground state is generally assumed to have
odd parity, the 2.35-Mev level may be assumed to be
the lowest level of its kind (even parity, J=s). Hence,
a one-level approximation for the form of the R matrix
allows one to obtain an upper bound for the amount by
which the C" level is calculated to lie above the N"
level. Figure 2 indicates schematically the form of R
as a function of energy (dotted curve), its intersection
with the full curve indicating the position of (s-proton)
resonances for the case of positive energy and of bound
states for negative energy (of which there are none in
this case). The value of y' calculated from such a one-
level formula is about equal to the quantity given by
the sum rule over processes"" P yq '~3h'/2Mu,
where s represents modes of disintegration, whether
energetically allowed or not at the energy considered,
and X may be considered to refer to the E& most closely
connected with this resonance. As a matter of fact, for
r =0.46&&10 n cm y' is 1.13 times 3k'/23fu while for
r=0.48)&10—"cm, it is 0.81 times 3h'/2M@. This
means that if the compound nucleus picture is to be
used at all, the one-level approximation can hardly be
a valid one here. Moreover, the y' obtained" from the
one-level equation I' = 2kymA ' (where A 2 is the pene-
trability) does not agree with the above y' but is smaller
by a factor of about 4, proving again that a one-level

T. Teichmann, Ph.D. Thesis, Princeton University (1949).
'I Z. P. signer, Am. J. Phys. 17, 99 (1949}.
~ L. Eisenbud, Ph.D. Thesis, Princeton University (1948).
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Fro. 2. Schematic graph of R for N" as a function of energy
(broken curve). Point A corresponds to the 2.35-Mev level in
N'3; i.e., to the proton-C~ resonance at about 430 kev. If at any
energy R has the value given by the solid curve, there is a bound
state of N'3 at that energy if E&0 and a virtual state if E&0.
The whole 6gure refers to L=O, r=0.48&(10 ~ cm. Both curves
are schematic.

approximation is not valid in this case. The possibility
of l =1 could have been ruled out previously from the
result of the experiment of Hall and Fowler" on the
radiative capture of protons of energy near 100 kev by
C".Their cross section is larger than the one calculated
theoretically from the assumption I,=0 for the 2.35-Mev
level of N" by a factor of less than 2 (not unsatisfactory,
because of the approximations in their calculations),
but is of much larger order of magnitude than would be
calculated from /=1. Moreover, the sum rule would be
even' more seriously infringed by the l =1 assumption,
in addition, of course, to dR/dE being negative at the
2.35-Mev resonance. The one-level correction indicated
in Table I (R ' linear in E) is therefore only to be
considered as an upper bound to the correction resulting
from the use of the true function of energy R(E). The
example R linear in E is given as an illustration.

One must remember, however, that in order to
calculate a displacement which can be compared with
the experimentally determined value, it is necessary to
make the same boundary condition adjustment for the
ground states as was done for the 6rst excited states,
since the experimental values are referred to a ground
state displacement zero. Table II lists the values of R
for the ground states, l=i. In this case, since both
states involved are bound states, there is no experi-
mentally determined width. The energy displacement
implied by the di8erence in R values can be estimated,

'3 R. N. Hall and %'. A. Fowler, Phys. Rev. 77, 197 (1950).
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TAsI.E II. R values and calculated energy displacements
for ground states.

r=0.46
r =0.32

+C» ground

—0.187—0.169

RNis ground

—0.212—0.178

(10-is
erg-cm)

0.57
0.96

(one-level
estimate)

(kev)

195
155

at least with respect to order of magnitude, by using a
one-level formula with y' being estimated from the
first excited state of N" by I' = 2k&'A '. (Although this
is not exactly applicable here, it can be used for such
an order of magnitude estimation. ) The results are
also listed in the table. The y' thus obtained is still
about 0.25 of 3k'/23fa, which may very well be larger
than the y' appropriate for the ground state, so that
the dE listed in Table II may be too large. At any
rate, the displacement is in the direction to cut down
the displacement of the 6rst excited levels relative to
the ground states here explained.

IV. CONCLUSIONS

It has been shown that the boundary condition
postulate introduced here predicts a displacement of

the 6rst excited levels of C" with respect to N" in the
right direction, and of sufhcient magnitude to explain
the experimentally known displacement. The critical
dependence on the nuclear radius rules out any very
de6nite result. It may be, of course, that there exist as
yet undiscovered levels in C" and N" which would

alter the whole analysis, and that the 3.j.O-Mev level
of C" is not really the one which corresponds to the
2.35-Mev level in N". Recent experiments on the
elastic scattering of protons by C" up to a proton
energy of about 4 Mev (with energy resolution of order
1 kev) have failed to reveal additional N" levels in the
range in question here. "
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encouragement, I also wish to thank Professor Sherr
for his interesting discussions of the experimental
aspects of this problem, and Professor Breit for making
available to me his tables of conQuent hypergeometric
functions.
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The efFect of a speculatively considered internal excitation of nucleons on the scattering of elementary
particles is examined by means of a schematic model. It is found that the relation between the integral of the
square of the wave function describing the normal nucleonic state and the apparent range of force difFers
from that expected on the ordinary potential energy description. The efFect is of the order of eight percent
if one assumes the excitation to be 275 me~. The direction of the efFect is such as to decrease the apparent
range as though the meson mass were increased, somewhat as indicated by a comparison of the mass of a
pi-meson with experiments on scattering. A possible necessity of corrections for the velocity dependence of
nuclear forces which is considered above is briefly discussed in connection with the correlation of data on
scattering with that on binding energies.

I. INTRODUCTION

T has become customary to describe interactions
between nuclear particles by means of potential

energies. That such a description is of a provisory char-
acter has been well realized since the first introduction of
exchange forces by Heisenberg' and Majorana. ' These
forces can, of course, be introduced by means of certain
additive terms in the Hamiltonian without any reference
to their origin. Nevertheless, Heisenberg's arguments
were partly based on an expected analogy to inter-
actions between atoms which take place in molecules.

*AEC predoctoral fellow.
t Assisted by the joint program of the ONR and ABC.
'%. Heisenberg, Z. Physik 77, 1 {1932).' E. Majorana„Z. Physik 82, 137 (1933).

The same general feature is present in meson theories
of nuclear forces. ' According to these theories the origin
of the force is not the interaction between nucleons with
each other but a more primary type of process con-
sisting in the production of mesons by nucleons. Only
in special cases can the static part of the nuclear poten-
tial be split o8 from the relativistic part by a de6nite
transformation. In the general Manlier-Rosenfeld mix-
ture, the potential employed in attempts to explain
scattering or binding energies is only a part of a more
general interaction which has not been evaluated on

sH. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
C. Mgller and L. Rosenfeld, Proc. Cop. 17, No. 8. G. Wentzel,
EiefNhrleg is die Quegteetheoric der Wellmfdder (Franz Deuticke,
%'ien, 1943).


