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holes are immobile, being bound to the impurity atoms.
Under these circumstances the polarization is large and
temperature independent. Absorption of radiation in
the long wavelength region of the fundamental absorp-
tion band is expected to result in the production of
excitons. If these are thermally dissociated at room
temperature, free electrons and holes are produced, and
the polarization is small. At low temperatures, where
the excitons are not thermally dissociated, they wander
to impurity atoms where dissociation does occur, the
electron becoming free but the hole remaining bound to
the impurity atom. Under thele conditions of excitation,
as the temperature is reduced, the polarization in-
creases.

The dissociation energy of an exciton can be esti-
mated from the relation"

E.-—pr'me4/u4k'n'

by taking n= i. The index of refraction, p, of diamond

"F.Seitz, Phys. Rev. 76, 1376 (1949).

is 2.42 and EI~.2 ev. The lifetime of the exciton is
given by

r = rp exp(+Eg/kT).

Estimating rp~10 " sec, one obtains r(100'K)~10 '
sec and r(300'K)~10 ' sec. If the cross section for
collision with an impurity atom is taken to be j.0 "
cm', the concentration of impurity atoms of the order
of 10" cm ', and the velocity of the exciton as 10'
cm/sec, then at 100'K an exciton will make a million
collisions with impurity atoms during its thermal
lifetime. At room temperature, the corresponding
number of collisions is less than unity. The behavior of
the exciton is therefore in agreement with the pre-
ceeding interpretation.
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If transition probabilities are evaluated for transitions occuring during a finite time interval, additional
divergencies occur different from those commonly encountered for infinite time intervals. The expressions
obtained can however be made convergent, if an indeterminacy of time is attributed to each epoch of
observation, The method is applied to the emission of a photon by a free electron.

evaluate, in second-order approximation, the time-
independent probability for the emission of a photon
by an electron.

Time, with these unsharp limits, no longer appears
as a parameter, t, whose values t= t' and /= i" are fixed
for the two limits of the period of evolution, t" t'= 2T, —
during which the photon emission takes place. The
initial and 6nal epochs themselves, ~t' and t—t", are
now of 6nite duration, ht' and At", and must be given
in terms of treo probability amplitudes for time, f'(t) and
f"(i), describing the precision with which t' and t" have
been determined. In the probability du(a&) that an
electron has emitted a photon of frequency between ~
and co+Cko during the period considered, the Fourier
transforms, g'(pp) and g"(co), of the two probability
amplitudes hgure as convergence factors for the
integral. ' VVe have:

dpe(~) =d~(l g"I'+
I
g'I')(~) n(~)

=—dw" (pp)+dre'(pp). (1)
~ To g'(~) =exp(icot'); g"(co) =exp(hot") correspond the epochs

P(t}= 8 t—t') and f"(t)=b(t —t") of sharply determined time
values, for which the integral of Eq. (1) diverges.

I. INTRODUCTION

HE convergent results in the relativistic quantum
theory of elementary particles, which have been

recently obtained by diBerent authors, ' apply only to
time periods of infinite duration between two observa-
tions. If one tries to evaluate transition probabilities
for processes which are localized in space-time by a
sharply dined boundary (for example two time-like
hypersurfaces specifying an initial and final observa-
tion), one obtains divergent results. These divergences
arise from regions near the boundary, where processes
occur without conservation of the momentum-energy
component normal to the hypersurface. However, we
show here that one can obtain convergent results if
disuse boundaries are introduced We show. in SecI.
that this generalization is possible without affecting the
unitarity and causality of the array of probability
amplitude forming the 5-matrix. In Sec. III, we
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g'(rv) and g"(~o) are normalized to
~

g'(0) (
=

~

g"(0) (
= 1.

Their absolute squares are time independent. We are
thus led to think of (1) as the sum of two probabilities
for processes which take place only during the epochs of
tke initiat and of the final of&servations F. urthermore,
these processes show no conservation of energy: au is
the surplus energy in the 6nal state over that in the
initial state. This excess energy can be interpreted as
having been furnished by the measuring apparatus
during either of the two epochs of observation. Then

~
g'(co)

~

' and
~

g"(cv)
~

' indicate the probability that such
an energy is available.

k'4=+(a+ ~k'(')~ (3)

n' numbers the two spin orientations, x" in (3) is
normalized to a~ &"n'"= 2eib(n"/n') ..for electrons. For
photons of rest mass' p we write p=I' and num-
ber their polarizations by n'=1, 2, 3 (normalization
x "tx' =g(n"/n')) Then .the nth order contribution
to the probability amplitude of a process is the n-fold
space-time integral over V:

e"S.[V](u" q
" /u' )

II. THE CONVERGENCE CONDITIONS FOR
PROBABILITY AMPLITUDES

We describe a process taking place in a given space-
time (x-space) region, V, as the annihilation of mo

centum-energy out of the incoming matter or radiation
waves and the creation of momentum energy-into the
outgoing waves. We represent the incoming waves of
electrons, positrons and photons by the wave packets
u'(x), v'(x) and q '(x) with a positive frequency spectrum
and the outgoing waves by their conjugate complex
u" t(x), v" &(x) and q&" &(x) with a negative frequency
spectrum. The particular packets

u~'(x) = (2n.)~v.~(k'n') exp(ik'x) (2)

are plane electron waves. A packet (2) represents a
quantum of sharply de6ned momentum-energy k', lying
in the momentum energy space (p-s-pace) on the hyper-
surface of rest mass e, p=k', where

events x' outside or inside V. The causal' function,
Ai'&""'(x"—y", ) is a covariant function of the
n —1 relative displacements of the e events. It is con-
tragradient in its indices to the vector, n P ., or
spinor, A B,indices of the packets.

Let us now see how the generchsufioe to u continuous
real function V(x) related to the time uncertainties of
the initial and final observation epochs is possible
without aGecting the unitarity of the theory or changing
the causal function 6&'. The unitarity of the S-matrix
corresponding to (4) implies that the hermitian part of
S is determined in terms of the S for m(n. Therefore
S~ is antihermitian and is given in terms of a single
space-time integral of the hermitian interaction energy
density and the real function V(x). In electrodynamics
the typical element is:

eS&[V](u"q "/u')

=ie2 t ~dxV(x)(q& "tu" ty u')(x). (5)
J

In terms of this Si, we define the hermitian part of Ss
by means of the unitarity relation. We obtain for this
part expressions of the type (4) (with n= 2), wherein&'&

is replaced by non-causal functions —i, (A&+&+5& &). The
anti-Hermitian part of S2 is then determined in terms of
a causality correction id&'), such that the sum of the
hermitian and antihermitian parts gives id&'). The
higher order approximations are obtained in exactly
the same way. This procedure shows that the unitarity
and the causality of the S-matrix are independent of
the particular form given to V(x), as long as it is a real
function.

In order to find the convergence conditions of (4), we
transform it into p-space. The transformed integral is
n —1 fold. If m is the total number of incoming and
outgoing packets, then

e"S„[V](k"n", l", . /k'n', )

=ie"(2&r)4" t" dP dq I dr
J

=ie" dx"V(x") ~ JI dy" V(y") dx V(x) ~ ~

X Idx'V(x'). . .u~"t(x") . q."t(y") ~

J
(g) pe ~ ~ ego ~ ~

X~. . (*"—y", "*"—*,
~ x"—x', )u'o(x') . (4)

For sharply defined boundaries, V(x') is a discon;
tinuous function, with the two values 0 or 1 for

'In order to avoid the difIIculties connected with zero rest
mass photons, we suppose the photon to have a 6nite rest mass,
small compared to that of the electron.

X V(k"—P—
q
—r— ) V(t"+p) .

XV(0+q) V( k+r). . .vz"t . &r
"t . .

(g) ge ~ ~ tzo ~ ~

IQX~ 'rj * ~ ~ 0 n ~ ~ ~ 4 ~ ~ ~ far ~ ~ ~
~ ~ ~ (6)

' By the term "causal" we imply that 6&') in Eq. (4) is a network
of causal functions d&')(x —y) /given in Eq. (9)j describing an
outgoing wave at y and an incoming wave at x, if x is later than y
{the "creation at y" precedes the "annihilation at x"), and
eu:e versa if y is later than x. See Stueckelberg and Rivier, Phys.
Rev. 74, 218 (1948); Helv. Phys. Acta 23, 215 (1950); 23, supp.
III, 236 (1930).

This formula involves the Fourier transforms of V(x)
and 6&'). We shall use the same letters to describe these
functions in both x- and p-spaces. We see at once that
the existence of the Fourier transform of the causal
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function 5('(p, ) is a necessary condition for tke con-
vergence of the ampHtlde S„. For the particular case
V(p) = i)(p) one obtains the usual result:

e"S„L~ )(k"n" f" /k'n' )

=ie(2~)4" 1"b-( k"—i"— —+k'+ )

Xgg to ~ r~ t ~ o ~
II I/

(g)g e ~ ~ cs ~ ~ ~

X~ e...(—i" 0 k' )x'o . . (7)

which is commonly used to define transition proba-
bilities for a region V extending over "infinite" physical
space-time.

III. PHOTON EMISSION BY A FREE ELECTRON

In the second approximation of quantum electro-
dynamics, the probability amplitude of an electron-
electron transition inside of V is

e'S2L V)(u"/n')

= e')tdxV(x)) dyV(y)N"t(x)

X (y862('+ zAi") (x—y) I'(y)

b(M
"—/n') ( ', W(—n'-)+ '-,'C(N') iC (n—'))

Its Hermitian and anti-Hermitian parts correspond to
the separation of the two scalar, causal functions into
real and imaginary parts according to:

ig(~) — i (g(+)+A (—))+(7),(s)

d &+) are functions involving only definite frequencies
larger than the sum of the two rest masses f!| and p.

0~'-'(- p) =~'"(p) = I for p4~0, (10)
2h(')(p') I

~'"(p') =o f —p'&( +) )'

d &' is the causality correction, defined in terms of 3 &"

by the following di8erential equation

d $ " n! (" 5("(—z')

, I
A"(p')= „' d()'— (12)

). d(p') J 2)r ~() (p'+z') "+'

for the lowest e, for which the principal value con-
verges. '

Let us now recall briefly the physical meaning of the
three parts in Eq. (8) due to 6(+) and 6') in (9):

(1) W(n') is a decrease of tke probability of observing
only an emerging electron I", due to the process of

~ The integration of (12) introduces a Gnite series of terms of
the type eo+cIQ+ ~ ~ -+a 1(p')" ' with e arbitrary constants.
A detailed discussion of this arbitrariness mill be published in the
Peleetica I'hysk a Acts.

Omitting the b-symbol in (8) (because it is evidently
diagonal in the momentum and spin space of the
electron), we have the following p-space representation
of S2LV) in terms of W, C and C:

I
+" (2m)'e'

lV(k') =
J

d~lg" —g'I'(~)
k'4(o'

&&(k'pA2(+)+~'A)(+))(p), (14)

p=k' p4=k'4+(o (14a)

C is the same expression involving —6& & instead of
6(+), and in the phase C (n'), 4h(' has to be substituted
for 6&+'. In the limit, where the period 2T=t"—t'

between the two epochs t" and t' is long with respect
to their indeterminacies At" and At', a frequency Np

may be defined

2T»cop '»At", At'

allowing in the integrand of (14) the substitution:

Ig g I ((o)=
(o

—'(2 sin(oT)' for (o'((op'

~ '(I g"
I
'+

I
g'I')(~),

(16)

for (o'& (op'. (17)

If the intergrand is di8erent from zero for co=0, O', C,
and C consist of a time proportional part plus a time
independent part.

In our particular case, we obtain a time proportional
part for the phase alone. Its form, 2Th)('(2k") ', shows
that the dispersion law Eq. (2) is affected in the form
of a rest mass change df!.'. The value of the invariant
hx' is undetermined on account of the arbitrary con-
stants in the definition of 5" in (12). The integrand
of the time-independent probability (14) decomposes,
on account of (17), into the two contributions due to
the two limits of the region V. The four vector, p, is
the momentum-energy in the electron+photon state.
The substitution of 2A&') for (d(()(=k'4 (Appendix II)
gives the following expression for the low frequency

photon emission (in which case we should observe the
outgoing waves I" and (o").

(2) C(n') is an increase of this probability, due to the
diminution of the probability for the spontaneous
process of three quantum creation (photon, electron and
positron), when the electron state n' is occupied.

(3) C'(n') is a phase change, diferent for difFerent
wave packets, and giving rise to a change of the dis
persion law for electron waves Li.e., differing from (2)).

%'e evaluate these quantities for the space-time region
V bounded by two time-like hyperplanes ~t' and
Mt" defined by the amplitudes f'(t) and f"(t). In
terms of the Fourier transforms, normalized to

I g'(0)
I

=
I
g"(0) I

= 1, the transform V(p) in (6) (Appendix I) is

V(P) =b(p)i(2n~) '(g' —g")(~), ~=P' (13)
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It is also interesting to note that the emission of a
photon by a free electron has a simple classical analog.
The pkogon geld expectation values correspond to a
classical radiation field, which compensates (or "inter-
feres away") the point electron's static held at the
epoch of observation t=t' everywhere, except within a
small sphere with a radius of the order of the indeter-
minacy ht' of the time measurement.

probability spectrum to 6nd a photon within or and
~e+Che created at g g—'

e'R (ee 2 nR) )
~'(~) =d~Ig'(~) I'

(2s)' cu'n'
(18)

This expression may be compared to the frequency
spectrum of the total energy of a spherically symmetric
classical radiation 6eld x~(x) of longitudinal photons
(n'=,3) Writing co=1'4, the total energy is in such a
case:

APPENDIX I
If we wish to interpret the S-matrix as an operator operating

on a state vector P, the state vector refers not to a time like
hypersurfaee as in the Tomonaga-Schwinger theory, but to a
time-like layer. Ke may describe such a layer by a real function
F(x)„which has the values one or zero for events x lying in the
future or in the past of the layer. The region V will then be given
in terms of the two layers

V(x) =F'(x)—F"(x) (I.1)

and the S-matrix transforms according to

pate'j=s/vgpfP j (I.2)

the initial state into the final state. The probability amplitude
for the time measurement is the gradient of F{x):

f.'(~) =a.F'(~). (I.3)

It reduces to a function of time alone in the case considered in
Section III.

I"= t d(r(l')l" Q (btb)(l'n')
n' 1

=
)"d~~~(~'—n')'(b'b) (l3) (19)

bt and b are the coeKcients of the 6eld Vlx (x), de-

veloped in terms of plane wave packets y' (x) and their
conjugates of the form (2) with the three polarizations
n' normalized to x "4r'~= b(n"/n')

We now determine y from the condition at t=t'

«m( —nlx'I)
It(x') =0; y,'(x') = —— +—b(x');

4s
I
x'I

84@(x')= ——gradb(x'); Bexe(x') =0.
p(2 APPENDIX II

I'(x) =0; fi'(g) =f'(t) = (2—e)-&J deme '~&g'{~) {I4.)
(20)

The Fourier transforms of V(x) is then given by (13).

At t=t', this 6eld compensates the static field every-
where except "inside" of the point particle. We 6nd

In terms of the invariant functions of given rest mass

D,~+~(x) = (2') 'fda(k)e+* da(k) = (k4) '(dk)~ (II.1)

1 e' or' —p, '
btb(l3) =

2 (2s)' ee'n'
(21)

the 6&+&-functions in (8) are

a, &+){~)= —~D„(+&{~)D„&+)(x)—=—~~&+)(x),
(».2}

Comparing (18) with (19) and (21), we see that the
classical radiation 6eld corresponding to dw'(~) com-
pensates the 6eld of the point charge e, except within
a sphere with a radius of the order of At'. The energy
density of the total fmld (static+radiation) is strictly
zero outside of this sphere.

IV. CONCLUSIONS

These arguments show, that the introduction of a
6nite period of evolution in current quantum electro-
dynamics produces no diKculty of convergence, if
diGuse time boundaries are used.

8»(+){x}= —~48 D„(+)(x) D„(+&(x)—(1/2p, ')
X~pD &+&(~) ~~~ D„&+'(~)~ (II 3)

From the divergence of (II.3), we can explicitly evaluate the
Fourier transforms for p4&0 and their limiting values for y=0,
P4=K+co and co&(K:

~ + (p) =2~"'(p') =(2~} '(—p') '((p'+(K+I )'}(p'+(K—p)') j&
~(22'.) &K 1t 2(&—P~)&+~K 1). (II.4)

~2'+'(p) =2»"'(p'}= —k{—p') '(—p'+K'
+~M{ps+Ks)2 2~%)g(l) {ph)

=--{&+;.~+--)» (p} (»5)
From these approximations, the expression

2(k'p»(')+K~61(1)) (p )~{27r) ~K(j{g~(oP—pm}~+~K 1) {II.6)

is obtained, leading from {14}to {18}.


