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Revised Dielectric Parameters of Alkali
and Halide Ions
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October 9, 1950
' 'N a previous publication' a classical model of a polarizable ion
- - was suggested which was consistent with the experimental
data for dielectric constants, indices of refraction, and infrared
absorption frequencies of all the alkali-halide crystals. The ionic
model was defined by three linear stiffness coeScients or "springs"
between the nucleus, the electron cloud, and the external boun-
dary. An alternative set of parameters to describe the same model
was comprised of an effective nuclear charge Ae, a nuclear com-
pliance or polarizability 8, and an electronic compliance C.

The dielectric polarizability aD of a single ion in a crystal was
written A 8+C and the optical polarizability a, of an isolated
"gaseous" ion was (A —1)'8+C for alkali ions or (A+1)'8+C for
halides. The polarizability per ion pair at optical frequencies in a
crystal was somewhat less, namely:

L(A &+A 2) /(1/8&) +(1/82) )+C&+C2—C&+C2p (1)
where the subscripts 1 and 2 refer to the alkali and halide ions,
respectively.

Tentative values of the parameters A, 8, and C were given in
which 8 and C for lithium had been arbitrarily set equal to zero.
It is now possible to choose more definite values for the parameters
of lithium which lead to a new set of values for the other ions as
shown in Table I. The dielectric constants, etc., calculated from
the new ionic parameters are identical with those calculated from
the original values. The table also gives values of the dielectric
polarizability u~ and the electronic polarizability of free ions a,.

The new values are chosen so as to fulfill the following condi-
tions for lithium: (1) a,=0.4A', in accord with the calculations of
Pauling 2 (2) aa=11.7, in agreement with the author's previous
results (3) the ratios of the respective stiffness coeKcients of
lithium are to compare systematically to those of the other alkali
ions.

In spite of the vagueness of the last condition, the resulting
values are quite well defined. It turns out that the stiffness coefB-
cient "b" between the nucleus and the boundary is in every case
negative. This coeKcient will indeed have to be negative if the

TABLE L Revised ionic parameters (all but A are in cubic angstroms).

Li
Na
K
Rb
Cs

F
Cl
Br
I

1.108
1.234
1.291
1.449
1.215

—0.780—0.645—0.627—0.568

9.3
10.7
17.4
19.2
25.3

25,9
66.3
78.1
99.9

0.28
3.40

12.39
17.00
34.14

10.04
35.22
50.32
77.14

AD

11.7
19.7
41.4
57.3
71.5

25.8
62.8
81.0

109.4

0.4
4.0

13.9
20.9
35.3

11.3
43.6
61.2
95.8

of atomic weights, and even Bol's new and precise value of the
velocity of light are noticeable sources of error in the calculation.
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actual forces between the nucleus and the neighboring ions are
predominantly electrostatic, since it is axiomatic in classical
mechanics and electrostatics that a charged particle cannot be
supported at rest in stable equilibrium by purely electrostatic
forces.

As an extreme illustration, suppose that we take away all the
electrons and consider the motion of a lone nucleus of charge pe
inside a spherical conducting boundary of radius R. The electro-
static force on such a particle displaced a distance X from the
center is

F =+p e X/4m&OR'= —bX
or

b = —p'e'/4~aoR', (2)

where eo is the permittivity of free space. Equation (2) gives
values of b which are of the right order of magnitude if R is chosen
to be about three times the usual ionic radius. This would corre-
spond to a reasonable average distance between the nucleus and
other particles with which it has a strong electrostatic interaction.

The electronic polarizabilities of free ions are given roughly by
the formula 0.,=2.9R4.~, where R and ag are given in angstrom
units. The polarizabilities of noble gas atoms satisfy the same
equation if Pauling's "univalent" radii are substituted for R.
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2~—'-Magnetic 2~-Electric Interference Terms in
y-y-Angular Correlations
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T is the purpose of this note to point out that the relative
- ~ phases of the reduced (magnetic quantum number inde-
pendent) matrix elements for the simultaneous emission of a
magnetic 2i '-pole quantum and an electric 2~-pole quantum in a
transition between eigenstates of angular momentum are de-
termined almost completely by the time-reversal properties' of the
emitting system. In the notation of Ling and FalkoG, the quanti-
ties a and P can both be made real by choice of nuclear phases,
so that the phase angle 5 can have only the value 0' or 180'.
Which of these two applies would have to be determined from a
more detailed model of the nucleus.

The reduced matrix elements in question are:

Pr=(jlle, llj')=Z „(—1)~'-+-(jj'— mml 'jj1~)
X(jmiei" i

j'm') (1a)
for electric 2'-pole transitions;

~i=(jllm~ll j') & "( =1)' +"(j—j' mm'I jj'l —~)—
X(jm[mP[ j'm') (1b)

for magnetic 2'-pole transitions between levels j—+j. The matrix
elements for the individual components of j'—+j ares

(j iemPi j'm') = lk 'pl(1+—1)7 &fj(r) Vx(rxV)

ft(kr) Yp(r)dr (2a)

(jmim|" i
j'm')= —Pl(1+1)P&fj(r) rx&f&(kr)FP(x)dx, (2b)

where f&(x) = (8~'/x)&Jt+~{x), Yp(r) is the Condon and Shortley'
spherical harmonic, and

j(r) E;f%';~(X)=tj;(r)+; ~ (X)dX '(3.)

In Eq. (3), X is the set of nuclear coordinates; 4'; ~'(X), 4'p(X)
are the initial ag.d final nuclear state functions; and the integral
is over all nuclear coordinates except the coordinate r of the ith
nuclear particle. The dimensionless current operator j;(r) has the
form j;{r)=(v%) for a positively charged elementary particle.
The normalization is such that R quanta/sec of frequency
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v= (ck/2m) are emitted in the transition, where

z =~(~'/@) z C I (jll~g IIj') I'+1(ill~g Ill') I j/C(2t+ x)(2i'+ i)3.
l-I

For any wave function 4', the "time-reversed" wave function'
is E%= U%'*, where U is a hermitian unitary operator (U=1 for
spinless nucleons, U=cr„ for spin=) nucleon). E is not a linear
operator. If the nuclear level jhas no other degeneracies than that
of the magnetic quantum number, it can be shown that

Xe; (X)= UC; {X}*=;{—1}' e; (X), (4)

where ~; is a phase factor of modulus unity which depends on the
choice of nuclear phase. The property EjC = —jX%, (all +), which
can be written in the form

Uj'(r) *U= —j'(r), (5)

expresses the fact that the current changes sign under reversal of
the direction of time.

Combination of Eqs. (1) to (5) and use of the following identity
for the vector-addition coefficients,

D(' ~~'DI—'~ ~) =(—~)'+"—'8('~ ~'ID—'»)
obtained from Wigner's formula, ' shows that

pt*= ~;*ttp( —1)'pt {6a)
at*——x;*]c;(—1)'+'at. (6b)

Assuming that the nuclear levels have definite parities, the
nonvanishing pt will be those for which / is even {odd) and the non-
vanishing cxt will be those for which l is odd {even), so that the
phase factors in (6a) and (6b) are the same; by proper choice of
phase for the levels j' and j the nonyanishing at and pt may be
made real for all l. Only the signs and magnitudes of at and pt are
left undetermined by these considerations. The relative phases
cannot be used as arbitrary parameters to fit the data.

I wish to thank Professor John Blatt for stimulating discus-
sions on time-reversal and on the multipole radiation moments.
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errors eI, e2, ~ ~ .e„ in the least squares fitted set of quantities is just
equal to PI{~I) P&{e2) ~ P„(e„).Such a situation is possible only
if the errors are unrelated. The observational equations are usually
written in a linearized form as

a;x+b;y+ ~ ~ +f;u =s;+&;, (1)
where x, y, m are the variables to be fitted, a;, b;, ~ ~ .f; are
known coefBcients, s; is the observed quantity, and e; its (un-
known) error. The method of least squares is based on the criterion
of finding values of the variables which have the highest prob-
ability of being correct. When these errors are independent, this
leads to the conditions that

Z;pt~P =Z;p; {a;x+5;y+~ ~ +f;m —s;}~=minimum. (2)

The "weight" p; of each equation is given as 1/a;~, the reciprocal
of the mean square deviation of s;.

In many cases (such as the one that prompts this note) it may
be inconvenient to cast the observational equations into the above
independent form. If such is the case, let the equations be written
instead as

A;x+B;y+C;z+ +F;m=S;+E;, (3}
in which the quantities S; are not the results of single observa-
tions, but are each compounded from several observed quantities
which may be involved in more than one S;. (The case in which S;
is compounded from several observed quantities, none of which,
however, appears in any of the other S;, is considered in Whittaker
and Robinson;6 but the more general case seems to have been
neglected. ) If we write S; as functions of the independent variables
s;, we have dS;=Z;a ds; (i.e., E;=Z;n;&e;). If the "weights"
associated with the s; are p; =0,~, we can define a weight matrix
~;q which is the inverse of the error matrix p;t, =Z;a;&o;I,&'erg.

Equation (2) is then replaced by the quadratic form

Z;, ;,(A;~+B;y+C,z+" +r;~—S,)
X(A +By+" +~ —S), (4)

which leads to "normal" equations with coefhcients of a general-
ized form. A typical coefficient would be Z;I,m;&;B& in place of
the coefBcient Z;p;a;b; associated with the quadratic form of
Eq. (2).

~ Hippie, Sommer, and Thomas, Phys. Rev. V6, 1877 (1949).
~ Thomas, Driscoll and Hippie, Phys. Rev. VS, 902, 992 (1949).
3 J. H. Gardner and E. N. Purcell, Phys. Rev. V6, 1262 (1949).
4 H. Taub and P. Kusch, Phys. Rev. V5, 1481 (1949).
~ J. E. Nafe and E. B. Nelson, Phys. Rev. V3, 718 (1948).
e E. T. Whittaker and G. Robinson, The Calculus of Observations (Blackie

and Son, Ltd. , London, 1948).

Nonindependent Observational Equations
in the Theory of Least Squares
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N recent years several very precise measurements have been
- - performed which yield information on the values of the funda-
mental physical constants e, m, h, X, respectively the charge and
mass of the electron, Planck's constant, and Avogadro"s number.
The recent measurements, such as those by {1)Hippie, Sommer,
and Thomas, ' (2} Thomas, Driscoll and Hippie/ (3) Gardner
and Purcell, ' (4) Taub and Kusch, ' and (5) Nafe and Nelson' are
unfortunately not as direct determinations of functions of e, re, h,
E as one is accustomed to in direct measurements of h/e or e/m.
For example, item (4) can be combined with item (5) to obtain
e'/h, with item (1) to obtain Xns, and with item (2) to obtain e/m.
This clearly implies that the errors in the numerical values ob-
tained for e'/h, Xm, and e/m are not independent; and, therefore,
the usual least squares analysis to determine an unbiased set of
"best values" of the atomic constants must be modified so that it
properly takes into consideration the nonindependence of the data.

In the usual application of the theory of least squares the im-
plicit assumption is made that if P;(e;) is the probability of ob-
taining an error e; in the measurement of the ith quantity, then
the probability P(~I, ep, el, ~ ~ e„) of obtaining simultaneously the

On the Angular Correlation Theorem
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'N the theory of the angular correlation between successive
~ - particles emitted by a system undergoing a double transition,
among states of definite total angular momentum, the following
theorem appears. If the z axis of quantization is along the direction
of emission of one of the particles, the probability of the double
transition is given by the product of the probabilities of each of
the two successive transitions, summed over those intermediate
states that are degenerate in the magnetic quantum number.
Interference terms are absent.

This property of the double transition, first employed by
Hamilton' for y —y-emission, was verified for a number of other
particular cases by Falkoff and Uhlenbeck. ~ Recently, Lloyd' has
given a general proof for arbitrary decay particles by applying
group-theoretical arguments to second-order perturbation theory.

According to the physical interpretation of the quantum-
mechanical formalism, however, the probability of a transition
from an initial to a final state, via a set of intermediate states,
contains interference terms only when it is not possible to measure
the system in the intermediate state; if the experiment is in-
herently capable of specifying the particular intermediate state the


