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On Bound States and Scattering in Positron Theory
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The use of bound-state wave functions in calculations in positron theory is justified by the introduction of
a new representation, in a certain sense intermediate between the Heisenberg and interaction representations.
In the bound-state representation the definition of a stable vacuum state is possible only for a restricted class
of external fields. Some attention is given to the problem of vacuum polarization, and it is shown that a very
simple procedure accomplishes the charge renormalization with suf5cient accuracy to be of use in certain
scattering problems. The application to the scattering of radiation is discussed in some detail, in order to
show the relation between the diferent points of view that may be adopted in problems of the coherent
scattering by a bound electron and the "Delbruck scattering" by virtual electron pairs.

I. INTRODUCTION

'N the early days of the Dirac theory of the electron,
~ - strong evidence for the importance of the states with
negative energy was found in the theory of scattering
of radiation. A very signiGcant part of the scattering had
to be ascribed to "intermediate states" in which the
electron's energy was negative. Such states indeed pro-
vided all of the scattering of light of longer wavelengths
(hv«mc') by free eiectrons. In the nonrelativistic theory
this scattering came from the term (e'A'/2mc')f in the
Schrodinger equation and was called by Dirac "true
scattering. "

Dirac's suggestion that the negative energy states are
"611ed up,

"which is the underlying idea of the present
positron theory, was seen to contradict the idea of
negative energy intermediate states. It was pointed out,
however, by Dirac' and by %aller' that the same result
for the scattering could still be obtained. Instead of
intermediate states with the electron's energy negative,
one has to consider intermediate states in which a pair
is present in addition to the original electron, the
electron of the pair being in its 6nal state. The transition
to the Gnal state of the system then occurs with the
annihilation of the positron and the original electron.
The contribution to the probability amplitude for scat-
tering is just equal to that calculated earlier by using
negative energy intermediate states.

During the development of positron theory stimulated
by the experimental discovery of the positron, it was
realized that the possibility of intermediate states with
a pair present has another connection with scattering.
An electromagnetic 6eld alone can scatter light by
processes in which electrons appear only virtually, in
such intermediate states. The possibility of this kind of
coherent scattering by the Coulomb Geld of a nucleus
was pointed out by Delbriick, ' and results inferred from

incomplete calculations by the Born approximation were
published by Kennner and Ludwig4 and by Achieser and
Pomerantchuk. '

More recently Halpern and Hall' have raised ques-
tions about scattering in positron theory and have sug-
gested that, when bound states of the electron are
involved, the conclusions of Dirac and %aller require
modiGcation. Particularly in the case of coherent scat-
tering by a bound electron, the usual idea of an inter-
mediate state with a pair present cannot be used: the
electron of the pair would be created in its 6nal state,
but this state is the same as the initial state and is
already occupied. On the other hand, the presence of the
electron in a bound state will aGect the possibility of
some of the transitions involved in the Delbruck scat-
tering. The question as to whether the interaction of
electrons in an atom has such an effect that %aller's
results would have to be modiGed has been considered
by Arnous; in a brief note' based on extensive calcula-
tions he concludes that such a modi6cation is not re-
quired. In the present situation, in which various
questions have been raised but only brief notes have
been published, it appears that a general discussion of
the relations of incoherent and coherent scattering,
Delbruck scattering, and vacuum polarization may be of
interest.

The writer has been particularly concerned to con-
sider these matters in connection with the general
question of bound states in positron theory. It has
usually been taken for granted that calculations in
positron theory could be based on either free-electron
wave functions or on the wave functions of a bound
electron in a given 6eld, as might be convenient. Com-
plete but rather involved proofs of the equivalence of
the two methods for a number of important cases were
given by Furry and Oppenheimer. ' It afterward' ap-
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peared. possible to dispense with such proofs by re-
marking that the simple subtraction procedure of
primitive positron theory could have no eeet on the
validity of the usual transformation theory. It turned
out, however, that the simple subtraction procedure was
neither so harmless nor so adequate as at 6rst supposed,
since it gave rise to diKculties with the Lorentz- and
gauge-transformation properties of the theory. More-
over, there are clearly differences between the free-
particle and bound-particle methods in regard to the
phenomena of vacuum polarization. Thus it seems de-
sirable to reconsider the question of the bound-particle
method from the point of view of Schwinger's reformula-
tion of the theory, in which the invariance properties are
kept manifest and no subtraction procedure such as
those of early positron theories is used. Such a recon-
sideration not only provides for the usual cases of
interest a derivation that is rigorous without being ex-
cessively involved. ; it also provides a framework for the
treatment of exceptional cases that may arise.

The section immediately following is, accordingly,
devoted to a development of the bound-state method as
a modification of Schwinger's method of the interaction
representation. This is accomplished by a canonical
transformation, and the various formulas of the theory
are obtained in the resulting bound-state representation.
The third section is concerned with the problem of
vacuum polarization as it appears in the bound-state
representation, and with charge-renormalization. In its
present context the task of renormalization has a di6i-
cult aspect and is dealt with in a rather crude and sum-

mary fashion; the procedure followed is adequate for the
treatment of scattering of light with hv(&mc' by an
electron moving in the field of one or more arbitrary
small sources and also for scattering with an arbitrary
value of hn if the 6eld is a Coulomb 6eM. The last
section contains the application to scattering and a
discussion of the physical meaning of the result.

Q. THE BOUND-STATE REPRESENTATION

%e proceed to introduce a representation in which the
action on the electrons and positrons of a classically
prescribed external Geld with potentials A„&'&(x) is in-

cluded in the equations of motion of the wave function

Q and its adjoint Qt, but the interaction between the
particles and the dynamical electromagnetic 6eld is
taken into account in the dependence of the Schrodinger
functional 4'[a] on the space-like surface a. This is a
modi6ed type of interaction representation, diEering
from the standard interaction representation in that
bound states of the one-electron problem, rather than
free-particle states, provide the bases for the construc-
tion of the wave function operators Q and Qt.

The arguments used are for the most part closely
analogous to those of Sec. 2 of Schwinger's first paper"
on quantum electrodynamics, and mut'. h detail can, ac-

~ J. Schwinger, Phys. Rev. 74, 1439 (j,948), referred to in the
text as L

cordingly, be omitted here. The notation is that of
Schwinger's paper, which is referred to as I.

The equation of motion and supplementary condition
for the Schrodinger functional 0 [a] of the interaction
representation can be taken in the forms

NcN [a]/ba (x)

= I
—(1/c)j.(x)[A.(x)+A."(*)]I+[], (1)

[BA„(x')/Bx„']—(1/c)

XJ"D(x' x)i.(x—)da. +[a]=0.
a

It is here conveniently assumed that the classically
prescribed potentials A„&' satisfy

BA „&'&/Bx„=0.

It has been shown by Sehwinger" that these equations
are related by a canonical transformation to a perhaps
more naturally accepted set in which the classically
prescribed quantities are the source-currents j„&'&(x)
instead of the potentials A„&'(x).

Ke now make the canonical transformation

~[.]=V[ ]~'[-], (4)

where V[a] is taken to satisfy the equation

ihcb V[a]/Bo (x) = —(1/c)j„(x)A„"(x)V[a] (5)

and commutes with A„(x).The new equation of motion
and supplementary condition are found to be

i7scb+'[a]/Ba(x) = —(1/c)j„(x)A„(x)+'[a], (6)

[BA„(x')/Bx„']—(1/c)

X
J

D(x' x)j„(x)do„@'—[o]=0, (7)

where

j (*)=V '[».(x)V[ )=-(~«/2)N-, &a'](v.)a- (g)

with

4(x) = V '[a]4(x)V[~],
Qt(x) = V '[o]Pt(x)V[a].

Here the point x lies on the surface 0.
In obtaining the equations of motion of g and gt we

shall depart from exact analogy with the procedure of I.
It has been widely recognized that the argument of I
lacks generality in that it is restricted to cases in which
the operator occurring in the equation of motion of the
transformation matrix —Eq. (5), or (I, 2.5)—does not
contain derivatives. This condition is of course satisfied
in the case of I and in our present case, though not in
meson theories. It has been pointed out, however, by

~ J. Schwinger, Phys. Rev. 76, 790 (194%.
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Belinfante" that, even in the case of I, the equation
(I, 2.9) used in obtaining the new equations of motion of
the operators is not of really general validity. We here
set up an equation not subject to this objection.

It is proved in I that the validity of an equation of the
form of (5) (or (I, 2.5)) has as a consequence that the
transformed quantity

I'(x) = V '[0]F(x)V[o], (10)

like the original quantity F(x), depends only on x and
not on the particular choice of space-like surface 0. con-
taining x; this result actually depends on the absence of
derivatives in the operator appearing in Eq. (5) (or
(I, 2.15)).It follows that derivatives of F(x) can be cal-
culated from

8F/ax„= lim(1/a)

X {V '[(a'),.]F(x„+b„„a)V[(0')„]
—V '[ ]F(x)VL ]} (11)

where (0')„, is the surface obtained by displacing 0

rigidly by the amount c in the direction of x„. The
change in V[o] produced by such a displacement is

&V[ ]=VL( ')-]—V[ ]
=a J {SV[a]/Sa(x')}d .'+O(a')

= (ia/hc') J„(x')A„&'&(x')V[0]do.'+O(a').

We 6nd that

BF/Bx, = V '[a] (BF/Bx,)+(i/hc')

X [F(x), j„(x')A„(x')]da,' V[0]. (12)
tr

This equation differs from an exact analogue of Eq.
(I, 2.9) essentially by the interchange of the arguments
x and x' in the integrand. It is generally valid as a conse-
quence of Eqs. (5) and (10), whereas Eq. (I, 2.9) gives
incorrect results" in some cases in which F(x) contains
derivatives.

From Eqs. (9) and (12) and the equations of motion
and commutation relations of the operators f, P in the
interaction representation, the equations of motion of

Q, Qt are readily obtained. The argument resembles in a
general way that of Eqs (I, 2.13—16) and gives the results

{y„[(8/Bx„)—(icA„'&/hc)]+ «0}&=0, (13)

[(8/8x„)+ (MA &'&/hc)]gtq„—«,Qt= 0. (14)
~ F.J.Belinfante, Phys. Rev. 76, 66 (1949),especially footnotes

5 and 23.

The energy-momentum four-vector of the 6elds Q and
A„, taken apart from their mutual interaction, may be
written P„~, where the superscript emphasizes that Q
satistms Eq. (13) for bound electrons. The expression for
P„~ is formally the same as is given in Eqs. (I, 1.55) and
(I, 1.26), with Q, Qt replacing f, P. The property of a
time-like component of this vector as a displacement
operator is used in the deinition of the vacuum state."
The complete energy-momentum four-vector, including
the effects of interaction, is

P„[0]=P„+(1/c')
J 3,A +o„. (15)

The consistency of these relations with Eqs. (1)—(5) is
readily established. The argument leading to Eq. (15)
is then similar to that of Eqs. (I, 2.45—52); the use of an
equation analogous to Eq. (12), rather than to (I, 2.9),
removes the need for a doubtful step like that in
(I, 2.51).

The commutation relations of the operators Q and Qt
are not the same as those of the operators f, P of the
interaction representation. It is through the diBerence in
the commutation relations that the eGects of the ex-
ternal potentials A„'& appear in subsequent calcula-
tions. The physical reason for the difference in the
commutation relations is that Q and Qt contain the
effects of the external Geld, as shown in Eqs. (13) and
(14).Formally, it is seen that the commutation relations
of Q, Qt at points x and x' are not the same as those of
P, P because in the transformation of Eq. (9) one has in
general to use diGerent surfaces 0., 0' for the points x, x'.
thus, the transformation is not a mere similarity
transformation.

In the construction of the commutation relations of
Q, Qt it is convenient to start with the special case in
which x and x' are on the same surface 0, so that the
transformation is just one of similarity. Here and in
following calculations we need consider only plane
surfaces 0., with x4=ict=constant. For t=t', then, the
relations for g, gt are the same as those for P, P, and we
have

{4-(x), 4«*(x') }=&.t ~(r—r'), (18)

{Q.(x), g«(x')} ={/ (x), gp*(x')} =0, t=t'. (19)

The operator Q for time t= 0 can be expanded m terms of
any complete orthonormal set of functions of the posi-
tion r; for convenience we use the notation of the dis-

» J. Schwinger, Phys. Rev. 75, 651 (1949). Here particularly
Sec. 1. Referred to in the text as II.

In establishing these facts it is convenient to use the
transformation from the constant state-functional 4 of
the Heisenberg representation to the functional 4'[o]:

4'[o]=E[o]c, (16)

~hc&~[a]/ba(x) = —(1/c)j.Am[a]. (1&)
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crete case:
Qo(ri 0)=Z(e) @(e) t}1(e)e(r)i

4 '(r' o) =Z(*) o(.)*4(*) *(r).
(20)

The coefficients a(,), s(,) are operators; from Eqs. (18)—
(20) it follows that

Ie(g)p G(I) }—B(p)(g) 1 f (p)p c(e) }—
f (p) p e(a) }—0. (21)

Since a~,~, c~,~~ are independent of r, it is natural to take
them independent of t also; we then set

with
&'(x)=Cit(t(x), hatt

t'(x) =C 'g(x),

C 'sic=-v~'.

(32)

(33)

The proof of invariance under the latter transformation
is entirely analogous to Schwinger's discussion, Eqs.
(I, 2.39—43). The essential lemma, Eq. (I, 2.34), follows
readily, for the sufEcient case of plane surfaces, from
Eqs. (24)—(28).

Charge-conjugate wave functions Q', it(t' can be de-
fined by the usual relations

g.(r; ~)=g(,) u(,)q(,).(r; ~);

'4 (ri ~) =Z(~) &&(~) 4(~)~ (rs~)
(22)

The matrix C commutes with VLo $, so that the relation
to the operators of the interaction representation is

The sum also plays the same role as the function
S(x—x') in solving the boundary-value problem of the
equations of motion; in analogy to Eqs. (I, 2.23) and
(I, 2.27) we have

&}&(r'&')= tZ() 4(*)(r &')4()t(r '~)'r44(r '~)&ft& (2&)

it&t(r &)= d&& it&t(r &)'riZ() C()(r ~)4(*)t(r'~). (28)

In the bound-state representation a gauge-trans-
formation may affect either the external potentials A„&'&,

the dynamical potentials A„, or both. The transforma-
tion equations are

A„"&A„'')—Bh."/Bx„,
~exp( i'(')/hc) iI—

i}tt- xp(ieh('/h-"c)&t.
(29)

with the time-dependences of it&(,) and it&(,)e ——it((,)t&4
given by Eqs. (13) and (14). From these equations it
follows that

(BIBx~)C(~) 7~(t(~) =0 (23)

and thus by the usual argument that the orthonormal
property of the functions it&&,) persists in time; accord-
ingly, the use of c(,), a~,~* independent of time is con-
sistent with the general validity of Eqs. (18) and (19).
Then from Eqs. (21) and (22) we have in general

I4-(*) 6t(*')}=K.4..(*)4. '(*') (24)

Ig (x) ge(x)}=I/ '(x) i}le'(x)}=0 (25)

The sum appearing on the right-hand side of Eq. (24)
is a generalization of Schwinger's function S(x—x'), as
changed by the e8ect of the external field A„~':

Z(.) (&h.) (x)4(.)et(x')

-+ iS e(x x') fo—r A„"—&0. (26)

L 7&t' 6 j it'=1' L jest ~L j (34)

The equations of motion of the charge-conjugate opera-
tors differ from Eqs. (13) and (14) by a change of sign
of the factor e, and their commutation relations diGer
from those of the original operators in a corresponding
way. The lack of absolute symmetry between Q and it('

brought about by the external field has physical conse-
quences, among them vacuum polarization (following
section).

The definition of the vacuum state given by Schwinger
in his second paper" on quantum electrodynamics can
reasonably be used in the bound-state representation
only for certain kinds of external fields. Already from
the possibility of gauge transformations of the type (29),
which do not exist in the interaction representation, it is
seen that the separation of the operators (t& and it&t into
parts,

Q = it&(+)+ it&(-) it t = it t(+)+gt(—)

containing respectively the positive-frequency and nega-
tive-frequency parts of the time-dependences, can have
no absolute significance. A natural physical meaning can
be given to this separation only if there is a gap in the
spectrum of the time dependences of the operators. Such
a gap can be expected to have width about 2 mc', in the
energy scale. As a reasonable choice'4 of the gauge h.&')

we take such potentials A„&' that the location of the gap
is about the same for it&t as for it(, whereupon it can be
expected that zero frequency falls about the middle of
the gap. The vacuum state with Schrodinger functional
0'0' is then defined by

it&+ (x)%&&'=0, &t&t(+)(x)%' '=0. (36)

The energy of the vacuum state is then lower than that
of any other state by about the amount mc'. The fact
that the definition of a stable vacuum state is possible
for only a restricted class of fields was pointed out in the
early days of positron theory. "

with

GL j=(1/hc'), "j„(x)A(x)d „. (31)

As~Ay BA/Bx&, O'LoMe 'e')O' Lo'j (30)
"Qf course, this is by no means a unique specification of the

gauge. Moreover, while convenient in that it makes possible the
definition of the vacuum state as that of minimum energy, the
restriction is not necessary: for example, the fact that the addition
of a large constant to the scalar potential puts a premium on states
having large net charge has a natural and clear physical meaning.

'~ Reference 8, p. 255.
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We must from now on restrict our attention to fields
for which this procedure is available. Having chosen
some suitable gauge for any particular given field, we
can choose the basic sets of functions Q&,&

so that the
sequence of labels (s) can be divided into two separate
lists, written s and cr, such that

4'+&=Z. a.4.' 4' &=K.a.4' (37)

III. POLAMZATION OF THE VACUUM:
RENORMALIZATION

The current four-vector, Eq. (8), can be written in
either of two equivalent forms:

j.= —(i«/2) R-, 4& 'jh.)s-
= (i«/2)$Q ', Qt&t'j(»)t& . (39)

Because of the differences in the behavior of Q and g', it
does not follow, as it did in the interaction representa-
tion (Eq. (II, 1.72))" that the vacuum expectation
value (j„(x))0 must vanish; it can only be concluded
that, if an expansion in powers of e can be used, the
series for (j„(x))0 contains only terms with the even
powers.

The formal evaluation of (j„(x))0 in terms of the
definition of the vacuum state, Eq. (36), involves just
the algebraic steps used by Schwinger, Eqs. (II, 1.66—67).
The result is

&j.(*))o=—(i«/2)&((4-'+& —4-' '), es'j)o(v. )p- (40)

Because the condition (36) holds for every point x, we
can conclude from Eqs. (36)—(38) that

C,ep' ——0, u, ~%'p'= 0. (41)

From this and Eq. (21) we find that

& .* .» =( . .*)o=o, ()&(),
(a.*a,)0——(a.a.*)o=0, (42)
(a,a,*)0——&a.*a.)0——1.

If the operators a~,~, c(,~~ are given their original
interpretation" for a many-electron theory„ these for-
mulas (42) correspond to the original Dirac suggestion
that the vacuum has all negative energy states GDed. It
is to be noted, however, that Eq. (42) follows, without
any special assumption, simply from the de6nition of the

"The symbol II is used to refer to Schwinger's second paper,
reference 13.' P. Jordan and E. signer, Z. Phys. 47, 631 (1928); W'. Pauli,
Haedb. d. Physik 24/1, p. 199.

It then follows that

4"+'=E.a *4'; 4" '=Z. a.*4.' (38)

The states s are positive energy states of the electron in
the given 6eld; the states cr, negative energy states.

The way in which the interpretation of the operators
c~,), a~,~~ presents itself naturally in the bound-state
representation is shown in the following section, in con-
nection with the evaluation of vacuum expectation
values.

vacuum state as the state which in a definite physical
sense has minimum energy, and that the formulas hold
in the bound-state representation as well as in the free-
particle or interaction representation.

States c,*%'p' and a,%p' have energies higher than
that of the state Np' by at least about mc'; on the other
hand c,a,*%'p'=c,~u,%p'=%p'. The interpretation of
these facts is that the operators u, * and a, refer to the
creation of an electron and a positron, respectively,
while u, and u * are the corresponding destruction
operators. That the effect of these operators on the
charge agrees with this interpretation follows from
arguments of a familiar kind, given for instance by
Schwinger in Eqs. (II, 3.54—55)."The construction of
corresponding arguments in the bound-state repre-
sentation, by the use of Eqs. (24)—(28), presents no
difhculty.

From Eqs. (40) and (42) we find that

&j (*))o=—(i«/2) jZ. 0'»it&.—Z. it'vA. } (43)

These sums are divergent. The possibility of obtaining a
de6nite result by making active use of the postulate that
the theory is gauge invariant is illustrated in the work
of Schwinger. "Another way to make the result definite
is to use a program of modifying the formulas and then
obtaining the value in a suitable limit, a procedure
known as "regularization. ""The result contains in
order e a logarithmically divergent but gauge-invariant
term, whose removal must be accomplished by charge-
renormalization; that is, by its being regarded as
physically indistinguishable from the classically pre-
scribed current j„"=—c8'A„"/Bx„'. We shall not
attempt a generalization of these methods for applica-
tion to Eq. (43), but shall only show, in order e', how the
use of the Born approximation to evaluate (j„(x))0leads
to the results already known in the interaction represen-
tation. We shall then concern ourselves with the
problem of eGecting the renormalization.

Before proceeding to show the calculation in Born
approximation we must remark on the actual content of
Eq. (43) and its relation to other quantities that have
been calculated. To the order e', the expression given
here contains the whole of the vacuum polarization. In
higher orders part of the polarization comes from
interaction between the electron-positron field and the
dynamical Geld A„. This part is not included in the
present expression; it has been studied in the approxi-
mation e4 by Jost a,nd Luttinger 2' who find that there is
also in this order a logarithmically divergent gauge-
invariant term that requires removal by charge-re-
normalization. The higher order contributions that are
included in Eq. (43) are non-linear in A„i'&, being of
orders e'(A„&'&)', e'(A„&'&)', . These terms have been

'8Through a Inisprint Eq. (II, 3.54) has in the integrand a
square bracket which should be a curly bracket (anticommutator).

"Reference 16, Sec. 2; also reference 11, Appendix.
~ W. Pauli and F. Villars, Rev. Modern Phys. 21, 434 (1949).
~' R. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201 (1950).
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studied by Kallen, ~ who finds that in order s4(A„&'&)'

there are divergences completely removable by "real-
istic regularization, "and that in higher orders there are
no divergences. It should be remarked that Eq. (43) is
a valid expression for this part of the vacuum polariza-
tion also in cases in which the Born approximation is not
admissible, although the actual evaluation without use
of the Born approximation could be expected to be very
laborious.

In order to apply the Born approximation to the
evaluation of (j„(x))0 as given in Eq. (43), we expand
Q&,&

and Q&,&t in powers of the charge e:

Q(.&

——
&&&'&,&+eP, "+

(44)4(.) t ——1«(,)&+el t&'&+. ~

The term of order e in &j„(x))0 is obtained by replacing
g&,&, g&,&t by the free-particle functions &)«&,&, f&,&t, and
this term vanishes, as shown by Schwinger in Eqs.
(II, 1.72—73). The term of order e' is

This is identical with Schwinger's expression given by
Eqs. (II, 2.19) and (II, 2.10).

The expression (43) for (j„(x))0contains entangled in
it the 1ogarithmically inhnite part, proportional to
j„"(x), which must be removed by renormalization, and
other parts, finite and not just proportional to j„"(x),
which are regarded as having physical meaning. The
task of disentangling these parts is a complicated one,
and is scarcely to be undertaken at all except with the
use of the Born approximation. Ke shall be content
here to point out that for some purposes, to be illus-

trated by the application to scattering, the disentangling
is not required.

The structure of (j„)0 can be symbolized by writing

(j,)0=&,"'+&,', (52)

where J„"g is to be removed by renorrnalization. For
any Geld from Gnite sources in the Gnite region of space
the remaining part J„' satisGes

&j.(*))""= —(i~"/2) «z.(4'VA.("+4.&("7 0,) r

J„'de= 0. (53)

The function P&,&

&'& is the solution of the inhomogeneous
equation

[(y„8/8x„)+&(Ojg&,)&"= (i/A(,.)y,A.&'&«'(,) (46)

given by the expression

0(.)'"(*)= —(i/il(:)

XJ S(x—x')y„A,&')(x')P(,)(x')d~', (47)

For a point source, or a source of dimensions small

compared with )&'/mc the extent of the distribution of
J„' is of the order of I(/mc. If there are a number of such
sources separated from each other by distances large
compared with k/m(;, Eq. (53) holds also with the
integral extended over a suitable region around any
single source. The emission, absorption, and scattering
of radiation depend on quantities

where the function" J j ~st.re (54)

S(x—x') = [(y„8/8x„)—(&pjZ(x—x') (48)

satisfies the condition (Eq. (II, A.6)),

[(y„8/8x„)+)(0]8(x)= —b(x&) 8(x2)8(x)&)8(x4). (49)

On substituting Eq. (47) and the corresponding formula
for P(,&~"& = (f &,&&"'y4 into Eq. (45), we see that the re-
sult depends on a sum whose value is

Z 0 (x)4"'(x')—Z. 4'.(x)4"'(x') = —S'"(x—*'). (50}

That this sum of products of free particle functions h-as

the value given can be seen by comparing Eqs. (39) and
(43) with Eq. (II, 1.68). The value of (j„(x))0&2) is found
to be

&j.(*)). =("/)l) J"d- 2' «S (*-x)v~(x-x')v,

+S(x' x)y„S'"—(x x')y.}A —„'"(x') (51).
~ G. Kalldn, Helv. Phys. Acta 22, 637 {1949).
~' The choice of this particular solution of Kq. {49),which has a

certain symmetry as between past and future, corresponds to the
fact that the field A„('), belonging to the class specified at the end
of Sec. II, is incapable of producing real pairs: see reference 13, pp.
659-660. A calculation like the present one, but approached from
a di6'erent point of view, has just been published by G. Eall',
Arkiv for Fysik 2, 182' {1950).

If A„&'& is due to well-separated small sources, the
contribution from J„' to such quantities can be calcu-
lated from a sum of integrals over regions of extent
about h/m(: around the separate sources. For light of
long wavelength,

~
k~ &&&wc/)t, the exponential factor in

each integral is essentially constant; thus by Eq. (53) all

the integrals vanish, and J„'does not contribute to the
scattering. In this case the renormalization is accom-
plished with sufBcient accuracy by simply replacing

j„(x) with j„(x)—(j„(x))o. For light of shorter wave-

length the contribution of J„' to integrals such as Eq.
(54) may not be negligible, and may have to be taken
into account as a part of the Delbruck scattering.

For the case of the Coulomb Geld of a stationary
charge, and indeed for any truly static'4 spherically
symmetrical electric Geld, the contribution of J„' is zero
for all wavelengths. Because of the transverse character
of light waves, only the space-components of j„need be
considered. By symmetry the direction of the vector J'
is radial. In a static field the functions Q&,&

have strictly
harmonic time-dependences, so that J' is constant in
time. It is tlaen zero, since a nonvanishing value would

~4 A fIeld produced by screening is, of course, static only to a
certain approximation.
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mean nonconservation of charge. (J4', on the other
hand, is not zero. ) Thus, for the Coulomb 6eld the
procedure we shall use gives correct results for the
scattering at all frequencies, and there is no Delbruck
scattering apart from that calculated in the next section.

According to Eqs. (39) and (22) the original expres-
sion for the current is

j„(x)—(j„(x))p——(('ec/2) g g(,) (x)y„g(,)(x)
(r) (s)

X La(s) a(r) a(r)a(e) +~(r)(s)+ ~(t)(s)-1 (56)

Here 8&,)(,)~ equals 1 or 0, according as (r) and (s) do or
do not take identical values belonging to the list s of
positive energy states, and 8(,)(,) has an analogous
de6nition. Then by Eq. (21)

j.(*)—(j.(x))p

=pec P &&,))(x)y„pt&&,&t(x)(a«)*a«) —
b&„&&,) ). (57)

(r)(~)

In calculating it is convenient to write the factor
(a(,)~a(„)—b(,)(,) ) as a single term The .way of doing
this depends on whether (s) takes a positive-energy
value s or a negative-energy value 0, and also on
whether (r) takes a value r or a, value p. The four possi-
bilities are

ae ar

a(t)) a(r) Pj(r) (s)— a, ar
—apa(r

(SS)

The expressions written in Eqs. (57) and (58) are
formally the same as those obtained by the simple
subtraction procedure of primitive positron theory. "
The meaning of these expressions and the status as-
signed to them are, however, entirely dHFerent from
what they were in the earlier version. In primitive
positron theory such formulas were to be applied only to
free-particle states, or states defined in an "even" field
in the sense of Schrodinger;" here they are written for
particle states defined in any Geld that permits a
reasonable definition of the vacuum state of the system.
In primitive positron theory the formulas were obtained
by a postulated subtraction procedure, and were origi-
nally believed to be definitively correct; the introduc-
tion of more elaborate subtraction procedures~ removed
some inconsistencies, but genuine consistency and ade-

~~ For example, reference 8, pp. 250-251."E.Schrodinger, Berl. Ber., Jahrgang 1931, p. 63; W. Pauli,
Pandb. d. Physik 24/1, p. 229.~ Vf, Heisenberg, Z. Phys. 90, 209 (1934}.

j„(x)= (pec/2)

&& 2 4(*)'(x)V,C(.)'(x)(a(*)*a(.) a(—.)a(*)*) (55)
(r)(e)

From this and Eq. (43) we get as the expression for the
approximately renormalized current to be used in the
calculations of the next section:

quacy were not achieved by the subtraction methods. ~
In the present argument the expressions in question are
obtained as an approximation to the results of a
physically reasonable process of renormalization, and
there are strong reasons" to believe in the general
consistency of the method. The expressions given repre-
sent only a crude way of estimating the results of
renormalization; but we have been able to designate a
class of cases for which they should be adequate, and a
definite theoretical basis exists for improving them.

IV. APPLICATION TO SCATTERING

When the formula (57) is used as an approximately
correct expression for the renormalized current, the
second-order term of the S-matrix30 is written in the
form

(—pe/))))' dt ~ dt'
I d()d()'

J ~ J J

&& Z 4&.)'(*)VA(.)(x)~.(x)
(re) ( rs) (r) (t))

' ph. )'(x )V) 4( ) (x')~) (x')

}a& )*a( )
—

&& )&.&-}I«*&*a& &

—
&)&.)& &-} (59)

The quantities a(&)*, a(&) are operators affecting the
occupation numbers of the various bound states of
electrons and positrons, and the potentials A„contain
linear combinations of operators affecting the number of
photons. "The expression (59) thus comprises a list of
various second-order processes of interaction between
the particles and radiation, and indicates how the
corresponding probability amplitudes are to be calcu-
lated. The calculation for any particular kind of transi-
tion is to be performed according to the ordinary method
of Dirac for time-dependent perturbations;" when the
customary use is made of states having harmonic time-
dependence, the integration over dt secures conservation
of energy and the integration over dt' leads to the usual
expression of second-order perturbation theory, with an
energy-diBerence in the denominator.

The expression (59) contains not only an account of
scattering, double emission, and double absorption of
radiation, but also of the interaction of particles, and of
self-energies and the electromagnetic shift of energy-
levels. It is not to be used as a basis for calculating these
latter eftects, however; the approximate way in which
the eGects of charge-renormalization have been taken
into account is adapted primarily only to the problems
of scattering, emission and absorption. This type of
problem is obtained by choosing in the operators A.(x)

gs R. Serber, Phys. Rev. 49, 545 (1936).
~' F. J. Dyson, Phys. Rev. 75, 1736 (1949).
eo F. J. Dyson, Phys. Rev. 75, 486 (1949), especially p. 489.
3'G. Wentzel, Quantum Theory of Fidds (Interscience Pub-

lishers, Inc. , ¹wYork, 1949), Chapter IV.
~ P. A. M. Dirac, Principles of Quantum Mechanics (Oxford

University Press, 1947), third edition, pp. 172-180.
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and Ai(x') terms corresponding to the emission and/or
absorption, of two distinct photons.

In order to list the various processes it is convenient to
separate the expression (59) into its two-particle, one-
particle, and vacuum parts. To do this we need consider
only the last two factors of the expression, and for each
the transcription shown in Eq. (58) can be used. There
are then 4X4= 16 kinds of terms to be considered. The
two-particle part is obtained by arranging the four
factors so that all creation operators are to the left, and
annihilation operators to the right: this assures that the
process involves only transitions of existing particles
and/or creation of new particles. One-particle parts con-
tain only two factors a and/or u*, with creation opera-
tors to the left, annihilation to the right. Such parts
describe two successive transitions of an existing par-
ticle, or else two-step pair production or annihilation;
the subscripts on a 8-symbol indicate the intermediate
state of a particle. Vacuum parts contain no factors u or
u*, and involve particles only virtually; subscripts on
8-symbols indicate the states of particles appearing in
the intermediate state of the system.

It suQices to illustrate the process of separation for
the kind of term containing the greatest variety of
parts:

sponds to which photon —the sum over both choices
being taken at the end —the result of the space-inte-
grations in Eq. (59) is the same, apart from sign, for the
two theories, The difference in sign visible in the second
term of Eq. (63) can be said, in the language of Dirac's
suggestion of "&lied-up" states, to come from the ex-
change of the original electron with an electron from the
negative energy states. When the time integrations are
performed, a second difference of sign is found: in the
"6.lied-state" picture of the positron theory, the transi-
tion from a negative-energy state to the Gnal state of
the electron occurs erst instead of last, and thus the
diGerence of energies of initial and intermediate states
has the opposite sign; this energy difference appears in
the denominator because of the integration over dt'.
Thus, there are in all two changes of sign that cancel
each other, and the result of positron theory is identical
with that of one-electron theory. "

The second term of the expression (63) contains no

reference to the non-identity or identity of the states r
and s; it contributes just as well to a process in which
the electron remains in the state r= s as to one in which
the electron changes from state r to another state s.
Thus, this expression gives in the positron theory the
same result for the scattering as would be found in a
one-electron theory, independently of whether the scat-
tering is coherent or incoherent.

It is clear then that the use of the expression (63)
leads to a calculation of the scattering of an electron in
which the exclusion principle is ignored in intermediate
states. The same is true of the use of Eq. (65) to calcu-
late the Delbruck scattering; the expression gives
always the same coherent scattering by creation and
destruction of all possible virtual pairs, making no
reference to whether any states are actually occupied or
not.

On the other hand it is certainly correct also to make

any calculation of scattering according to the concrete
picture of the Dirac method of variation of parameters,
considering just the changes in time of the probability
amplitudes of diferent states of the system; indeed the
expression (59), as it stands, simply instructs us to do
just this in any given case. From this point of view

intermediate states are treated on the same basis as
initial or Gnal states of the system, the only di6erence
being that their energy is not the same. Thus, it must
also be correct to use the exclusion principle in the
intermediate states.

There is no contradiction between the two ways of
proceeding because the only thing physically observable
is the total coherent scattering. In a case in which an
electron is present in a state s~, the use of the exclusion

principle in intermediate states requires us to omit the

+~ +r+I ol =os +~ GRg+a~ ~pbrI

os apav or as orby~ oyoy brg+bpvbgI (60)

(a,* and a„are operators of creation).
The two-particle parts need not be listed in detail.

They describe processes of transition of two distinct
existing particles, double pair production, double pair
annihilation, pair production or annihilation accom-
panied by transition of a particle not belonging to the
pair, or destruction of a pair and creation of another
pall'.

The one-particle parts comprise the following:

The first term of the expression (63) gives to the
probability amplitude for scattering a contribution that
corresponds to the picture of the electron passing
through the intermediate state s=r. In the original
Dirac theory of the electron, with negative energy inter-
mediate states allowed, the other term would be
a„*a b„. The positron-theoretic expression (63) con-
tains instead the term —u, u„b„„indicating a process in
which the intermediate state contains a pair. Since the
subscripts are mere summation indices, and since we
have free choice as to which factor A, (x), Ai(x') corre-

"The occurrence of the two compensating changes of sign ~as
not mentioned by Dirac (reference 1}or %aller (reference 2), and
appears not to have been noted in the literature until as late as
1942:H. I.Bhabha and D. Basu, Proc. Indian Acad. Sci. 1SA, 461
(1942).

Two-step pair production: a *a„b,.+a,a.*h„., (61)

Two-step pair annihilation: a„*a„b„,+a~ *b„„, (62)

Scattering by an electron: a„*a„b„—a,*a,b„„(63)
Scattering by a positron: a,a,*b„. a„a,*b«. (64)—

The single vacuum term is:

Delbriick scattering: 8„,8„. (65)



BOUND STATES AN D SCATTE R IN 6 123

contribution to the coherent scattering which would be
given by s= r = sq in the second term of Eq. (63); but it
also requires us to omit the contribution from Eq. (65)
with s= r= s~. Since in this case as~*u~t= 1=be~a~ and the
two terms have opposite signs, the method that ignores
the exclusion principle in intermediate states divers
from the other method only by the insertion of two
terms whose sum is zero.

In order to take account of the exclusion principle in the general
case with particles originally present in an arbitrary number of
states, ~ one must replace the last terms of Kqs. (63) and (64) by
the following expressions:

examine a nonrelativistic formula that approximates the
e6'ect of bound states and of ionized states in which the
electron's speed is not large. The "true scattering" term
(e2A'/2mc')jk in the Schrodinger equation gives an eGect
equivalent to that of the transitions between all nega-
tive energy levels and any given positive energy state of
not too high energy. To get the Delbruck scattering we
must sum over all positive energy states, Then, if k, k'
are the propagation vectors of the incident and scattered
radiation, the probability amplitude is in this approxi-
mation proportional to

—a,*a„b»~—a,*a„(1—8„)B»(1—a„a„*),
—a„a,*b,.~—a„a„~(1—8»)B,.(1—a,*a,)

and also the expression (65) by

P„ t P„*(r)expIi(ir —ir') r}P„(r)dv. (68)

~y

vier

a(i —ae*ar) (1 agar *)~

The sum of the new expressions is not identical with the sum of
those given first, but the discrepancy is precisely accounted for by
replacing the first term (two-particle part) in the right-hand
member of Kq. (60} as follows:

a,*a„a„*a,~a,*a„a„*a„(1—8„,)(1—8,.).
This is just the change required to apply the exclusion principle
to the intermediate state of the process in question: the pair
(p, s) is to be produced probed there is already present a pair
(v, r), which is thereupon annihilated.

All available evidence indicates that the Delbruck
scattering given by Eq. (65), which is the same whether
or not actual electrons are present, is very small. Using
the Born approximation, Kemmer and Ludwig' give for
the scattering cross section of a Coulomb Geld for long
wavelengths

0 =const. (Z/137) 4(h/mv7 )4(e'/mc')', 7»h/mc. (66)

Here the numerical constant factor is probably quite
small. Achieser and Pomerantchuk' give this result, and
also a result for short wavelengths:

v =const. (Z/137) 4(Xmc/h)' ln(h/mcus) .(e'/mc')'
X«h/mc. (67)

From these results it can be surmised that the maximum
cross section should occur at X=h/mc and that even for
the largest values of Z it is very small compared to the
Thomson cross section (8v/3) (e'/mc')'.

Particularly at long wavelengths one is inclined to
doubt the validity of the calculation by the Born ap-
proximation, which certainly is inadequate for the
bound states. An accurate calculation, however, mould
be extremely laborious. It is thus of some interest to

'4In the many-particle case the field A„(') could be suitably
chosen to take approximate account of the interaction of the
particles. Arnous (reference 7) considers interactions rather from
the point of view of the Born approximation.

'~ Such modifications could also be made in other terms to show
the effect of using the exclusion principle in intermediate states;
but we here concern ourselves only with the terms relating to the
pair intermediate states for scattering, about which questions have
been raised. These terms all come from the single primitive term
that is the left-hand member of Eq. (60).

The sum is taken over the states of the non-relativistic
problem of the electron in the given held.

The expression (68) is a, divergent one, but can
reasonably be given a meaning by modification in two
respects. One modification is the rather usual one of
inserting a factor e &" in the integrand and taking the
limit P—4+ at the end of the calculation. The other
modification is based on the fact that this nonrelativistic
approximation is not valid for the states in which the
momentum of the electron is large; for such states,
indeed, the relativistic Born approximation is more
suitable. One can allow only the states with not too
large momentum their full importance by replacing the
Schrodinger function f„(r) with an average value,

(69)

over a sphere whose radius b is of the order of the
Compton wavelength. When these modifications are
made and the formula

(7o)

is used, the expression (68) becomes

(3/4vb') lim )t expI i(ir lr') r P—r}dv=o— (71).

This result indicates that the contribution to the
Delbruck scattering from positive energy states in the
nonrelativistic region, including bound states, is very
small.

The calculations of scattering given by Wailer' corre-
spond in the language of the positron theory to the
complete neglect of Delbriick scattering and the use of
the expression (63) to calculate the scattering by an
electron. The name "scattering by an electron" is thus
given to the whole eGect occasioned by the electron's
presence, without regard to the details of a picture of
successive transitions.

On purely mathematical grounds there is nothing to
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choose between the procedure of applying the exclusion
principle in intermediate states and that of ignoring it
for such states; both yield the same total numerical
results. The former procedure appears as the natural one
when an individual scattering problem is approached by

the traditional method of variation of parameters. The
latter procedure, on the other hand, corresponds to a
simple algorithm for the systematic analysis of the
S-matrix, and to a direct and simple statement as to
the cause of the scattering.
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The Mobility of Electrons in Diamond

CLIFFORD C. KLICK AND ROBERT J. MAURERt
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The mobility of electrons in diamond has been measured by means of the Hall effect. In agreement with
the theory of Seitz, the mobility is inversely proportional to the three-halves power of the absolute tem-
perature. The measured room temperature value of the mobility is 900 cm'/volt-sec as compared with the
theoretical estimate of 156 cm~ /volt-sec.

I. INTRODUCTION

~

~

~

~ ~

~

THEORY of the scattering of electrons by lattice
vibrations in nonpolar crystals has been given by

Seitz, ' which predicts that, for a nondegenerate electron
gas, the electronic mobility and mean free path vary as
T & and T—', respectively. The experimental data on
silicon' and germanium' are in excellent agreement with
the theoretical prediction of the absolute magnitude of
the mobility and its temperature dependence.

Diamond is a typical nonpolar crystal and, because of
its successful use as a crystal counter, the problem of the
electronic mobility in it is of considerable interest. Seitz
has estimated the room temperature mobility of dia-
mond to be approximately 156 cm'/volt-sec. The
measurements of the Hall effect of Lenz' yield a room
temperature mobility of about 200 cm'/volt-sec. On the
basis of admittedly scanty evidence, Lenz concluded,
however, that the mobility was probably independent of
temperature.

Some time ago' we reported a value of 900 cm'/volt-
sec for the room temperature electronic mobility in
diamond and a temperature variation in agreement
with Seitz. The purpose of the present paper is to present
in detail the Hall effect measurements on which these
conclusions were based.

The theory and technique of measurement of the
Hall effect are well known. s 7 The electronic mobility,

* Now at the Naval Research Laboratory, Washington, D. C.
t Now at the University of Illinois, Urbana, Illinois.
' F. Seitz, Phys. Rev. 73, 549 (1948).' G. L Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).
'K. Lark-Horovitz, Report NDRC 14-585, OSRD Contract

OEMsr-36, 1945, unpublished.
4 H. Lenz, Ann. Physik 83, 941 (1927).
f' C. C. Klick and R. J. Maurer, Phys. Rev. 76, 179 (1949).
6 F. Seitz, Modern- Theory of Solids (McGraw-Hill Book Com-

pany, Inc. , 1940) p. 192.
~ A. H. Wilson, Semi-conductors and Metals (Cambridge Uni-

versity Press, 1939), p. 95.

p, , may be defined in terms of the electronic conductivity,
0, by the equation,

0 =S8Pp (1)

where n is the concentration of free electrons and e is the
charge of an electron. The elementary theory' of a non-
degenerate electron gas subjected to mutually per-
pendicular electric and magnetic fields results in the
following equation for the mobility of the electrons:

~= (gll3 )(e/&)(&./~. ), (2)

where E~ is the Hall field developed in the crystal when
the applied electric and magnetic fields are E, and H,
respectively. The measured Hall and applied potentials
are related to their respective fields by the equations
Vq Eqt and V, =——EQ. The length of the specimen
measured parallel to the applied field is 1., and I, is the
width of the specimen between the Hall electrodes.

The mobility and mean free path, l, are simply related
by the equation,

p =4el/3 (27rmkT) &,

where m is the electronic mass and k is Boltzmann's
constant.

II. EXPERIMENTAL

The intrinsic conductivity of diamond at room tem-
perature and below is too small to permit the measure-
ment of the Hall effect. Upon absorption of ultraviolet
and visible radiation, diamond exhibits a photo-con-
ductivity which has been the subject of numerous
investigations. ~" Photocurrents of the order of j.0 "

H. Frohlich, E/ektronentheorie der Metalle, (Verlag. Julius
Springer, Berlin, 1936) p. 220.

s B. Gudden and R. Pohl, Z. Physik 20, 14 (1924).
'0 Robertson, Fox, and Martin, Proc. Roy. Soc. (London) 157'

579 (1936)."Sec. Symposium on the Structure and Properties of Diamond,
Proc. Indian Acad. Sri. 24A t'1946).


