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FK'. 1.Magnetization ys. field. (1) Orbit radius greater than the specimen
dimension (perturbation calculation of plane wave functions). (2) Orbit
radius smaller than the specimen dimensions.
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Waals gas) to a nondiamagnetic state. This behavior is provision-
ally identified with the perfectly diamagnetic behavior of a super-
conductor, which will hold for all specimens of reasonable macro-
scopic dimensions. If the validity of the above idealized analysis
is admitted, the remaining problem is not to explain why some
materials are perfectly diamagnetic, but rather to explain why
most real materials and specimen sizes are not perfectly diamag-
netic, except a few known superconductors over a very restricted
range of field and temperature.

It follows from the above calculation that for fields which are
not too large an applied field will be almost completely expelleg
from the box, leaving some small residual effective field e. But
since H must be continuous at the surface of the box, there must
be a small layer there where the field rises rapidly from the small
internal effective value e to the external applied value. We can
take as our second problem the limiting case in which the field is
expelled completely except for a thin magnetic layer to provide
continuity of H. The solution of this problem is given by curve (2)
in Fig. 2. The wave functions are of two classes: (1) plane waves
slightly modulated in amplitude and phase at the boundary, and
(2) unidirectional waves which creep along the boundary. These
unidirectional waves give the major contribution to the curve (2)
of Fig. 2. There are no creeping quantum states if H&kc/ke)3.
X is the penetration depth.

Evidently a completely consistent solution of the problem under

discussion would be intermediate between the two cases above,
but it seems evident that strong diamagnetism for not too large
fields will certainly dominate the situation. Self-consistency can
be achieved in another way. One compares J=—{c/4m) s)A
(London's equation) where A is the given vector potential with
the quantum mechanical current

J= (ke/2') (P*VP—PV'P*) —(e /mc) APP*,

using the f's calculated in the presence of this A. If the criterion
for the absence of the creeping states is met, then the quantum
mechanical current, J is of order —A. This supports the original
conjecture of London. s

It is a pleasure to acknowledge the benefit of numerous discus-
sions of this problem with R. D. Meyers and the members of the
cryogenics group of the Naval Research Laboratory.

i L. Landau, Z. Physik 64, 629 (1930).
s C. G: Darwin, Proc. Camb. Phil. Soc. 27', 37 (1931).
s F. London, Nature 140, 793, 834 (1937).
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'HE intention of this note is to point out that a common
approximation used in applying the one-level nuclear dis-

persion formula to the determination of reduced level widths may
be unjustified in the case of broad levels, which are numerous in
light nuclei.

The one-level dispersion formula as given by Eq. (57) of the
paper of Wigner and Eisenbud' for the Xth energy level is

(2J+1)»si»s ~'
(1)(2js+1)k; Z" (»+~K E).+

and according to Eqs. (58a) and (58b), in their notation,

,'» i= (B„~„)s/(1+C„), »= Z„»„",
~) = &~) s,", ~) si= K's;I'zei',

i is the relative orbital momentum of the pair of particles s; B and
C are related to the value and derivative of the extra nuclear wave
functions at the nuclear radius us. The common approximation in
applying these formulas to the determination of reduced level
widths, ~„,is to neglect the variation of the level shift, hy, with
respect to the energy of the incident particle, with the result that
» is interpreted as the observed level width. It is not hard to
calculate this variation, and it will be shown to be important in
some cases. In the notation of Yost, Wheeler, and Breit~ the regu-
lar solution to the wave equation in the region external to the
nucleus is F(x) and the irregular solution is G(x), the argument x
being equal to kr; then

~as =—(Vzs~'/~s) (gs.+~), (2)
g»= Pd ln(F-'+G, P)&/d 1nxgs=la, .

By expanding hp linearly with respect to energy about the reso-
nance, usually a good approximation, the one-level formula may
be written as

(2J+1)F') siI' ) s'~'

(2jr+1)k s " (E—E„)s+$»'s '

where the primed widths, which may be called the observed widths,
are

&'~.i= »'&1+&- (~.'/~. )(e-/&eE=E.j ';
Er is the observed resonance energy and satisfies the equation

»+»(a)-a=0.

(4)

Fic. 2. Magnetization es. applied field (1) IIint«i«uniform.
(2) +interior =+applied exp(»», y 0 on surface.

The same consideration applies to the dispersion theory of
Feshbach, Peaslee, and Weisskopf. ' All of the I"s in expressions
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(42) and (43) of reference 3 should be primed; in the notation of
their paper, with the exception of g which is defined in Eq. (2)
above; and with F'+G' now equal to the

~
e~' of their paper, we

have
p "= (»—I I

e I') L(&fo/~R) (4—/~R) 7'&=&.
ra'(" =—2Ittj (de/dE) —(dg/dE) j 'E=Er,

u 'fo is the real part of the logarithmic derivative of the wave
function at the nuclear surface. The unprimed I"s of expressions
(41) and (12) remain unchanged.

An example where this correction is important is the 456-kev
resonance in the C'2(pp} reaction. The quantity dg/dE, which can
be obtained from Breit's tables, s 4 is here actually larger than
dfo/dE; the sign of dg/dE is such that I' is about 2$ times larger
than the observed width, F'. Kith this correction the reduced
width, g, becomes about equal to As/Mu, M is the reduced mass
(the exact value of y' is sensitive to the value of the nuclear radius
that is used). This reduced width ks/Me is equal to that given by
Eq. (64) of reference 1 for a square well interaction and likewise
the limiting value given by Eq. (44) of this same reference. This is
an indication that the s-wave C~+p interaction can be treated as a
simple one-body problem. The reduced width of the low energy
neutron s-wave scattering by C' is also equally large. This width
is determined by fitting a one-level dispersion curve, including
s-potential scattering, to the neutron scattering data up to 2 Mev,
where scattering from higher partial waves'becomes important.
The scattering length in the low energy region is positive, and the
bound state associated with it is the 3.10-Mev level of C". The
correspondence of this bound level with the 456-kev resonance
level of N" has been pointed out. s In showing this correspondence
it is necessary to consider this correction given by Eq. (4). A
detailed report on the s-wave proton and neutron interaction with
C~ will be forthcoming.

In applying the one-level dispersion theory at energies consider-
ably oG resonance, formulas (1) above or (38) and (39) of reference
3 should be used rather than the approximate expression (3);
that is, fo may be a linear function of E (basic assumption of the
one-level formula} over a wider range of energies than g.

In the case of s-wave neutron reactions, g is zero so that there
is no correction. For higher partial waves dg/dE can be calculated
from the penetrability factors

~
e

~

e given by Eqs. (45a) of reference
3; in the case of p neutrons Edg/dE=(ka)'pi+(ka}~j . For
example, if the resonance at 1.2 Mev in the scattering of neutrons
by He' is p-wave, then dg/dE= 0.16 Mev '. Supposing p= A'/Ma,
a being taken as 2.5-10 "cm, then the observed width at reso-
nance would be I"=0.76 Mev. Were y~ infinite, the observed width
would be only 1.2 Mev.

An exact criterion for the application of this correction cannot
be given. It is probably not negligible for resonances for which
y~~k2/10' (s-neutron resonances, of course, being excepted).

The writer is grateful for the discussion and suggestions of
Professor R. F. Christy.

~ AEC Predoctoral Fellow.
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The Hall CoeRcient of Semiconductors
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N a recent letter Johnson and Lark-Horowitz' have given an
- - expression for the Hall coefBcient of a semi-conductor which
takes into account both thermal and impurity scattering of elec-
trons in the conduction band. This theory is based on the follow-
ing assumptions. (1) The mean free path for thermal scattering,

P =Pr+Ps (2)

The Hall coefBcient R is then given by the equation

RI(1/ree) =(gv/48)(p/p&)ef *emcee ~de/(1+pcs)e, (3)

where, as a result of Eq. (2), 8 is set equal to —,'t (p/pt) —1j.This
theory, however, appears to be not entirely satisfactory, for as-
sumption (2) is not consistent with Eq. (1), which leads directly
to Eq. (3). If the resistivity is determined from Eq. (1), it is easy
to show that the Hall coefBcient can be expressed as a function of
PI/p by Eq. (3) and the equation,

pr/p=g f see 'dx/(1+per), (4)

in terms of the parameter 8=pal/6pl, which is now no longer
equal to g(p/PI) —1I.

Figure (1) shows R/(1/ee) as a function of PI/p as determined
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Fsc. 1.Variation of the Hall coefficient R with the ratio of the resistance
due to impurity scattering to total resistance; e is the number of electrons
per cc.

from Eqs. (3) and (4). The integral of Eq. (4) can be expressed in
finite terms, but Eq. (3) must be evaluated numerically. It will be
noticed that, except at the end points, the values of R/(1/ee) lie
higher than those given by Johnson and Lark-Horowitz fFig. 1, of
reference 1j.A consequence of this is that the mobilities as given
by these authors in a later letter s should be generally reduced;
e.g., by a factor of 1.8 at pp/p =0.2 and by a factor of 2.0 at PI/p
=0.5. The discrepancy between the original values of the mobili-
ties and the higher values found by Pearson, et al. ,' would not,
therefore, appear to be removed in the manner suggested.

From Eq. (4) it is easy to find the ratio P/(pp+pl). It reaches a
maximum value of approximately 1.43 at Pt/P in the neighbor-
hood of 0.30.

1 V. A. Johnson and K. Lark-Horowitz, Phys. Rev. 79, 176 (1950).
s V. A. Johnson and K. Lark-Horowitz, Phys. Rev, 79, 409 (1950).
s G. L. Pearson, Phys. Rev. 76, 179 (1949).

l&, is independent of the velocity of the electrons, and the mean
free path for impurity scattering, l&, is proportional to the fourth
power of the velocity. The actual mean free path / is thus given by

l= lyl2/(lg+lm}.

(2) It is assumed that the resistivity P can be expressed as the
sum of the resistivity pp due to thermal scattering alone plus the
resistivity PI due to impurity scattering alone; i.e.,


