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angular distributions of neutrons with energies greater
than say 90 percent of the incident proton energy should
be due principally to the target nucleon momentum dis-
tribution, and that consequently such measurements
would yield considerable information concerning mo-
mentum distributions in nuclei.
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The magnetic properties of thin films of ferromagnetic materials have been studied by means of the Bloch
spin-wave theory. The spontaneous magnetization depends upon the number of atomic layers, G, in the
film. For thicknesses below a “critical” thickness, which depends on the temperature and film dimensions,
the spontaneous magnetization decreases rapidly as the number of atomic layers is decreased. The tem-
perature dependence of the spontaneous magnetization varies from a T# law for very thick films to a linear
function of T for a monolayer film. The spontaneous magnetization, at fixed temperature and film thickness,

decreases as the film dimension increases.

I. INTRODUCTION

T has been shown by Bloch! that one- and two-
dimensional lattices, in contrast to three-dimen-
sional lattices, should not exhibit spontaneous mag-
netization, even when the exchange integral is positive.
This conclusion was reached by the use of the spin-
wave method, which was introduced by Bloch as an
approximate way of treating the Heisenberg? model of
a ferromagnet. The spin-wave method provides a
reasonable approximation to the lowest energy states of
the system, as shown by Bethe,? but only for these;
and conclusions reached by this method are therefore
expected to be valid only at low temperatures when the
magnetization is near its saturation value. It should be
mentioned that Bloch’s result on the absence of spon-
taneous magnetization in two-dimensional lattices has
been substantiated by the calculations of Weiss* using
the Bethe-Peierls method;® on the other hand, recent
work by Ekstein® contradicts this result, leaving this
point in doubt.

If one accepts Bloch’s result, it follows that the mag-
netic properties of a slab of ferromagnetic material
should vary with the thickness of the slab and should
show a transition from ferromagnetic behavior for thick
slabs to paramagnetic behavior for sufficiently thin

* This work was supported in part by the ONR.
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films. We have studied the dependence of the spon-
taneous magnetization on the thickness of the sample,
using the method of spin-waves, in order to determine
the nature of the transitional behavior to be expected.
An experimental investigation of the magnetic proper-
ties of thin films would clearly be desirable, since it
could serve as a check on the correctness of conclusions
drawn from the spin-wave theory.

II. CALCULATIONS AND RESULTS

On the basis of the usual approximations of the spin-
wave method one obtains, in the case of a simple cubic
lattice of atoms having spin 3, the spontaneous mag-

netization :7
[2] 5
exp| —
kT i=x.53

x(l-cos%)]—llﬂ} M

Here 27\./G: is the x component of the spin-wave
vector: G is the x dimension of the crystal in units of
the lattice parameter and A is an integer (A\,=0, 1,
2, - - -G;—1). B is the Bohr magneton, J is the exchange
integral between nearest neighbors, and N is the total
number of atoms in the crystal (N=G.G,G.).

If G., Gy, G, are large numbers, then the variables
K\®=2x\./G., etc., change by small steps and one can
approximate the sums by integrals. Thus, for a three-

2
M=BN[1——-— b3
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7See Sommerfeld and Bethe, reference 3. T. Holstein and H.
Primakoff, Phys. Rev. 58, 1098 (1940).
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dimensional crystal the standard treatment? gives
2(4n) = K%K
MG dim)=BN[1_ f ]
(27)3Jo exp(JK%*/ET)—1
=BN[1-0.13(kT/J)¥]. (2)

(The cosines have been expanded to first order.) This is
the Bloch T# formula for the spontaneous magnetiza-
tion. Similarly, for a two-dimensional lattice:

M(2dim)—BN[1 X2) fm Kok ] (3)
B @2r)2 Jy expUKY/ET)—1]

This integral diverges at the lower limit, a result which
is interpreted to mean that the plane lattice has no
spontaneous magnetization. For this case, the basic
assumption of the Bloch theory, that the magnetization
is close to the saturation value, is invalid.

In the case of a thin film (thin in the z direction) G,
and G, are large numbers, taken equal to G for con-
venience; and, therefore, one can integrate over A, and
A\, but not over A,. One obtains

2G*(2m) G:=1 o
M=BN{1— ¥ f
N(2m)? x=0Jarsc
KdK
X )
exp(J/ET)[K2+2—2 cos(2m\./G.)]—1

4)

The lower limit on the integral is not zero, because in
the original sum of Eq. (1) the states with A;=X,=\,=0
have been excluded. The reasons for making this omis-
sion will be discussed in the Appendix. The upper limit
is set equal to infinity without appreciable error because
the important contributions to the integral come from
the region of small K when J/kT>>1, (a condition
necessary for the applicability of the Bloch method).

This integral can now be evaluated with the result
that

G:—1

kT
M=ﬂN[1———— ()

J 21rG,x,Z=:o
><1n{1~(1—;];§) exp[—f(x»]}], )

where

f(A:)=(2J/kRT)[1—cos(27\./G) ]. (6)

Only the first-order term in exp[(J/kT)- (47%/G*)] has
been retained.

We have carried out the summation in Eq. (5) by
numerical methods for films varying in thickness from
1 to 128 layers of atoms. Representative results are
plotted in Fig. 1, which shows the relative magnetiza-
tion M/M, as a function of the reduced temperature
T/T'g for different values of G, the thickness expressed

379

MAGNETIZATION vs  TEMPERATURE

o,,%.&\,._.ﬁq_.._,kK\K
%00\ \ o~
IR | O~
N
% \ \ N N
\e e Nes  \U

\\ \ AN ‘\ N2

i \ AN AN

| \ NN

02\ 06 08 10

o4 7
N,

Fi1c. 1. The relative magnetization M /M, as function of the
reduced temperature 7'/Tp for films of different thickness. The
integers on the curves represent the number of layers of atoms.
The film is square, 2)X 107 atoms on a side. The dashed line at
M/M,=0.75 indicates that the predictions of the theory are not
expected to be valid below this limit. The value 0.75 is arbitrary.

in atomic layers. Here, M= 8N, the magnetic moment
for complete saturation; and Tp is the characteristic
temperature determined from the Bloch 7% law Eq. (2);
ie.,

Tpt=(1/0.13)(J/k)}; Ts=3.9T/F. )

The curve for G,=  is a plot of Eq. (2). G, the linear
dimension of the film in units of the lattice parameter
has been taken as 2)X 107 in Fig. 1.

It will be noted that the curves have been drawn
dashed for magnetizations less than 0.75M,. This is to
stress the point that valid conclusions cannot be drawn
from the spin-wave theory unless the magnetization® is
near its saturation value M,.

Perhaps the most important conclusion to be drawn
from Fig. 1 is that, for the assumed values of the
parameters, significant deviations from the three-dimen-
sional spontaneous magnetization occur for films less
than about 60 atomic layers in thickness. At any given
temperature the spontaneous magnetization decreases
rapidly with decreasing film thickness below this
“critical” number of atomic layers. Furthermore, for
these sufficiently thin films the spontaneous mag-
netization falls off more sharply with increasing tem-
perature than T% approaching a linear function of
temperature.®

It should be noted that we include a curve for G,=1,
i.e., the two-dimensional lattice. This curve has been
calculated from Eq. (4) rather than from Eq. (3). The

8 For example, the curve for G,= =, the 7% law does not cor-
respond to experimental curves except at low temperatures, below
about % the Curie temperature. See the curves in R. H. Fowler,
Statistical Mechanics (The Macmillan Company, New York,
1936), pp. 500-501.

® The curve drawn for a monolayer film is strictly of the form
M/My=1—aT. This is incompatible with Nernst’s theorem which
requires that (@M /8T)r-o=0. The reason for the discrepancy is
that the integration over A\; and A, is not permitted at very low
temperatures (#7=27J/G) and the magnetization should then
be calculated directly from Eq. (1). The authors would like to
thank Dr. Charles Kittel for raising this question.
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reason for the lack of divergence in Eq. (4) is, of course,
that the lower limit on the integral is not zero, because
states with A;=MN,=\,=0 have been omitted. (See
Appendix.) The curve implies that at sufficiently low
temperatures (7'<0.2J/k), even a monolayer film will
be ferromagnetic. (A result analogous to this has been
found by Osborne'® in a study of the two-dimensional
ideal Bose-Einstein gas, a closely related problem.)

In addition to its dependence on T and G, shown in
Fig. 1 and discussed above,the spontaneous magnetiza-
tion depends on G, the linear dimension of the film
expressed in units of the lattice parameter. When con-
ditions are such that all terms beyond the first term of
the sum in Eq. (5) can be neglected, this dependence is
very simple, and we find:

d(M/Mo)/d InG=—(kT/J)(1/7G.). ®)

The condition for the validity of Eq. (8) is that the
excitation energy of a state with nonzero z-wave
number 2w\,/G. be large compared to kT; i.e.,
(J/kT)47%/G.2)>>1. When this condition is satisfied,
M/M, is a linear function of InG: M/M, decreases as
InG increases, T and G, (film thickness) held constant.

When Eq. (8) is not valid, one can still obtain some
information on the dependence of M /M, on G; namely,
by considering the full sum in Eq. (5), it can be shown
that for G>G2, (M/M,)/d InG<O0, implying that for
sufficiently large G, M/M, goes to zero. (The bound
G>G2 is merely a convenient one in estimating the
partial derivative since the functional dependence is
quite complicated.)

III. DISCUSSION

Let us now give a qualitative physical discussion
which may help to clarify the results which have been
derived above. Consider the energy levels of the system
as given by the spin-wave theory. They have the form 7

) 27r)\i) } ©
—cos— ) |n,
A

where C is a constant and %), is an integer which gives
the number of spin-wave quanta in the state charac-
terized by Az, Ay, A

When G, &G(=G,=G,), these energy levels cor-
respond to a spectrum in which the spacing of states
differing in their A~ or A\;-values but having the same
value of A, is very small compared to the spacing of
states which differ only in their A.-values. In particular
there are G? states with \,=0 (which may be called

10 M. F. M. Osborne, Phys. Rev. 76, 396 (1949).

E(ny))=C+J ¥ [ >

Az Ay Ml i=x,9.2
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two-dimensional states) ; and, since for A, 0 the lowest
energy level is (A\,=X\,=0, \,=1), for which the ex-
citation energy is =2J(27?/G2), it is easy to show that
there are =~ (G/G.)? two-dimensional states having
energies lower than the first state with A, 0. (Similarly,
between the states (\,=X\,=0, \,=1) and (A\,=)\,=0,
A\;=2) there are approximately 37(G/G,)? states, etc.)

These remarks indicate, therefore, that when G, is
sufficiently small compared to G, i.e., when the film
thickness is sufficiently small compared to its linear
dimension, only the states determined by the first few
values of A\, make any important contribution in the
relevant low temperature region. In the calculations
given above this means that only the first few terms of
the sum in Eq. (5) are appreciable. As a consequence,
when G,/G<K1, the magnetic properties are essentially
determined by the two-dimensional states, giving rise
to the results discussed quantitatively in Sec. IT above.

The authors would like to thank the referee for
several valuable suggestions.

APPENDIX

We shall now discuss the omission of the states with N;=\,
=X,=0. These states of zero spin-wave vector have a simple
classical interpretation: they correspond to all spins being parallel
with the spin system aligned in an arbitrary direction. In the
absence of an external magnetic field, these states have no excita-
tion energy, as may be verified from Eq. (9). The contribution of
these states to the magnetization is infinite as can be seen from
Eq. (1).

The origin of this infinite term in the magnetization can be
traced to the following circumstance. The sum of the #), (the

occupation numbers of the spin-wave states) is a measure of the
number of reversed spins in the lattice. Consequently, this sum
has a maximum value. In carrying out the partition sum (from
which Eq. (1) is derived) one should therefore impose a restriction
on the possible values of the 7, ; namely, their sum should be less

than a fixed number, proportional to N. Actually the partition
sum is evaluated without imposing this restriction: the #), are

allowed to take on all integer values from zero to infinity. This
(incorrect) method of evaluating the partition sum leads directly
to the infinity in question.

We have not been able to perform the calculation of the partition
sum rigorously, but we have made another type of approximate
calculation. We have restricted the occupation numbers 77, by

setting their sum equal to one fixed value determined to fit ex-
perimental data for the spontaneous magnetization. While this
method is only an a@ posteriori one, the result is of interest: the
troublesome states, with Az=X,=X,=0, make a completely neg-
ligible contribution to the magnetization, rather then the infinite
one obtained by the usual method.

The result of this approximate calculation and the physical
unreality of the infinite term in question have been our justification
for omitting the zero wave number states from our treatment. A
rigorous calculation would, of course, settle the subject con-
clusively.



