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Boundary Conditions for the Description of Nuclear Reactions
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The present paper deals with a phenomenological description of nuclear reactions by means of boundary
conditions. The several stages of the reaction (initial particles, compound nucleus, etc.) are described in
their respective configuration spaces; and the state representing the whole system is given by a wave function
in Fock space. The wave equations and the boundary conditions are deduced with the help of an analogy to
vibration problems. The interaction leading to the nuclear reaction appears as a boundary condition between
the diferent components of the Fock type wave function. A discussion is given of elastic scattering and of
two-particle nuclear reactions, showing that the present procedure gives the same dependence of the cross
sections on energy as the Breit-signer resonance formula and its generalizations. A sketch is given of the
extension of the present ideas to multiple particle reactions. The whole treatment is nonrelativistic.

I. INTRODUCTION

~[VER a wide range of energies of the incident par-
ticles, it is useful to follow the progress of a nuclear

reaction in the following three stages:

(1) the presence of the initial nucleus and the incident particle,
(2) the formation of a single particle (compound nucleus) after

the collision,
(3) the appearance of two or more particles as a result of the

disintegration of the compound system.

The possibility of contemplating these three stages
of the reaction stems from the relatively long lifetime
of the compound nucleus, for a large range of collision
energies, which makes it fruitful to consider it as a
separate entity. '

The usual description of the nuclear reaction processes
represents all three stages of the reaction in the con-
figuration space of the nucleons which constitute the
incident particle and the initial nucleus. ' The com-
plexity of the problem, particularly in the absence of a
de6nite theory of nuclear forces, has made it useful to
consider the coordinates of the center of mass and the
relative position of the two initial particles as six of the
coordinates of the con6guration space of the nucleons,
and to include the rest in the internal coordinates of the
particles. By an appropriate division of this con6gura-
tion space, %igner and Kisenbud' and others developed
a method for the description of two-particle reactions
which takes into account the general features of the
phenomenon.

In the present paper we will develop a description of
nuclear reactions which will not use the con6guration
space of all the nucleons present, but the con6guration
space of the reacting particles and of the compound
particle, all of which will be considered as elementary
particles.

The three stages of the nuclear reaction will not be
represented in the same configuration space. The first
stage, corresponding to the presence of the two initial
particles, will be described in the 6-dimensional con-
figuration space corresponding to them by the wave
function $1(r1,r2, t). The second stage, in which a single
particle (the compound nucleus) is present, will be
represented by the wave function $2(r1,t) in 3-dimen-
sional configuration space. Finally, the third stage, in
which we have, let us say, e-particles, which are pro-
duced in the disintegration of the compound system,
will be described in their 3n-dimensional con6guration
space by the wave function $2(r1,r ~

2
.,r„,t). The reac-

tion products will be described in a diferent con-
6guration space from that of the initial particles, even
if n =2, except when we have only elastic scattering. In
this case, only the first two spaces are needed to describe
the reaction.

As the state of the system that is undergoing a nuclear
reaction may be in any of the three stages mentioned
above, it is clear that its complete description can be
achieved only by a wave function of the type introduced
by Fock,4 in connection with states in which the number
of particles is not a constant of the motion. For our
problem, the appropriate wave function, which will be
referred to from now on as the Fock wave function of
the state, is given by the vector:

A(r1, r2, t)
$2(r1,t)

(r2„r„,r„,t)

The scalar product of two Pock wave functions is
de6ned by:

(+ + ) '

I 41 4'1 drldr2+ 42 42 drl

~H. A. Bethe, Ejensentary ENcleor Theory (John bailey and
Sons, Inc. , New York, 1947), p. 109. Also L. Eisenbud, Princeton
dissertation, 1946, and E. P. signer, Am. J. Phys. 1?, 99 (1949).

~See reference 1 and H. A. Bethe, Revs. Modern Phys. 8,
107 (1936).' E. P. Vhgner and L. Eisenbud, Phys. Rev. 72, 29 (1947) and
K. P. signer, Phys. Rev. ?O, 15 (1946).This article also contain
references to earlier literature.

+ I 1t2~$2'dr1 dr„(2)
J J

s 4V. Fock, Z. Physik 75, 622 (1932). Also L. Landau and
R. Peierls, Z. Physik 62, 188 (1930).
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and the Fock wave function is normalized when

(4,+) =1.
The interpretation given to the components of (1) is

the following: f~*(r~,rn, t)f~(r~, r2, t)dr~dr2 represents the
probability of 6nding, at time t, the state in the form
of the two initial particles in the neighborhood of r~, r2,
and similarly for the other components.

Our problem is now to determine the wave equations
satisled by the Fock wave function, as well as to
describe the Aux of probability which takes place in the
course of time, from the con6guration space of the initial
particles to that of the particles produced in the reac-
tion.

To guide us in this problem we consider the analogous
problem of the vibration of continuous media.

II. ANALOGY VGTH VIBRATION PROBLEMS

The usefulness of the analogy between vibration
problems in continuous media and the above description
of nuclear reactions rests on the following considerations:

(a} the equations obeyed by the displacements in the vibration
problem are similar to those (Schroedinger or Klein-Gordon)
which the wave functions in con6guration space satisfy.

(b) The probability density in con6guration space, which is
the quadratic form Pf*, can be compared to the energy density
in the vibration problem, which is also a quadratic form of the
derivatives of the displacement. In both cases we have con-
servation theorems. In the vibration problem, the total energy
of the vibrating medium is constant, while in con6guration space,
the total probability equals unity for normalized wave functions,
and is independent of time.

(c) For a state represented by a Pock wave function, such as
the nuclear reaction above, there will be a Qux of probability
between the con6guration spaces of different dimensions. A
similar problem appears when we consider vibrations of con-
tinuous media of different dimensions which are in contact, and
where we observe a transfer of energy between the media.

A simple example of vibrating media of diferent
dimensions in contact is given by the two semi-in6nite
strings I and III of linear densities p~, p3, and tension T,
which are coupled at x=0 by the mass point II of
mass M2 (Fig. 1).

We have in this case one-dimensional continuous
media represented by the two strings, in contact with
the zero-dimensional mass point II. When the system is
set into vibration, there is a continuous exchange of
energy between the strings and the mass point.

If a disturbance is produced in I, all the energy of the
system will be concentrated there; but, ip the course of
time, some of the energy is communicated to the mass
point II, which, in turn, passes it to III and gives some
back to I in the form of a reQected wave.

In the Fock space picture, something similar happens

FIG. i. One-dimensional elastic system composed of two strings
{Iand III) coupled by a mass (II).

and
p,(8'u3/8P) T(8'u3/8—x') =0. (4)

The equation of motion of the particle II will no longer
be that of a free particle, and a simple way to 6nd it is
through the principle of conservation of energy. The
total energy of the vibrating system is given by

H= ,' [p)(8-ug/8t)'+ T(8u)/8x)')dx+2M, (du2/dt)'

N p

)pa(8u, /8t)'+T(8u3/8x)')dx. (5a)

Assuming that u~, u3 vanish appropriately for x =~~,
and using the wave equations (4), we obtain

dH/dt = T(8u~/8x), =0(8u,/8t). ,
+M2(d'u2/dP) (du2/dt)

T(8ua/8—x), p(8u3/8t) =p=0 (5=b).
H the coupling between the wires and the mass point

II is such that the displacement of the wires is equal to
that of II, we have

ug(0, t) =u2(t) and u, (t) =u, (0,t). (6)

From Eqs. (Sb) and (6), the equation of motion of the
particle II becomes

M2(d'u2/dP)+ T(8u~/8x) 0 T(8ua/8x) 0 ==0—. (7)

We see that the equation of motion of the particle is
modi6ed by the presence of terms due to the action of
the h.igher dimensional media. Furthermore, the inter-
action between I and III takes place through the

in the description of a nuclear reaction. At the beginning,
all the probability is concentrated in the con6guration
space of the two initial particles. Later on, there is a
Row into the configuration space of the compound
system, and 6nally, into the con6guration space of the
particles produced in the reaction.

A spontaneous disintegration of a particle, such as the
o.-decay, would correspond in the vibration picture to
the energy of the system being concentrated initially in
the mass point II. This energy would be communicated
to the strings, and it can be seen easily that, because of
this radiation of energy, the amplitude of the vibrations
of II suGers an exponential decrease with time.

We designate by u~(x, t) the lateral displacement of
the string I and by u3(x, t) the lateral displacement of
string III, the displacement of the mass point II is
given by u&(t). The "state" of the vibrating system is

given by the vector:
ug(x, t)

U = u2(t)
.ug(x, t).

The equations of motion for the strings when x/0
will be the ordinary wave equations:

p, (8'u, /8P) T(8'u, /8—x') =0
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boundary conditions (6) and (7) at x =0 and in no way
through the equation of motion of the strings. In fact,
with the help of Eq. (6), we can eliminate I& from Eq.
(7) and obtain direct boundary conditions between ui
and u3 and their derivatives at x =0.

The properties of the vibration problem, suggest the
following procedure for the Fock wave function in con-
figuration space:

(a) The wave functions for the initial and final particles satisfy
free-particle Schroedinger wave equations everywhere except at
the point of coincidence of the particles.

(b) The wave equation for the compound system p2 will be
modified by the wave functions of the higher dimensional con-
figuration spaces, similarly to what happens in Eq. {7).

{c) The theorem of conservation of probability could guide us
in the determination of the boundary conditions of the problem.

We will proceed to apply these considerations to
several types of nuclear reaction problems, starting with
elastic scattering.

III. ELASTIC SCATTERING

For the description of elastic scattering, our Fock
wave function mill have only two components corre-
sponding to the initial particles and the compound
system, respectively, as those are the only stages in
which our state can be found. Ke restrict our state to
zero total momentum, i.e., we choose the center-of-mass
reference frame.

The Fock wave function becomes then

i/i(r, t)

where Pi(r, t) is the wave function representing the two
initial particles with r = r» —r2 being the relative position
vector, and $2(t) is the wave function for the compound
particle.

When there is no interaction between the components
of the Fock wave function, they should obey the free
particle Schroedinger equations:

ibad, /at+—(mi+m~)c'Pi = (h'/2') W&i, (9)

ih(Dpi/Bt)+M—c'f2 0——(10)

where m», m2 are the masses of the two initial particles,
y =mim2/(mi+m2) the reduced mass, and M the mass
of the compound particle. The energy operator
E=ih8/N represents here, for reasons which will be
apparent later, the total energy and not, as usual, the
kinetic energy alone.

In case there are interactions between the con-
figuration spaces of different dimensions of fi and P2,
we can still consider that Pi satisfies Eq. (9) as long as
r&0. On the other hand, the analogy with the vibration
problem suggests that $2 can no longer satisfy Eq. (10),
and also that the theorem of conservation of probability
could give a clue to the modifications we have to impose
on Eq. (10).

From Eq. (2) we have

P(&)=—(+, 4')= pi*(r, t)pi(r, t)dr+/, *(t)p,(r), (11)

which represents the probability of finding at time t the
state (8) in any of its stages. This probability should be
a constant, and equal to unity in case the Fock wave
function is properly normalized.

We assume now that the wave function Pi(r, f) is
regular at r = ~, and me surround the point r =0 where
the wave function is singular by the sphere r' =a' whose
radius a—4. If we evaluate dP/dt, making use of the
wave equation (9) in the region outside the sphere
r'=a', me obtain

h dP r
~ ('~ Ii' ( Bgi* Bfi)——= lim

i dt '~o~o "o 2y E Br Br )
(i'i 8/2

Xsin8d8d p+rP2*~ — +Mc'$2
~Iieet j

(fi 8/2—Al — +Mi2A
I

=0. (12)(i at

The Fock wave function that satisfies Eq. (12) must
represent a state for which the conservation of prob-
ability holds. We restrict ourselves to an initial state in
which the particles have zero relative angular momen-
turn, as otherwise the law of conservation of angular
momentum would require that the compound particle
represented by f2 should have a spin. Furthermore, if
relation (12) is satisfied for the wave function

-p I-

and 7

2-

the general principles of quantum mechanics require
that it should be satisfied by any linear superposition
of 0' and 4', and this implies that Eq. (12) becomes the
bilinear relation:

2irh' p8rg, q*,2~rh' )Br/, 'y
=o—r» r=o

g 4 Br ) „ 0 y ( Br

fk 8/2
+A*~ — +M~%2'

~

at )
(k 8/2

+Mc'$2
~

f2'=0. (13)
E. i 8t )

This bilinear form is of the familiar type:

x»*y3—x3*y»+x2*y4—x4*y2 =0, (14)

which appears in many boundary value problems, ' and

K. L. Ince, Ordinary DQferent~al Equations {Dover Publica-
tions, New York, 1944), Chapter IX.
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it is known' that the general linear self-adjoint equa-
tions which make Eq. (14) vanish are:

xo=Cllx1+Clpxoy xo =C21x1+C22x2) (15)

where C = IIC,,II is a constant Hermitian matrix.
From Eqs. (13) and (15) we obtain the linear equa-

tions:

which the two initial particles are present, or in the
n —1 other states in which single particles of masses M2,
M3, ~ . M are present instead.

By applying the theorem of the conservation of prob-
ability to the Fock wave function (20), we arrive at the
bilinear relation:

(r&1),-o =C11(22rh'/j3) (Bnp1/Br)„3+C1 2&2, (16a)

(h/i) (fjf2/Bt)+Mc2$2
=C2, (22rh2/j3) (8np1/Br)„=3+ C22$2 (16.b)

P(x,*y„„—x„„*y.,)= 0,
i=1

where for all i =2, 3 . . n,

(21)

Equations (16a) and (16b) give us the coupling
between the wave functions of the initial particles and
the compound particle. The constant C&2 is a measure
of the coupling, because the interaction between P,
and $2 disappears if C12 =C» ——0.

When there is no coupling, Eq. (16b) should reduce
to Eq. (10); and this implies that C» ——0. If we now
assume that our state corresponds to a definite energy
E, we have ih8$2/B—t= E$2 an—d eliminating $2
between Eqs. (16a) and (16b) we obtain

(Q1) =p =L42rhC122/(Mco —E)+42rhC11]
X (h/2jj)(8rf1/Br), =o. (17)

This equation is the boundary condition which char-
acterizes the elastic scattering, and the term in the
square bracket corresponds to the single term of
signer's' R-matrix.

The energy E corresponds to the total energy of the
initial pair of particles, so that:

E Mc' =Ep [—M (m1+—m2)jc'—=Ep Ep (18)—
where EI, is the kinetic energy of the relative motion of
the two initial particles, and Eo is the binding energy
of the compound system. Thus the R-matrix, which is
in this case one-dimensional, becomes

R =L4xh
I
C» I'/(Eo —Eo)j+4xhC11 (19)

This result is identical to the form of the R-matrix
for single-lovel elastic scattering, and we see that in the
present phenomenological description it is only a con-
sequence of the theorem of conservation of probability.

IV. MANY-LEVEL ELASTIC SCATTERING

The formation of a single compound particle has led
to the single-level Breit-Wigner formula for elastic
scattering. %e shall obtain the many-level formula by
assuming that the collision process may give rise to
any of n —1 compound particles. The Fock wave func-
tion then becomes

&1(r,t)
&2(t)

~ ~ ~

. .(~)

(20)

This implies that our system can be in the state in

' This will be proved in the Appendix.

x1 = (22rh'/jj)(dr/1/Br), x„+1= (rf1), p,

x; =f;, x„~;= oh(8$—,/Bt)+M;c2$;

and the y's have a similar significance with respect to a
second wave function.

The linear self-adjoint equations which make this
bilinear form vanish, are

x„+;=PC,,x, ,
j=l

(22)

where C=IIC;, II is, as before, a constant Hermitian
matrix.

There should be no coupling between the wave func-
tions of the compound particles themselves, but only
between them and the wave function for the initial
two particles. This implies that only Ci&=C&;*NO for
3=2, 3, , n and the linear relations (22) become

xn+1 2 Cl jxj
1' 1

and x„+i——C;~x~ for i =2, 3, , n.
If we now assume a definite energy E for the state,

we can eliminate, as in the one-level case, the f;
(i = 2, 3, , n) and obtain

4 hlC, , I-') h (jr/, )
(rp1). o=

I p +42rhC, 1
I

—
I I, (23)

E. i-2 Eoi—EI, )231& ar ), o

V. TWO-PARTICLE NUCLEAR REACTIONS

The nuclear reaction in which the compound particle
can disintegrate into either of two pairs of particles can
be described by the Fock wave function:

41(r,&)
'

+= $2(t)
&3(r,t)

(24)

Both wave functions f1, $3, for the initial and final

particles, satisfy the free particle wave equation (9)
with reduced masses p, ~ and p, 3, as long as rWO. If we

apply the principle of conservation of probability, the
same reasoning which we used in the case of elastic scat-

where Ep, =IM,—(m1+m2)jc' represents the binding

energy of the ith compound particle.
Equation (23) is the many-level formula for elastic

scattering.
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tering leads to the bilinear form

3

Z(x''yg+*—xg+"y~) =o, (23)

where x~, xg, xg, xg are given as in Eq. (21) for gg= 3, and

x =(2grk/tg )(Bring/Br)„o xo —(rfg)„o. (26)

The linear self-adjoint equations which guarantee the
vanishing of Eq. (25) have again the form (22), with
n=3. We shall assume that in the present problem
there is no direct coupling between the initial and 6nal
wave functions, but only a coupling through the com-
pound state. The Hermitian matrix then has the form

Cll Cl2 0
C= C2l 0 C23 . (27)

. 0 C3. C33,

For a definite energy E of the system, we can again
eliminate fg from the linear equations (22). We thus
obtain the relations

(rf;) o=R;z=(k/2tgg)( Br/ g/Br). = o

+R,g(k/2tgg)(Bring/Br), o (with i =1,3), (28)

FIG. 2. Elastic system composed of a membrane (II),
and a mass (I).

In Fig. 2, we would expect that the vibration set up
in the region II will have circular symmetry; i.e., will
correspond to the lowest "spherical harmonic" in two
dimensions. Similarly, in the six-dimensional space of
the relative coordinates of the disintegration products,
the wave function will be an outgoing wave which is
independent of the angular coordinates in that space,

P=R—gHg(kR) exp( iEt/k) — . (29)

In Eq. (29), k = (2ME/kg) I is the generalization of wave
number for the six-dimensional space in which f is
defined, II2 is the outgoing Hankel function of order 2,
and E' is the analog of the radius vector of the particle;
also, for six-dimensional con6guration space,

where the matrix I= ~~R,;~~, ij =1,3 has the form:
R'= P(m, /M) (r, r)', — (29a)

4mk Cl2Cgl Cl2C23
R= +4~k

Eo—E~ -C32C2l C32C23- 0 C33 with x the center of mass of the system,

The matrix R is clearly Hermitian and equivalent to
the one obtained by Wigner for the single-level two-
alternative reaction.

Our phenomenological description could deal with
many-level, many-alternative, two-particle nuclear rea-
tions if we assumed a Fock wave function which could
take into account all of the possible stages of the nuclear
reaction.

VL g-DISINTEGRATION

As a last example we shall deal with a process in which
one particle decomposes into three particles. A process
of this nature is the P-decay such as the disintegration
of a neutron into a proton-electron-neutrino triplet.
Unfortunately, since the neutrino mass is zero, the
energy distribution of the disintegration products given

by the present nonrelativistic theory will not be directly
comparable with the actual energy distribution. How-
ever, it will be possible to make the comparison on the
basis of a remark of Uhlenbeck and Goudsmit. '

The vibration analog is illustrated in Fig. 2. The
configuration space for the final particles is of higher
dimensionality than that for the initial particle; and,
in order to represent it, we need a vibrating medium of
higher dimension, such as the plane II in Fig. 2. The
original system, i.e., the neutron, is represented by the
mass point I.

~See G. E. Uhlenbeck and S. Goudsmit, article in "Pieter
Zeeman" (M. ¹ijh08, 'S-Gravenhage, 193S), p. 201.

r=P m, r,/P m„M=+ m„ (29b)

P=R "'exp(ikR iEt/k)— (30)

This asymptotic expression can be considered as a
superposition of plane waves of equal intensity in a11

directions in six-dimensional space:

r

exp I ikQ Dmg/M) Irg+ (mg/M) Qrg j iEt/k Ida—
(31)

In this, 0 is a unit vector in six-dimensional space, and

The three values 1,2,3 of the index s refer to the three
reaction products: proton, electron, and neutrino.
Since the theory here presented is nonrelativistic, it was
necessary to attribute a finite mass even to the neutrino.
However, since the proton mass ml is very much larger
than the other masses, we can use the approximation
for Eq. (29a),

R' = (mgrg'+mgrg')/M. (29c)

The same approximation is customarily made in
P-theory; hence our result is made more easily com-
parable with the usual theory if we introduce the
approximation involved in Eq. (29c).

For kR»1, the wave function (29) becomes asymp-
totically
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dQ indicates integration over the unit sphere in six
dimensions. The integration over 0 can be replaced by
integration over the six-component wave-number
vector k if k is restricted to a very thin spherical shell
k( ~k~ (k+6. Further, this k can be considered as a
sum k2'+k3' of two vectors, k2' and k3', the last three
components of k~' and the first three components of Ita'

being zero. This gives

f
f=b ' dkm'dks' exp[tk~'(m /2M)& r2]

Xexp[ikm'(mg/M)& rsj exp( —iEt/k).

The integration herein is to be extended over the shell
kr(km'2+k3'2( (k+ 8)'. Introducing k2 = (mg/M) ~k2',

k3 ——(ma/M)&k~', we have

f
P=b ' exp( —~Et/k) exp(ikq rm)dk,

X I p('k. )dk, (32)

where the integration is subject to the condition

k2/M ((k22/m2)+ (k32/m, ) & (k+ 8)2/M. (32a )

Ke are interested in the probability that the energy
of the electron em ——k'4'/2m2 is in unit neighborhood of
e2. This will be proportional to that part of the volume
of the ellipsoidal shell (32a), for which

62( k k2 /2m2( 62+l42 (32b)

This is easily calculated to be proportional to

[(k2k'/2M) e2j4,&d—e, (33)

Hence, the energy distribution of the P-disintegration
products becomes proportional to the square roots of
the energies of the two light particles which are emitted,
i.e., proportional to the volume available in phase space.
According to Uhlenbeck and Goudsmit, ' this is also the
result in relativistic theory. '

s The transition from Eq. (29) to Eq. (33) can be carried out
also by means of an identity in the theory of Bessel functions.

VII. CONCLUSIONS

The principal new point raised in the present paper
is the analogy between vibration problems in which
bodies of diBerent dimensionality are involved on the
one hand, and quantum-mechanical problems in which
the number of particles is not constant, on the other.
The formalism here proposed, which amounts to a
prescription of boundary conditions in Fock space, '
yields the same energy dependence for reaction cross
sections as the ordinary theory and yields, for three
particle disintegrations, an energy distribution between
the product particles which is very similar to that to
which the customary P-disintegration theory leads.

I want to express my thanks to Professor K. P.
signer to whom I am indebted for many discussions and
suggestions concerning the present work. It is a pleasure
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la Investigacion Cientifica.

APPENDIX

We are given the bilinear form:

Z(x y„„—~„„*y;),
i=1

and we want to find n linear equations between the 2n variables x
such that combined with the same linear equations for the y, they
make the above bilinear form vanish identically.

Let us assume that the e linear equations are

~. ;=X c;;~;.
i j

Substituting this into the above bilinear form we obtain

Z &;*(Y„„—Z c;;*y,).
i 1 1

This will vanish if the y's satisfy the equations

x.+'= & C'*x
j 1

Since the x and y should satisfy the same equations, the C matrix
must be Hermitian. Conversely, every connection between the x;
and x„+, of the above form, with an arbitrary Hermitian C,
guarantees the vanishing of our bilinear form.

' M. Moshinsky and E. P. Wigner, Phys. Rev. 74, 1212 (1948)
and 75, 1322 (1949), also M. Moshinsky, Princeton dissertation,
1949.


