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The total cross section, energy spectrum, and angular distribution of mesons produced by photons incident

on a target nucleus have been expressed in terms of the nucleon momentum distribution within the nucleus.

The theory used here is valid for photon energies greater than approximately 1.2 times threshold, and for all

but the lightest nuclei. These results have been applied to carbon employing Goldberger and Chew's mo-

mentum distribution for the protons in carbon. Excellent agreement is obtained for the meson energy

spectrum at 90' and the decrease in efBciency of meson production compared to free protons as targets. The

change in efficiency with photon energy, and the meson spectrum at various angles can be used to determine

the internal nucleon momentum distribution. Positive mesons yield the proton distribution, negative mesons

the neutron distribution.

L INTRODUCTION

E shall estimate here the total cross section,
angular distribution, and energy spectrum of

x-mesons produced in a photo-nuclear collision. Ke
assume that the matrix elements for the basic process in
which the target nucleus is a free proton or neutron are
known. Actually this is not quite so; the nature of the
x-meson is not yet de6nitely settled, and matrix ele-

ments in the available theories are known only in the
Born approximation. ' We shall therefore make use of
these matrix elements in a schematic way, without
committing ourselves to any particular form of meson

theory. We shall, for example, express the cross section
for positive meson production with a nuclear target in

terms of the cross section with a free proton as target. In
fact we shall show that the ratio of these cross sections is

essentially independent of the matrix elements and depends

primarily on the proton momentum distribution within
the struck nucleus (providing only that the matrix
elements have a smooth energy and angle dependence).
Thus the measurement of the meson production cross
section in hydrogen and other nuclei can be used as a
tool for investigating the momentum distribution within

these nuclei.
The angular dependence of the nuclear cross section

for photo-meson production also yields fairly direct in-

formation concerning the momentum distribution with

the nucleus. If the target nucleus is hydrogen, there is no

appreciable internal momentum; the energy of the
meson and its angle of production are precisely related

by a '"Compton law. " For other target nuclei, the
internal momenta of the nucleons leads to a broadening
of the Compton line. The shape of the Compton line,
half-width, etc. , are measures of the momentum dis-

~ Assisted in part by the Joint Program of the ONR and AEC.
' H. Feshbach and M. Lax, Phys. Rev. 76, 134 {1949).

tribution with the nucleus. These results, of course, are
also inQuenced by the meson matrix elements.

Experimental results for the total cross section and
the meson spectrum at 90' are available for carbon and

hydrogen. ' Instead of using these experiments to calcu-
late the internal momentum distribution, we prefer to
check our theory by making use of an approximate
distribution available from deuteron pick-up reactions. '
Both the 90' spectrum and the total cross-section ratio
are found to be in excellent agreement with experiment.

The experimental result that seems most startling at
6rst sight is "that the cross section of six bound protons
in a carbon atom is only about twice as large as that of
a single free proton. " In other words, the eKciency
e= o/(Zo ~) ratio of the positive meson cross section to
that for Z free protons is only ~~ in carbon. This result is

explained by our theory. It will be shown that the
eKciency is zero at threshoM, rises to unity at high

energies, and has intermediate values in good agreement
with the experimental result quoted.

The reason for the decrease in efBciency at low

energies is that only a portion of the proton momentum

distribution can participate in the reaction. The region
in momentum space energetically possible will generally
intersect the momentum region occupied by the protons
in. the nucleus. As the photon energy increases, the
common volume increases so that eventually the entire
proton momentum distribution is covered and the

eKciency becomes unity.
The evaluation of the efficiency requires some knowl-

edge of the nuclear states. We shall see that sufBciently

far above threshold the momentum transfer goes pri-

marily to the struck proton so that only one particle in

s J. Steinberger and A. S. Bishop, Phys. Rev. 78, 494 (1950);
McMillan, Peterson, and %hite, Science 110, 579 (1949).

3 G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).
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the nucleus changes its state. This "single-particle"
cross section is then computed using the Hartree ap-
proximation to describe the nucleus. This procedure
yields results which essentially could be surmised on the
basis of the physical ideas given in the preceding
paragraph.

It is not actually necessary to assume that the other
particles do not change state, but merely that the most
important residual states have a smaH energy spread.
The summation over all possible residual states is then
equivalent to closure over (A-1) variables. The result is
then identical to that obtained by the Hartree approxi-
mation except for a binding energy correction.

II. MATRIX ELEMENTS. FREE PROTON
CROSS SECTION

The matrix element for positive meson production can
always be written in the form

(e i T(x, y, e, ~) i p),

where ~N} represents the final neutron state,
~ p} the

initial proton state and T is an operator which is a func-
tion of the common space coordinate x, the momentum
operator p= —ikV and the spin and isotopic spin
operators e and ~. This matrix element can be assumed
to be exact; i.e., the result of an in6nite order relativistic
perturbation calculation from which divergences have
been removed. It will in general depend on the photon,
meson, proton, and. neutron energies as well as on the
spins and polarizations of the various particles. The
corresponding matrix element for a nuclear target can be
written:

(2)

where 0; and 0 y are the initial and final nuclear states
and T, acts on the coordinates of particle r:

2'„=T(x„, y„, e„v„).
The operator T in a relativistic calculation will in
general depend on all 16 Dirac operators; and this couM
be included in our notation, and subsequent procedure.
Since both 6nal and initial energy states involve positive
energies only, only the terms in 1, e, P, and Pe will

survive our evaluation of the matrix element. The
matrix elements of the operators p and pe may be ex-
panded in a power series in (1/M) with terms involving

p and e. Equivalently, a contact transformation to
nucleon states involving only the two spinors (1 0 0 0)
and (0 1 00) maybe applied to obtain a new operator T
which may then be expressed in terms of 1,e and p only.

The dependence of T on space must be of the plane
wave form exp'(v —y) x] so that insertion of the
neutron and proton. wave functions in (1) leads to the
usual conservation of momentum factor 8(y+ n —y —v).
Here u, n, p, v are the mornenta of the meson, neutron,
proton, and photon respectively. The dependence on e
and ~ can at most be linear. The isotopic spin depend-
ence must be given by r+= (v,+k.„)/2 since it converts

a proton into a neutron. Thus we can write

T=expLi(v —y). x]r+(K e+L) (4)

where K and I.are abbreviations for matrices (n
~
K

~ p)
and (e~I

~ p) that depend on the photon and meson
momenta and polarizations in addition to the nucleon
momenta. The matrix element in the negative meson
case is similar: v+ is replaced by 7=, and K and L are
replaced by other functions approximately but not
exactly equal to the positive meson matrix elements. 4

This difference is important in calculating the ratio of
negative to positive meson production. If scalar,
pseudoscalar or vector mesons are treated in the 6rst
Born approximation, and the nucleons are treated non-

relativistically, K and L will be independent of the
nucleon momenta. This assumption is unnecessary for
the subsequent theory but is utilized in the numerical
comparison with experiment. Ke also mention. that to
terms of order meson mass/nucleon mass K=O in the
scalar case, and L=O in the pseudoscalar case, but
neither K nor L vanishes in the vector meson case.

The matrix elements (4) are similar to those in beta-
decay problems with a combination of Fermi and
Gamow-Teller selection rules. However, the phase
(v—y) x is much larger than in the beta-decay case,
and the exponential cannot be approximated by a power
series.

The matrix element in the free proton case (1) can be
integrated to give momentum conservation. Take the
absolute square of (1) and perform the spin sums. The
free proton cross section is then:

0 = (2e)—2) (+2+I~)dyI„,

Iv= dna(n+ v —y —y) b(eo+ po —vo —p,) (6)

in units 5=c=meson mass= unity. Here po
——(1+p')& is

the meson energy, no= (M +@~)& is the neutron energy,
pa=(M2+p')& is the proton energy and v0= v is the
photon energy. In what follows we shall take the struck
proton to be at rest: p=0, pa= M.

The momentum-energy conditions expressed by (6)
reduce after integrating over I to a single condition

I,= b[(ilP+(v y)')&+II, o vo —M] —(7)—

equivalent to the "Compton" relation between the
meson momentum and its angle 0 relative to v:

2v(py ycos8) = 1+2M(v—o—p,).
This relation reduces to the usual one for photons if we
set p pa=degraded photon energy and omit the 1 (the
meson rest mass).

The integrations over dy=2ed(cos8)ypodpo can be
performed in either order according to whether the 6nal

4 K. A. Brueckner and M. L. Goldberger, Phys. Rev. 76, 1725
(1949).
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result is to be expressed as a meson spectrum or as an
angular distribution. For the meson spectrum we need

Ivd(cosa) = (M+ vp —pp)/pv.

For the angular distribution we need

~"I.&pp=(a&p/azf)p esp/[+Op+I p(jl v cosa)5 (.10)

It is understood that p is to be eliminated from (5) and
(10) with the help of the Compton Law. For future
reference, we note that if I„is replaced by (6) and the
integrations in (10) over dn and dpp are performed in
reverse order:

Igf p Ion/at——lxf-~',

where t= n+y —v and the Jacobian does not take on
the value unity because po depends on no through energy
conservation.

III. CLOSURE APPROXIMATION TO THE
CROSS SECTION

Using matrix (2) the cross section for a nuclear target
can be written as

e=(2e) ' dv Zfl(+f, Z. I',+~) I'H(&f &') (12)—
Ef and E; are the final and initial energies of the entire
system. In comparison with the free particle case (5)
y+v/ n+p and the integration over n is now replaced
by a summation over the final states of the residual
nucleus. These final states are limited by energetic con-
siderations as indicated by the a-function in (12). To
obtain a closure approximation to the cross section we
relax the energy conservation suKciently to permit the
summation to be made over all inal states of the
nucleus. This is performed by dropping the energy of the
initial and 6nal nucleus from the argument of the
a-function in (12) and replacing the final meson energy
po by some average value over the emergent meson
energy distribution. Sufficiently far above threshold. this
average is approximately given by the "Compton" rela-
tion (8); i.e., the replacement given below is approxi-
mately valid:

H(If'f 8;)~a I [MP+ (v—p)P)P+—pp —vp —
M I. (13)

The closure approximation shouM be accurate when the
photon energy exceeds the threshold energy by a suK-
ciently large amount. (At lower energies, particularly
near threshold, the closure approximation should give
an upper bound to the cross section, inasmuch as it in-
cludes many Anal states which are not energetically
possible. ) We can then employ closure to obtain

M=Zfl(+f, 2 2',+;)I'=(+;, E„,&,».+;). (14)

We now consider the diagonal terms and the non-
diagonal terms in this sum separately. The diagonal
terms involve just one nuclear particle at a time so that
we shall call their contribution to the cross section the
single particle cross section and the corresponding
matrix element Mi. The non-diagonal terms involve
two nucleons at a time, and are therefore called the two
particle contribution; the corresponding matrix element
is M2. It is clear that the two-particle matrix element
can have a contribution only inasmuch as there is some
correlation in the location of nucleons in the nucleus.
Correlation is of course a necessary but not a suflicient
condition for M2&0.

Consider now the single-particle terms. These are
given by

(ilg 2'.» Ii)=(ilg. (K.e.+L)"."+Ii) (15)

This result may be averaged over all orientations of the
nucleus:

((K e„+L)')A,——E'+L'. (16)

The equivalence between an orientation average and a
spin sum can also be regarded as a consequence of
the principle of spectroscopic stability. Furthermore
(ilg, r„v„+Ii)=Z, the number of protons in the
nucleus. Combining Eqs. (12) to (16) we find that in the
region where (13) is valid, the one-particle contribution
is simply

(17)

the result to be expected from Z free protons. The o8-
diagonal or two-particle contributions are given by:

Mp ——P (il r„r.+(K e„+L—)(K e.+L)
res

Xexp[i(v tp) (x—,—x.)jli). (18)

M2 can be evaluated exactly if the pair correlation func-
tion p(x„, x,) is known for all spin, isotopic spin states.
In general, however, we do not have such detailed in-
formation concerning the nuclear state. We shall there-
fore make the following assumptions.

(1) There are only two independent correlation func-
tions, one for space symmetric, and one for space anti-
symmetric states. In other words, the spin, isotopic spin
state of a pair of particles influences their space correla-
tion only through the Pauli principle.

(2) These correlation functions depend only on the
separation I x,—x,

l
between particles. Thus, any odd

dependence on x„—x, which is present in (18) will
disappear on averaging.

Making use of the second assumption we can replace
the exponential by an orientation average:

V„,=(exp[i(v —y) (x,—x,)])p„
=»n(l v —pl I

x,—x, l)/(I v —p I I
x„—x, l).

It is now permissible to average over the spin orientation
of the nucleus

((K e„+L)(K e,+L))p, =)2P(e„.e.)+LP



192 M. LAX AN D H. FESH BACH

and to symmetrize on indices r and s:

Ms= Q (ilO, .V„ls),

below. The more precise calculations in which this ap-
proximation has not been made have been performed
and give very similar numerical results.

Employing methods similar to those of signer and
Peenbergp we split the state

I i}into its space symmetric
and antisyrnmetric parts:

s&= ls&+ la»
s)= p(1+P») ls); lo)= s(1—P») Is» (19)

where 8~2 is the space exchange operator

P12 p(1+'/rl' +s)(1+vi ' 'vp).

Thus a typical term in the sum (18) is:

&s IOisv» I
s&= &sl0»V» I s&+&o IO»v»

I o&

and cross terms vanish because 0~2 commutes with 8~2.
Making use of assumption (1) and (19) we can simplify
this matrix element:

(s I 012V12 I s)= V (s I
012

I s)+ V p&a I Oss
I

/s&

= p(V*+V )&slo»ls&
+-,'(V,—V.)&s I 0„P„Is).

The spin matrix elements are evaluated by methods
similar to those of Wigner

&si Q O,.is)= —Z(Es+I.')+I.'[T(T+1)—T.(T.+1)]

+sE'[P'+ (P')'+(P")'+4P+2P' 5(S+1)—
T(T+ 1)—3T,——5—

& V.'&]~—Z(E'+ I.'),

( i QO„P,.
I
)= x(E'+I.')(A' —4T ')—

——,'(3I s—2E') (5'—(Y.s)) —x (E'+Ls)A '

where (V,') is the mean value of the oPerator (s P„P„,r„)s
in the state with quantum numbers, E, I",I'", T, T„5,
S,=5 (compare reference 5 for notation). The approxi-
mate values contain all terms of order A' and A. Thus
the complete matrix element is given approximately by:

My+Ms (E'+I.s) IZ[1—-', (V.+V )]—hA'(v. —V.) i

and the ratio of the two particle to the one-particle
contribution is approximately

Ms/M, ,'(V,+V—,)—',(As/SZ)—(V—, V,). (20—)

The order of magnitude of V, and V can be obtained
from a simple model in which the two particle densities
/p,

' are proportional to exp[—(x»/R)]~exp[ —(x»/rp)]
respectively, where R is the nuclear radius and ro the
range of nuclear forces. The results neglecting the 6xed
position of the center of mass of the nucleus are given

~E. P. signer and E. Feenberg, "Reports on progress in
physics, "Phys. Soc., London 8, 308 (j,941).

~ E. P. %igner, Phys. Rev. 56, Si9 (1939).

[1+(Iv —s IR)']'

(Rs~r 3)—1

[1+(Iv —pl r,)s]s

-', (V,+V,) [1+(lv—ylR)s] ',

s (V,—V,) (rp/R)'[1+ (I v —tsl rp) ] . (21)

In our units r~~i and E.'~Aro'. Except in the forward
direction lv —ylR))1 and the two-particle contribu-
tions are small. An estimate of their efFect on the
integrated cross section can be obtained by averaging
the V's over the angular distribution associated with
free proton targets. The result is

((V,+V,)/2) = [(R'—1)'+ (2vR)'] '
~[A4/3+ 4v2As/8]-1

&(V,—V~)/2) = (rp/R)'[(rp' —1)'+ (2vrp)'7 '~(4v'A) ',
I Ms/Mql (AP/s+4vsAs ) '+(16v) '.

Thus the one-particle contribution is an adequate de-
scription away from the threshold, in all but the lightest
nuclei. How closely may threshold be approached before
3f~ starts to make signi6cant contributions? In the next
section we shall make a closer estimate of M~. Combining
this with the estimate of 3f2 contained herein, it is
estimated that M2 may be neglected for v& 1.2 or v& 170
Mev. This estimate, which is rigorous only at a con-
siderable energy above threshold, has been checked by
the calculation of the two-particle contribution for the
deuteron as target nucleus. '

IV. THE SINGLE-PARTICLE CONTRIBUTIONS IN THE
HARTREE APPROXIMATION

The closure procedure used in the preceding section is
not based on any model of the nucleus, or on any as-
sumptions concerning nuclear forces. However, it over-
estimates the cross section by extending the sum over
final states to include some which are not energetically
possible. In order to estimate the energies at which the
closure approximation is valid as well as the decrease in
cross section below these energies we shaH introduce the
Hartree approximation. We shall consider in detail the
one-particle contributions, the main term in the cross
section.

We shall show that the relation between the bound
and the free-particle cross sections depends primarily on
the momentum distribution in the nucleus, and not on
a more detailed knowledge of the nuclear eave func-
tions. This result undoubtedly has a validity greater
than that of the Hartree model with which it will be
obtained.

~ M. Lax and H. Feshbach, unpublished.
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The initial nuclear state can be represented by the
anti-symmetrized product:

4'$= (l4!)+P edgar(xy) ppap(xp) ' ' ' opal(x7l) I (22)

and the Gnal nuclear state is represented by a similar
product. The one-particle contributions are obtained
by using a Gnal wave function in which only one state,
say y, (x) has been changed. The ejected particle
may be represented. approximately by a plane wave
(2or) t exp(in x). In doing so we have of course neg-
lected the interaction of the emergent neutrons and the
residual nucleus. %e have also assumed that the final
neutron has sufhcient energy to leave the nucleus. Terms
involving the nucleons remaining in the nucleus are,
except for small energy transfers, included in the two
particle terms; an estimate for these was obtained in
Sec. III.

The spin sum yields the same result as in the free case
if we neglect the variation of the space dependence of y;
with spin direction. It is easy to include this dependence,
but in view of the large uncertainties in the nuclear
wave function, the choice of an average seems to be
more appropriate. In terms of the normalized mo-
mentum wave function

By inserting the correct (rather than Hartree) energy
conservation condition in (25) we obtain the same cross
section as that yielded by the partial closure method
discussed in the introduction. The correct condition is
b(n+ up+muss of residual nucleus vp —mass—of struck
nucleus) W. e may therefore interpret p=(mass of re-
sidual nucleus+M mu—ss of struck nucleus) as approxi-
mately (binding energy of the proton+average excitation

energy of the resulual nucleus) Si.nce the struck proton
energy does not appear in the energy conservation we
cannot interpret the cross section as simply that due to a
distribution of free protons.

The choice p(k) = b(k) corresponding to a. proton at
rest reduces I to its free proton value I„ in (6) if we
neglect binding energy corrections (set p 0). In the free
case, I~ vanishes unless the Compton law relating p, and
8 is obeyed —i.e. at each angle 8 the meson energy takes
a definite value. If a distribution of momenta p(k) is
available, the Compton line will be broadened. The
extent to which this occurs can be investigated by
integration, over the directions of k using v —p as a
polar axis and dk= kodk2ord(cosx). The integration over
cosy can then be evaluated as:

r
c,(k)=(2x) t exp( ik—x)pp;(x)dx,

M+ Pp —Pp fI= 2'll p(k) kdk,
a (b-c) or (a~ —b~)& (26)

thematrix element takes the form c,( +ny —v). Squaring
and summing over the contributions of the various one-
particle transitions we find that

M&=E
~

Ic,(n+p —v) I'dn (23)

the one-particle contributions to the nuclear cross
section can now be written in a form directly comparable
with the free particle result (5):

op ——Z(2or) ') (E'+I.')dpI (24)

I= )I p(k)dk)I! dnb(n+p v k)——

Xb(np+ pp —vp —M+ p)

=
) p(k)dkb{[(v+k —y)'+M']&

—M+ pp —vp+ p] j. (25)

takes the place of the closure expression (14).Because of
the isotopic spin operator v-+ the sum over j includes
only the proton states. In effect, M& replaces the
conservation of momentum factor b(n+p —v) in the
free particle case (6). Introducing the normalized mo-

mentum density:

p(k)=Z-~P ~;(k)~P,

Mi ——Z ' dn, dkp(k)b(n+y —v —k),

u= lv —pl, b=[(.o' —po)(2M+vo' —po)]&,

where vp = vp —6. Limits on k are set by the conservation
condition given by (25) subject to

~
cosx

~

= 1.Equation
(26) exhibits the direct relationship between the shape
of the Compton line and the momentum distribution in
the nucleus.

We have assumed that p(k) is spherically symmetric.
It will, in general, be large out to some momentum n and
decrease rapidly thereafter. The closure approximation
will therefore be valid only if both conditions

[ v —p (

—[2M(vo' —po)]p(a,
(

v —p )+[2M(vp' —pp)]~& a,

can be met. The first condition with 0. and c equal to
zero is the Compton condition. This condition can be
met if one particle can absorb all the available mo-
mentum

~

v —p ~

. This is always possible above the free
particle threshold. Above the free particle threshold this
condition simply describes the width of the Compton
line. The second condition (a+b)&n is sufficient to
make the integral independent of its upper limit, since
it then covers the significant region of integration. In
this case, the integrated intensity of the broadened
Compton line will be the same as the corresponding
unbroadened line.

A quantitative investigation of the decrease in total
cross section when these conditions are not fulfilled
requires an integration over dp. This integration cannot
be performed unless the dependence of E and I. is
specified, and some form is given to p(k). An alternative
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fairly completely if

[2M(vp —1)1&)vp+ pv. (3o)

l.0 l.5
Fnergy

2.0 25

Thus the cross section may be expected to approach the
closure cross section at an energy of about 320 Mev,
v0~2.3.

Near threshold the sphere of integration shrinks to a
point at k= —v= —1. o(v+k, vp) becomes o(0, 1) and
the closure correction is simply

4x
o g/(Zav) =[(2M)&(1+(1/2M)) ]'p(—1)

3
FIG. 1. EfBciency of meson production. The abscissa gives (1)

photon energy for the upper curve (2) maximum photon energy for
dvp/vp bremsstrahlung spectrum.

procedure is to perform the integration over dp before
that over dk. %e shall therefore introduce the following
de6nition:

o(v+k, vp')=(2s) 'Z)I (E'+L')dp

Xb{[(v+k—tp)'+M'j& —M+ pp —vp'}, (2'I)

so that the total cross section can be rewritten as:

o = "a(v+ k, vp') p(k) dk. (28)

Roughly speaking, the situation is equivalent to
having a distribution of photons with momenta v+k
and a 6xed energy vo'. Only a certain portion of these
"photons, "however, can contribute to the cross section,
since the momentum the neutron can absorb is limited

by energy considerations. Since y has already been
integrated over, the limit on

} v+ k
}

is to be set using the
most favorable value of p. The most favorable direction
for p is parallel to v+k since the meson then helps to
absorb the "excess" momentum. %ith this direction

} v+k} & p+b. The most favorable value of pp is then

pp ——1+(vp —1)/M and we obtain the condition

} v+k} [2M(vp' —1)]&=d.

The quantity d is just the nucleon momentum available
if all of the incident photon energy is absorbed by the
nucleon. When a(v+k, vp') varies slowly with k, the
decrease in cross section due to lack of closure is then
simply:

ag/(Zav) = p(k)dk.
l v+&I s~

(29)

In short, the cross section is reduced because only a
portion of the momentum distribution is energetically
capable of contributing to the cross section. The region
of integration is a sphere of radius [2M(vp 1)]~
centered at —v. However, p(k) is appreciable over the
sphere } k} &pv and small outside, where pv= (2Mpv)&
is the Fermi momentum. These two spheres will overlap

V. COMPARISON WITH EXPERIMENT

At present the only available data' involve carbon as
the target nucleus. The incident beam is the brems-
strahlung spectrum from the Berkeley synchrotron. The
measurements include the meson energy distribution at
90' with respect to the incident photon beam, and the
efficiency of production. This latter is (1/3); the energy
distribution at 90' is given in Fig. 3.

Comparison with the theory of Sec. IV involves a
knowledge of the normalized momentum density, which
fortunately has been evaluated for similar momentum
transfers by Goldberger and Chew. ' These authors give

p(k) = av/s'(av'+ k')'. (32)

This expression is not expected to be valid for the large
values of k for one would expect that p(k) decreases
more rapidly than indicated by (32).

We now introduce (32) into (29) to obtain the eK-
ciency of positive meson production, and into (24) and

' D. ter Haar, Science IOS, 57 (1948).

o(0, 1)
X (vp —1)'. (31)

a(1, 1)

Since the free proton cross section behaves like (vp —1)&

the nuclear cross section varies as (vp —1)'.We note that
the threshold is actually 1 (aside from a small binding
energy correction). The reason for this is that protons of
momentum k= —1 are available to absorb the photon
impact so that no recoil energy need be absorbed.

A previous analysis of the nuclear cross section near
threshold' led to a behavior of (vp —1)'~'; i.e., an addi-
tional factor of (vp —1)&. This calculation was based,
however, on the Fermi statistical model of the nucleus.
On this model p(k) vanishes abruptly for k) pv. Thus
J'p(k)dk is the intersection volume of two spheres. And
the latter will vary as (vp —v~)' in. the neighborhood of
the threshold energy vg at which the spheres begin to
overlap.

It shouM be emphasized that energy dependence
given by (31) may be modified if o(0, 1) should vanish.
For the deuteron as target nucleus, ' if K=0, the Pauli
exclusion principle yields a(0, 1)=0, so that the energy
dependence of the cross section becomes (vp —1)'.
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(26) for the energy distribution at 90'. We neglect
binding energy e8'ects. These results must then be inte-
grated. over the brehmsstrahlung spectrum to obtain
values comparable with experiment. Strictly speaking,
such a calculation gives only the one-particle contribu-
tion to the cross section. The two-particle terms, which

give the coherence effects, are small except for vp near
threshold. However, the cross section will generally in-

crease with energy more rapidly than the photon-
spectrum decreases, so that the integration over the
photon-spectrum will emphasize the larger values of vp.

Hence the error involved. in including only the single-
particle contribution should be small.

Let us consider the efliciency of positive meson pro-
duction. From (29) and (32)
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FIG. 3. Meson energy spectrum at 90' with respect to photon
beam for a dvg/vo bremsstrahlung spectrum incident on carbon.
The experimental points are taken from Steinberger and Bishop.0'y 1 d —vp d+ vp

e= =—tan ' +tan '
ZO'p X' Ay Ay The energy distribution at 90' is obtained by inserting

a a '+(d —vp)' momentum distribution (32) into (24) and (26). The
(33) integral I is given by

2prvp a,'+(d+vo)'

A plot of e as a function of vp is given in Fig. 1. The I
relatively slow rate of increase for large vp is directly
attributable to the long tail of distribution (32) and is
suspect.

If the incident photon spectrum is f(vp)dvp the average
eKciency is

~„M+Vp
—Pp

8

(a' —b' a&b
k)'=

(b —a)' a& b

(35)
a,'+kio a, '+ (a+b)'.

( ~ ) (
if(vo)dvo [ ]

Z p,f( vo) dvo [. (34)
& J i

In this paper, we have approximated the spectrum by
f(vp) =1/vo and have employed the p „calculated in an
earlier publication. ' The consequent c is also plotted in
Fig. 1. The value at vp=2. 4 is 0.4, which is 20 percent
higher than the estimated experimental value, but well
within the experimental error. It is quite clear that an
accurate determination of the excitation curve for either
monochromatic x-rays or for a spectrum will yield in-
formation about the nucleon momentum distribution.

oli 0.3

«02
O

IX

Q. l

0 Ol 02 03 04 05 06 07 Q8 09 l0

Fro. 2. Meson energy spectra at 90' with respect to photon
beam for monoenergetic x-rays incident on carbon. The abscissa is
the ratio of the meson kinetic energy to the excess of photon energy
over threshold.

I must then be multiplied by the statistical factors pjtlp

and by the energy dependence of E'+I.'. This must at
least be 1/(lipvo) from the normalization of the meson
and photon wave functions and indeed is closely that for
pseudoscalar mesons though not precisely so. Hence the
spectrum is given by

g(»)dlio L(lio' 1)tl(ioo)—/vadlio (36)

The function g(») is plotted in Fig. 2 for some values of
vp ranging from vp= 1.2 to vp= 3.The salient features are
(1) the discontinuity in slope at a =b, i.e., at the meson
energy obtained from Compton law (8); (2) the rela-
tively rapid decrease of g with pp for pp greater than the
value at the discontinuity. For these meson energies
only those protons whose momenta are in a direction
opposite to the direction of the incident photon can
contribute.

In Fig. 3 the energy distribution average over a
dvp/vp spectrum is given, together with experimental
values. The scale for the ordinate for the theoretical
curve has been chosen as unity at a meson kinetic energy
of 0.3. Comparison of the predicted absolute magnitude
with experiment has already been made above. The
agreement of the predicted and experimental energy
distributions is remarkably close. Because of the many
approximations and the experimental errors such agree-
ment must be regarded as fortuitous. However, the
agreement of prediction both with efEciency and the
energy distribution indicates that the qualitative, and to
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some extent, the quantitative features of the simple
theory employed here are correct; that one may hope to
employ the produced mesons as a tool for investigation
of nuclear structure.

VL CONCLUSIONS

The cross section for the production of mesons by
photons incident upon a nucleus has been shown to be
directly related to the nucleon momentum distribution
p. It was 6rst necessary to demonstrate that sufficiently
far above threshoM the correlation sects are small ex-
cept possibly in the forward. direction and for the lightest
nuclei. It was estimated that below v~1.2, correlation
eGects would be an appreciable part of the cross section.
These estimates were based on the closure approxima-
tion (Sec. II). Once this result was established, the
eKciency of meson production was calculated, as well as
the meson energy distribution at a given angle. In both
of. these, the assumption is made that the recoil nucleon
can be described by a plane wave. From the efliciency it
is possible to estimate the energy at which the closure
approximation is valid and the efBciency is essentially
one. In the absence of a tail to the momentum energy
distribution, this photon energy is 320 Mev. Since the
tail may still make an appreciable contribution, the

efficiency will actually be one at some energy well above
320 Mev depending upon the shape of the tail. In
calculating the dBciency it was assumed that the matrix
elements varied smoothly with photon momentum; i.e.,
with the space phase of the photon wave. The depend-
ence of the meson energy distribution on the momentum
distribution p is given in (24, 26). This meson energy
distribution has its maximum for each angle at the
meson energy given by the Compton law for a free
nucleon. The distribution is asymmetric, falling oG more
rapidly at higher energies. The width of the energy
distribution is roughly determined by the nucleon mo-
mentum at which p starts to decrease rapidly. Fina1ly
the cross section at threshold was estimated. It was as-
sumed that the photon energy dependence of the
correlation contributions will be more rapid than the
single particle term. The single particle contribution
behaves as (r—r~)' at threshold r~.

These calculations have been applied to carbon em-

ploying Goldberger and Chew's momentum distribution.
Astonishingly good agreement with experiment is ob-
tained for both the efBciency of meson production and
the energy distribution of mesons produced at 90' with
respect to the incident beam. This agreement, while
partly accidental does indicate that at least a semi-
quantitative understanding of the production is possible.
More important, it strongly suggests that meson pro-

duction may be employed as a tool for the investigation
of nuclear structure„particularly of the momentum
distribution inside the nucleus. Indeed by obseeing the

energy distrQutioe et euriuus Ongles, and by observing the

efficiency as a function of photon energy, it should be
possible to describe this rnmnenturn distribution very
closely even urithout reference to any other experimental
information.

The interpretation at higher photon energies than are
presently available would be somewhat simpler for here
many of our assumptions become strictly valid. How-
ever, it would be necessary to have more complete
information on the fundamental matrix element. This
may be obtained empirically by employing hydrogen as
a target nucleus. In the present paper the dependence of
the matrix elements on the nucleon momenta have not
been used in the calculations. Equation (24), however, is
correct if E and I, are replaced by matrices (n~ E

~ i) and
(n~L~h). If these matrices have a smooth energy de-
pendence, for both negative and positive mesons, the
negative positive cross-section ratio will be practically
the same as for free nucleon targets. Some difference
may be expected, however, in heavier nuclei where the
neutron and proton momentum distributions are not
equal.

We have also neglected the meson-nucleon interaction
on the meson as it passes through the nucleus after its
production. This should be unimportant for the lighter
nuclei but may be signi6cant for nuclei of large radius.
Indeed if a nucleon momentum distribution should be
known from other considerations, experiments with
heavy nuclei might yield information on the meson-
nucleon interaction.

Calculations' have been made for H' as a target
nucleus where the correlation effects are important.
These will be reported shortly. Calculations' are in
progress in which the momenta dependent terms are
included for both H' and heavier nuclei permitting then
a calculation of the ratio of positive to negative meson
production.

One point may be emphasized in closing. The energy
distribution of mesons at 90' as calculated is sensitive to
the meson energy dependence of the matrix elements
and this nice check that we obtain is valid only for
pseudoscalar mesons. However, this is not conclusive
evidence that the observed mesons are pseudoscalar.
Agreement might be possible for other mesons if the
momentum distribution in carbon were modified.

We are indebted to Dr. Geoffrey Chew for some
cogent comments.

F. Villars, M. L. Goldberger, and H. Feshbach, private
communication.


