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Nuclear Magnetic Moments and Atomic Hype&me Structure

AAGE BoHR*
Department of Physics, Colombia University, Em Fork, Eeu York

(Received August 7, 1950)

The asymmetric nuclear model discussed in a previous paper provides the basis for a more detailed
interpretation of nuclear magnetic moments than the single particle model permits. The structure of the
moment which the model implies may be tested by a study of the in6uence of the finite size of the nucleus
on the atomic h.f.s. This effect was investigated previously in cooperation with Weisskopf, and is con-
sidered more closely in the present paper with the assumption that the nuclei in question can be described
in terms of a single particle moving in an asymmetric nuclear core. The K-isotopes should be well represented
by this model, and for these nuclei the theoretical value obtained for the h.f.s. is in close agreement with
the observed data. Also for the Rb-isotopes the agreement is satisfactory.

I. INTRODUCTION

N a recent article' a nuclear model was discussed in
& - which the individual nucleons are assumed to move
in an average nuclear field which deviates from spherical
symmetry. This so-called asymmetric model contains
many of the characteristic features of the single particle.
model, and at the same time incorporates such col-
lective types of nuclear motion as are manifested in the
existence of the large electric quadrupole moments.

The asymmetric model implies that the nuclear core
possesses rotational degrees of freedom. The character
of a nuclear state, and its magnetic moment in par-
ticular, is therefore not determined uniquely by the
quantum numbers of the single particle motion, but
depends also on the coupling of this motion to the
asymmetric nuclear core and on the rotational state of
the nucleus. For a given total angular momentum of the
nucleus the magnetic moment may have any value,
within certain limits, corresponding to the observed
behavior of nuclear magnetic moments.

In the present state of our knowledge of the coupling
of angular momenta in the nucleus, it is in general
dificult to make quantitative predictions regarding the
value of the magnetic moment. By means of the em-

pirical value of the moment it is possible, however, to
determine the character of the nuclear state in question,
at any rate for the simplest type of nuclei, those which
can be described in terms of a single nucleon moving in
a nuclear core which possesses no intrinsic angular
momentum.

A detailed model of the nucleus is thereby obtained
which can be tested in its relation to other nuclear
properties. One such test is provided by an accurate
measurement of the atomic hyper6ne structure. Because
of the distribution of the magnetic moment over the
6nite volume of the nucleus, the h.f.s. splitting diGers

slightly from the value corresponding to a point-dipole
at the nuclear center. This deviation, the h.f.s. anomaly,
depends not only on the size of the nucleus, but also on
the intrinsic structure of the moment. Effects of this

type have been observed in a number of cases. ' '
A theoretical treatment of the h.f.s. anomaly for the

case of heavy nuclei was given previously by %eisskopf
and the writer. ' It was found that the part of the
nuclear moment due to the intrinsic spin of the nucleons,
and the part due to orbital motion in the nucleus, will

contribute diGerently to the h.f.s. anomaly. The eR'ect

is therefore especially sensitive to the distribution of the
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nuclear moment on these two types of magnetic
moment.

Since no model was then available which could
account in detail for the nuclear moments, an approxi-
mate estimate of the h.f.s. anoma1y was made on the
basis of very general assumptions regarding the struc-
ture of the nucleus. In the following, we shall attempt
a more accurate treatment based on the asymmetric
nuclear model. For simplicity, we shall assume that the
nuclei in question can be represented in terms of a single
nucleon moving with respect to the nuclear core.

II. ANGULAR DISTRIBUTION OF THE
SPIN MOMENT

In order to evaluate the h.f.s. anomaly for the spin
part of the moment, the assumption was made in 8
that this part of the moment can be represented by a
spherically symmetric distribution function. Such an
assumption is justified for nuclear models, like the
uniform model, ' which ascribe no exceptional spatial
distribution to the nucleons carrying the spin moment.
The single particle model, or the asymmetric model,
however, implies in general pronounced angular asym-
metries in the spin distribution, which may have a
considerable inhuence on the h.f.s. anomaly.

The eGect of such asymmetries is given by formula
(B7).It follows from {B(6, 8, and 12)] that the quantity
z,—representing the anomaly in the spin part of the
h.f.s.—must be replaced by ~,

' given by

Kg = Kg+{ (Kg Nir, ))
where

((s, cosy+ s„sing) —', cos8 sin8
(s,)A.

+s*(2 cos ~ 2))A& (2)

the averages to be taken for the spin and angular
distribution of the odd nucleon in the nucleus.

Extrexne Single Particle Model

We first consider the extreme single particle model
according to which the total nuclear angular momentum
is possessed by the odd nucleon.

The angular distribution and the spin direction of
this nucleon are given by the wave functions

l-$
4+= &r;(&, q)x+

1 T

1'r+~(+, s)x+
(2I+2)&

/'2I+1) ~ r+~
y'r+y(&, y) x (3b)

E2I~2)

for the cases of parallel and antiparallel spin and
7 H. Margenau and E. Wigner, Phys. Rev. 58, 103 (1940).

orbital moment, respectively. The total angular mo-
mentum is denoted by I, and we are considering the
magnetic substate M=I. The angular wave functions
Vi are the normalized spherical harmonics' represent-
ing a particle with angular momentum I and magnetic
quantum number m. The spin functions x+ and p
correspond to the eigenvalues s, =-,' and s, = —2, re-
spectively.

The evaluation of f' gives

and
f = (2I—1)/4(I+1), (I=f+ 2)

f'= (2I+3)/4I, (I= l ,')——(4b)

P =f(8, y) {cosine l'&x++-single&'&x }. -
(6)

It follows that the direction of the spin is characterized
by the polar angles 28 and y. It is easily seen that this
eGect tends to increase P by making the magnetic 6eld
inside the nucleus depart more strongly from the field
produced by a dipole at the nuclear center.

Asymmetric Model. Extreme Coupling Cases

For the asymmetric model, the nuclear wave function
is not determined uniquely by the values of I and M,
even if we restrict ourselves to the ground state of the
nucleus. As discussed in A, a number of different
coupling cases may arise, depending on the strength
of the spin-orbit coupling as compared with the coupling
of the nucleon to an axis of the nucleus and the rota-
tional level-spacing of the nucleus.

In the case Bq (see A), of very strong spin-orbit
coupling, the particle wave function is again given by
(3), except for the fact that the polar angles of the par-
ticle are now defined with respect to the axis of the
nucleus, and that the spin functions represent states for
which the spin is quantized parallel or antiparallel to
the nuclear axis. We assume that the asymmetry of the
nuclear core is not too large, and that I therefore is a
good quantum number. To obtain the wave functions
for the entire nucleus, the expressions (3) must be
multiplied by the symmetrical top wave function

s The phase factors are those used in E. U. Condon and G. H.
Shortley, The Theory of Atomic Spectra (Cambridge University
Press, 1935).

for the states (3a) and (3b), respectively.
The asymmetry expressed by the quantity t is partly

due to the fact that, for I)—'„ the particle density is not
isotropic, but is a maximum for 8=~/2. Thus, it is
evident from the expressions (2) that f approaches
the value 2 for large I.

In the case of antiparallel 1 and s, an additional eGect
arises from the fact that the direction of the spin
depends on the polar angles of the particle. By means
of the recursion formula

I—$ l+~s
Yr+~= —(2I+1)~ cot6 e '~ Fr+i (5)

the wave function (3b) may be written:
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describing the motion of the nuclear axis, whose polar
angles we denote by 8 and P.

It is easily seen from (2) that the value of /' for a
nuclear state of this type is equal to the value obtained
from the single particle model. In fact, the numerator as
well as the denominator of (2) represent the s-com-
ponent of a vector. If we 6rst keep 8 and @ fixed, and
average over the motion of the particle with respect to
the nuclear axis, these two vectors must, for symmetry
reasons, have the direction of the nuclear axis. Their
ratio is equal to (4), and is not affected by the sub-
sequent averaging with respect to 8 and Q.

If the spin-orbit coupling is smaller than the coupling
of 1 to the nuclear axis, but larger than the rotational
level spacing of the nucleus, we have the coupling case
Bj. The wave function describing the motion of the
nucleon with respect to the nuclear axis is given by

I—$

P = Vr 1(0', y')x+ (I=/+ ', ) -(7 )

1 = (I 1)(2I—1)'/4(2I+ 1)—(I+1)'

for the state in question.

(11a)

E+$
P = Fr+1(6', g')X— (I=/ —-', ),

where 8' and y' are the polar angles of the particle in
the nuclear coordinate system.

In case of parallel 1 and s, the coupling cases B~ and
B2 are identical, but for antiparallel 1 and s the spin
direction given by (7b) does not have the dependence
on the polar angles which is characteristic of the wave
function (3b). The value of f' for the state (7b) is simply
obtained from (4a) by replacing I with I+1.Thus

&= (2I—1)/4(I+1), (I=/+2) (Sa)
aiid

&= (2I+1)/4(I+2), (I=/ —2) (Sb)

for the states (7a) and (7b), respectively. For small I,
the expression (Sb) gives values for /' much smaller than
those obtained from (4b).

Finally, if the spin-orbit coupling is smaller than the
nuclear rotational level-spacing, we have the coupling
case A. The nuclear wave function is given by an ex-
pression of the type (3) except that the spherical
harmonics must be replaced by wave functions which
describe the rotation of the nuclear core as well as
the orbital motion of the particle with respect to the
nuclear axis.

We first consider the parallel case corresponding to
(3a). From (2) it follows that l is given by

f= —(—', cos'8 ——',)~„, (9)

where 8 is the polar angle of the nucleon with respect
to the axed s-axis. In order to evaluate (9) it is con-
venient to express 8 in terms of the polar angle 8' with
respect to the nuclear axis. One 6nds

i = —(-,' os' '—-', )&,(-,
' o 'tt ——,')A„(10)

which leads to

r-, + r+///

1/ =const. (Fr+jx +//Fr+aX ). (12)

The value of P depends on the strength of the / s-
coupling compared with the coupling of 1 to the nuclear
axis.

An evaluation of (2) leads to

1 1
{/1'(2I+1)—6t/(2I+1)1+5 —2I}.(13)

4(I+2) //' 1—
It will be noted that, for t/= —(2I+1)& and //= ~, ex-
pression (13) coincides with (4b) and (Sb), respectively.

III. THE ORBITAL ANGULAR MOMENTUM

The expression given in B for ~J.—representing the
anomaly in the orbital part of the h.f.s.—has a simple
interpretation if the orbital angular momentum can be
ascribed to a single particle. It is therefore immediately
applicable to the extreme single particle model.

According to the asymmetric model, the nuclear core
also contributes to L. For the corresponding part of the
nuclear magnetic moment, the value of ~ can be ob-
tained from an expression like (B12) if only the radial
average is performed for the radial distribution of the
orbital magnetic moment in the nuclear core.

Since the contribution of the nuclear rotation to the
magnetic moment of the nucleus is in general small, one
obtains a first approximation by neglecting the diGer-
ence between the distribution of the orbital magnetic
moment in the core and the radial density distribution
of the single particle. The expression (B12) can then be
used for the total orbital magnetic moment of the
nucleus. It must be taken into account, however, that,
due to the contribution of the nuclear core, the eftective
orbital g-factor, gL, , differs somewhat from the single
particle value.

IV. RADIAL AVERAGES

According to (B18), the radial averages of x, and zr,
involve essentially the mean value of (R/Ro)' for the

For antiparallel 1 and s, corresponding to (3b), the
coupling cases A and Br are identical. The value of f'

is therefore given by (Sb).

Asymmetric Model. Intermediate Coupling Cases

The empirical nuclear magnetic moments do not, in
general, coincide with either of the values corresponding
to the three extreme coupling cases considered above. As
was pointed out in A, it is possible, however, at any rate
for the simplest types of nuclei, to account for the mag-
netic moments in terms of intermediate coupling cases.
For the following applications we shall consider coupling
cases between B~ and B2.

The case of /=I —-'„ in which the two models Bj and
B2 coincide, needs no further treatment. For i=I+-,',
the wave function describing the motion of the particle
with respect to the nuclear axis will be of the general
form:
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Igo =&rg&+ (I &r)gi&— (16)

density distribution of the odd particle. The nuclear
radius is denoted by Ro.

On the average, for all the particles in the nucleus,
this mean value equals + if the nuclear density is
constant, For the individual nucleons, however,
(R/Rp)Pa, will depend on the kinetic energy and angular
momentum and may differ appreciably from -,'.

As an indication of the trend of (R/Rp)'p„, it may be
noted that in the semiclassical approximation, valid for
large quantum numbers, one obtains, for a particle con-
fined within a sphere of constant potential,

(R/Rp) Pp, =-',+ pP (PitP/2MTRpP) (14)

where T is the kinetic energy of the particle, M its mass.
In individual cases, an estimate of (R/Rp)Pp, can be

made by assuming the orbit to have the quantum
numbers given by the single particle model on the basis
of the nuclear spin and the empirical value of the
magnetic moment. If the potential is assumed to vanish
for R&RO, and for R&RD to be a constant, which can
be determined from the empirical value of the bind-
ing energy, the entire particle wave function can then
be constructed.

If the odd nucleon is a proton, the inQuence of the
Coulomb forces should be taken into account. This
effect is in general rather small, and, since the electro-
static potential does not vary greatly over the region
in which the particle spends most of its time, the
potential can be approximated by a constant equal to
the Coulomb potential at the nuclear surface. This
amounts to the introduction of an effective binding
energy given by the energy which the proton must
acquire in order to be able to leave the nucleus by
passing over the barrier.

V. FORMULAS FOR THE H.F.S. ANOMALY

From (1) and ($18),one gets the following expression:

p= —
f (1+0.38$)a,+0.62nr, I (R/Rp)' (15)

for the h.f.s. anomaly as a fraction of the h.f.s. for a
point nucleus. The quantity b is a function of Z and Ro
and is tabulated in S.

The fractions of the nuclear moment of spin type and
orbital type are denoted by 0., and O.L,, respectively.
These quantities are given by (B20) in terms of the
nuclear g-factors. For the asymmetric model, however,
the orbital g-factor depends on the contribution of the
nuclear core to the magnetic moment of the nucleus and
must itself be determined from the empirical value of
the nuclear moment.

We shall in particular consider nuclei for which the
angular momentum coupling falls between that of the
cases BI and 82. The contribution of nuclear rotation
to the magnetic moment is then given by (A1). In the
extreme cases, 8& and 82, the value of go is given by
(A2) and (A3) respectively, but more generally we
have

a, =ag,/(I+1)gr, ar, =1 n*— (19)

Moreover, (17) gives the value of P from which l can
be found by means of (13).

It should be noted that (17) gives only the numerical
value of P, while f depends also on the sign of P. For a
particle moving in a field of cylindrical symmetry,
there are two eigenstates of the type (12), one with
positive and one with negative P. It is easily seen that
if the spin orbit coupling favors large j (parallel coupling
of I and s), the state of positive P has the lowest energy.
If the sign of the spin orbit coupling is reversed, P must
be taken to be negative for the state of lowest energy.

VI. DISCUSSION OF EXPERIMENTAL DATA

A particularly instructive example of h.f.s. anomalies
is provided by the recent accurate measurement by
Ochs, Logan, and Kusch' of the nuclear moments of
the odd K-isotopes and of the h.f.s. of the ground states
of the corresponding atoms. In fact, the K-nuclei
(Z=19) contain just one proton less than the number
required for a dosed shell. These nuclei are expected to
be well represented by the model of a single particle
moving in a nuclear core of no intrinsic angular mo-
mentum. Their magnetic moments can be accounted
for in terms of a coupling case between B~ and 82.

The ground states of the isotopes K" and K4' have
I=sp. The odd particle (formally the proton lacking in
a closed shell configuration) is expected to be in a 3d
state. For an effective binding energy (see Section IV)
of 12 Mev, one finds a value for (R/Rp)'»„of 0.66. It
may be noted that this value is only changed by about
1 percent if the effective binding is altered by 2 Mev.

From (18), one finds for grp=~~ the values &r= —0.294
and 0= —0.359 for K~ and K4', respectively. The cor-
responding values of n, obtained from (19) are —2.52
and —5.59. According to the considerations in Section
V, the sign of P is negative. In fact, the spin-orbit
coupling is assumed to favor large j, but the sign of this
coupling is formally reversed for a particle lacking in a
closed shell configuration. From (17) one thus finds

where ~ represents the average value of the odd particle
spin component along the nuclear axis. This quantity
is given by

~= (1—0')/2(1+&) (17)

in terms of the coefficient P in the wave function (12)
From (16) and (A1) one obtains

~= L(I+ 1)gr g—z I—gij/(g. g—~), (18)

where gg is the g-factor for the nuclear rotation. Its
value is somewhat uncertain, but is expected to be of
the order of Z/A.

Expression (18) gives 0 in terms of the empirical
value of gr. The quantities n, and O.L, are then deter-
mined by
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P= —1.96 and —2.46 for K" and K", respectively,
leading by means of (13) to the f' values 1.02 and 0.79.

The table in 8 gives a value for b of 0.19percent and
from (15) one finally obtains

~(K")=0.165 percent e(K4') =0.396 percent
(20)~= ~39—~4~ = —0.23 percent.

The experimental value of 5 is —(0.226&0.010) per-
cent.

The model of the K39 nucleus is not quite consistent,
since P is found to be slightly smaller, numerically, than
the value —(2I+1)~=—2 corresponding to a wave
function for the limiting coupling case 82. The value
obtained for P corresponds to an eigenstate only if the
coupling of 1 to the nuclear axis favors small values of
0, in contradiction to the assignment 0=23 for the
ground state of the nucleus.

As already mentioned, however, the choice gg= ~ is
rather uncertain, and a slight increase of gg suffices to
make

~ P
~

exceed 2. It may be added that even a large
increase of gg has a very small inhuence on A. For
gg= j., one finds e39=0.194 percent, &4~=0.432 percent,
and 0 = —0.24 percent.

On the basis of the asymmetric model it thus appears
to be possible to account simultaneously for the nuclear
moments and for the h.f.s. anomalies of the K-isotopes.

Rb

A h.f.s. anomaly has also been observed for the Rb
isotopes. ' If, as a 6rst approximation, these nuclei are
described by the model of a single proton moving in an
asymmetric nuclear core, Rb" may be considered in
complete analogy to the K-isotopes. For gg=&, one
finds 0= —0.49, P= —1.7, &=1.25 and, n, = —0.71,
which leads to a vanishing value of e».

The magnetic moment of Rb" (I=—,') comes close
to the value corresponding to the extreme coupling
case B~. For g~=0.8, this coincidence would be exact;

for g&=0.5, a coupling case tending slightly towards A
would need to be assumed. With a sufBcient accuracy t
can be obtained from (8a), giving &=0.2. The value of
cx, is close to 0.6 and is not very sensitive to the choice
of gg.

The odd particle is expected to be in a 3p state. For
an effective binding energy of 15 Mev the value of
(R/Ra)'A, is found to be 0.49. The table in B gives
b=0.58 percent, and one thus obtains e»= —0.26 per-
cent and, consequently, 6= e»—e»=0.26 percent. This
value is to be compared with the empirical value of
0.33&0.05 percent.

The agreement is presumably as close as could be
expected since the nuclei in question may need to be
considered in terms of the motion of several equivalent
protons.

Othex E1ements

Apart from the light elements H and Li, for which
the nuclear models here discussed do not apply and for
which special considerations are necessary, ' K and Rb
constitute the only elements for which experimental
evidence has so far been obtained regarding the eGect
on the h.f.s. of the intrinsic structure of the nuclear
moment. Additional evidence would be of value as a
further test of nuclear models.

There exist a number of other elements for which the
effect, as in the two above-mentioned cases, can be
determined by an accurate measurement of the h.f.s.
ratio in the atomic ground state for two isotopes.

For the heavy elements, for which the h.f.s. anomaly
may become very large, of the order of 6ve percent, it
may be possible to detect the eBect in the h.f.s. of a
single isotope if the electronic wave function can be
determined with sufficient accuracy. "

9 A. Bohr, Phys. Rev. 73, 1109 (1948); F. Low, Phys. Rev. 77,
361 (19SO).' M. F. Crawford and A. Schawlow, Phys. Rev. 76, 1310
(1949);A. Bohr and A. Schawlow (in preparation).


