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The surface energy of a free-electron metal is calculated using a square-cut barrier placed so that there
is no net charge on the surface. The result is nearly independent of barrier height but leads to a value for
surface tension less than half that observed for most molten metals. For sodium a self-consistent surface
barrier, first developed by Bardeen, is also used in numerical computation of surface energy. The value
so obtained is about half that resulting from the use of the square-cut barrier. Previous theoretical treat-
ments of this problem have generally predicted surface energies larger than observed. The opposite result
in this case appears to result from the requirement that the surface be maintained electrically neutral.

I. INTRODUCTION

HERE have been several previous treatments' of
the surface energy for a metal using the free-
electron model. Of particular interest is the work of
Brager and Schuchowitzky? who used a free-electron
model with infinite potential barrier at the geometrical
surface of the metal. (By geometrical surface is meant
that surface which just contains the last layer of atomic
cells.) They found a contribution to the energy propor-
tional to the surface which they identified with the
surface energy. When compared with the experi-
mentally measured values for the surface energies of
molten metals, this term was too large by a factor of
two or three but varied proportionally in going from
one metal to the next.

A good critical review of the preceding literature on
this subject has been contributed by Skapski? He
criticizes in particular the notion that free electrons give
metals a higher surface energy than is found for other
solids or liquids. In fact, in terms of the free energy per
surface atom the values for the monovalent metals are
lower in comparison with their cohesive energy than
those usually found in other materials. On the basis
that the same forces which give rise to volume cohesion
are also responsible for surface energy, Skapski shows
that a very simple semi-empirical calculation can
predict the surface energy quite satisfactorily.

Recently Huang and Wyllie* *have used a free-electron
model with barrier of finite height at the geometrical
surface of the metal. This method gives results in better
agreement with experiment than those of Brager and
Schuchowitzky, as they turn out to be only about $
the experimental values. The height of the barrier is
in each case dictated by the known cohesive energy,
and this choice serves to interrelate directly volume and

1D. V. Gogate and D. S. Kothari, Phil. Mag. 20, 1136 (1935);
A Samoilovich, Acta Physicochimica (U.S.S.R.) 20, 97 (1945);
S. Dorfman, Compt. rend. 41, 386 (1943).

2 A. Brager and A. Schuchowitzky, Acta Physicochimica 21,
13 (1946).

3 A. S. Skapski, J. Chem. Phys. 16, 386, 389 (1948).

4 Ki Huang and G. Wyllie, Proc. Phys. Soc. (London) 62, 180
(1949).

* Note added in proof:—In recent correspondence Mr. Wyllie
has pointed out that charge is conserved by their method within
the Fermi-Thomas approximation. The approximation, however,
appears to be inadequate to treat a step-function potential.

surface forces. Their treatment has the following defect,
that by fixing the position and height of the square
barrier simultaneously, one cannot be certain that
charge will be conserved; i.e., that the negative charge
outside the geometrical surface will equal the electronic
charge missing inside the surface. In fact it can be seen
from Eq. (2) that to conserve charge with a square-cut
barrier at the geometrical surface would require that
the height of the barrier be just at the Fermi level.
This would be equivalent to postulating a zero work
function. As we shall see, the requirement that charge
be conserved greatly decreases the surface energy.

II. SQUARE-CUT BARRIER POTENTIAL

In order to express the electron wave functions in a
simple analytic form in the region of the surface one
chooses a square-potential barrier® of height (%p)%/2m
at x=a. The geometrical surface of the metal is taken
to be the plane x=0. Negative values of x refer to the
metal interior. For rectangular specimens with dimen-
sions L;, Ls, L; the electronic wave functions can be
written in the form of standing waves,

¥=2/(L,sL3)? sinkyy sink,z ¢(x) 1)
where, for
x<a, ¢(x)=—(2/L)sin(kst—7)
x>a, ¢(x)=(2/L)!siny exp{—(p*—k)HE}.

with §=x—a and siny=£k,/p. The allowed values for
k, and k. are positive multiples of w/L; and n/L;
respectively. By virtue of the phase shift at the surface
under consideration k,= (n,7—v)/(L,+a).

The requirement that charge be conserved prevents
the independent choice of @ and p. Their interrelation-
ship can be expressed analytically:

$knta={mknit (312~ kn?) sin~(kn/p)
—3km(PP—Ead)},  (2)

where k. refers to the electrons on the Fermi surface,
so that k,3/3w*=n, the density of electronic charge.
In Fig. 1 the barrier height is plotted in units of the
Sommerfeld bandwidth against the displacement of the
barrier in units of 7, with 47r3/3=1/n.

5 This treatment is based on that of J. Bardeen, Phys. Rev. 49,
653 (1936).
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To calculate the surface energy of this model one
may find the energy required to split a block of dimen-
sions (2L,, L, L;) in half. One half of this term then
gives AE, the energy associated with one newly formed
surface. (The results are of course independent of
where the break is made.) The total energy of the elec-
trons in the unsplit block is given by the sum,

x 222l () ()
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2m spin nz ny ns 2L L L ’
where the summations are over all positive values of
the »’s for which the summand does not exceed kn’.
After splitting, the energy is made up of two such
expressions but only the terms involving k.* contribute

to the change in energy. After summing over spins and
integrating over k, and %, one obtains for total increase
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The first term of (3b) inside the square brackets corre-
sponds to that given by Brager and Schuchowitzky?
using a slightly different approach. It would be the sole
contribution for an infinite barrier at the geometrical
surface. From Eq. (2) one can substitute for a and
obtain for the energy per unit surface,

AE 3uhnkn En En P\ 157 p\*
LL, 4ml40 10 En) 8 \E,

Fm 7 15p
— (P k) —— .4
Rl e 1 IC

In Fig. 1 there is also shown the dependence of surface
energy on the barrier position, @, as found from Egs.
(2) and (4). It is rather encouraging to notice that the
total variation of this quantity is little more than 10

HUNTINGTON

4 T 0.08
|
|
|
: 0.01
o Il
£ |
~ |
c3 0.06
-|E ! E
- | [3
o ' 0.05 %%
2 ; ok
3
=4 |
3 } ‘e
L2 T 0.04 @
2 / | <
5 i .
c
@ ] £
® ; 0.03 2
5 ! @
= ! 5
n I
|
e \ 0.02 ¢
- I 4
< | %
R | U?’
2 |
x | 0.01
I
|
|
|

[+

0
X20 2rn ary .63 Ash .87 K=y

Position of Square Barrier
. Fi1c. 1. The height of the square-cut barrier in units of (4km)?/2m
is plotted against its position where x is measured in units of 7,.
Vertical line is the asymptote for infinite barrier. The nearly

horizontal curve is the plot of surface energy in units of nk%kn,/m
as a function of barrier position.

percent for the complete range of possible values for
barrier height and barrier position. One might be
tempted to argue from this that for the purpose of
calculating surface energy all barriers which conserve
charge give essentially the same result and it is unneces-
sary to seek a self-consistent solution. In the next
section it will be shown to what extent this is borne out.

The surface energy term just evaluated amounts to
nearly one-fourth the Brager and Schuchowitzky term.
It has already been pointed out? that such a term,
varying as %3, where Q is the atomic volume, follows
fairly well the variations of surface tension from one
molten metal to another. As the original was too large
by a factor between 2 and 3, the present result lies in
the neighborhood of 60 percent of the experimental
values. Unfortunately most of the considerations which
have been omitted in this comparison tend to increase
the discrepancy.

III. SELF-CONSISTENT SOLUTION FOR SODIUM

The actual surface barrier is known to be of the
image type rather than square-cut. For sodium there
exist the self-consistent solutions developed by Bardeen®
for his treatment of work functions and dipole layers.
In this section the result is given of a calculation of
surface energy based on these solutions.®

¢ H. B. Huntington, Phys. Rev. 75, 1627A (1949).
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In Bardeen’s work the variation of the exchange
potential with the total momentum of the electron
causes the form of the barrier potential to depend on
the value of |k| of the electron. Besides the exchange
potentials there is an electrostatic contribution to the
barrier from the dipole layer which is the same for all
electrons. Though the exchange curves could be read
with sufficient accuracy from the figures of Bardeen’s
article, it was found necessary to obtain the electrostatic
potential by integrating the poisson equation using the
final self-consistent charge distribution (see Fig. 2a).
There was need to have this potential fairly well-defined
since it had a shallow minimum in the region where the
electronic density had nearly reached full value, and
therefore influenced the wave functions critically. It
was found on integrating these functions numerically
that the phase shifts caused by the barrier depended
mainly on %, and barely at all on |%|. It can be shown
that the different curves for the exchange potential can
be approximately superimposed by vertical displace-
ments for the region over which the wave functions
have appreciable applitude. In Fig. 2b is shown the
complete potential used for || =0.8%.,, which is very
nearly correct for any other value of |k|. As a result
the integrations over %, and k, can be performed
immediately in the calculation of the surface energy.
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F1c. 2 (a). Charge density distribution at surface. Charge
density is normalized to unity at interior of metal. Position % is
measured in Bohr units. (From Bardeen.)
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F16. 2 (b). Typical potential curve. Potential is in atomic units
and includes both electrostatic and exchange contributions.
Former is cause of shallow trough inside metal. Exchange contri-
b&xtion (k=0.8kn) is magnified slightly to include correlation
effect.

1037
16
14 /
12
]
s 1.0
o
5 /
o
CZ *
(=4
°7 0.8 Y
-
=z /
n
@ 0.6 /
v
o
-~
[ /
0.4 /
0.2 /
oo 0.2 0.4 0.6 0.8 1.0 12

k —

Fic. 3. Phase shifts in radians as function of k.. @ for 2/kn=1.0,
X for k/km=08, O for k/kn=0.6. Curve through points is
graph of Eq. (6). Lower curve gives phase shift for square barrier
at geometrical surface.

In an equation analogous to Eq. (3a) one obtains:

Fom
AE= (#*LyL;s/2m) j; Gr—7)(kn?—kDkdks, ()

where the v are phase shifts in the standing electron
waves as caused by the average barrier (| k| =0.8%,).
The dependence of v on k, is shown by the points
plotted on Fig. 3. Different symbols indicate results
obtained from curves for different values of |k|. It
can be seen that v depends principally on k.. This
dependence can be fitted by the analytic expression,

v=kar[0.6640.7{0.8— (ks/km)}2] (6)

and the curved line through these points is the plot of
this expression. The other line in Fig. 3 gives for com-
parison the phase shifts for the case of the square
barrier placed at the geometrical surface. Though the
two curves do not differ too markedly, the surface
energy term obtained by evaluating Eq. (5) with the
help of expression (6) is 0.023 in units of n#*km/m, or
about 40 percent of the result previously given for the
square barrier (see Fig. 1). This comes about because
the surface energy term is obtained by subtracting two
quantities of nearly equal magnitudes.

In any energy calculation involving self-consistent
wave functions one must avoid counting electron inter-
actions twice by subtracting one-half of the change in
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TaBLe I. Comparison of calculation with measured surface
tension values (units of dyne/cm).

Surface tension

Surface energy (exp.)
Square-  Self- Surface Solid
cut consistent tension (refer-
barrier barrier —TSat (calc.) Liquid ence 9)
Copper 860 — —360 500 1100 1370
Sodium 170 —_ - 34 136 290 —
Sodium — 88 — 34 54 290 —

the self-energy of the electrons which amounts to a
contribution,

% I} p,¢<pi>dr—% [ os6tar

1
- f (01— p)b(p)d7— f o (o) —(p)Tdr, (7)

where p; and p; are respectively the initial and final
electron distributions and ¢(p) in each case the appro-
priate self-potential. (Because of the crude nature of
the square barrier model there was no consistent way
to include a term such as Eq. (7) in that calculation.)
Here the ¢’s include, beside electrostatic, also exchange
and correlation contributions. Since the initial situation
refers to a uniform value for p; and ¢, i.e., no surface,
it follows the first term on the right of Eq. (7) vanishes
as a result of the conservation of charge.

It is not correct, however, to take ¢(p;) —¢(p:) to be
just the barrier potential at the surface, ¢5. As formu-
lated here the barrier potential arises only from mutual
interactions of the electrons, namely the surface dipole
layer and the changes in the exchange and correlation
potential caused by the introduction of the surface.
It does not include, however, the change in the
electronic coulomb interaction. In the Wigner-Seitz
method” the coulomb interaction potential arises from
the electronic distribution in the same atomic poly-
hedron as the field point. The charge outside of this
polyhedron is neutralized by the coulomb potentials
of the outside ions. In the approximation of uniform
electronic distribution the coulomb interaction po-
tential can be written:

Ve(r)=3e/2r,—er*/2r 3,

where 7 is measured from the center of the atomic
polyhedron. The average value of this potential is
1.2¢/7,. It follows that

¢(pf)-¢(pz)=¢b+AVe7 (8)

where AV, is the change in the coulomb potential
caused by the surface.

A fundamental difficulty in treating V. in a unique
manner arises because this potential is developed from

7 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), Chapter X.
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the concept of the atomic polyhedron, whereas our
present model has dispensed with the polyhedra in the
postulation of a geometrically plane surface. Some
arbitrariness is, therefore, involved in the following
procedure for establishing AV,. This procedure was to
assume that V.(x) remains unchanged at its average
value, 1.2¢/r,, in the region inside the geometrical
surface (¥<0). Outside the surface, x>0, it is assumed
that the electrostatic interaction potential is that
arising from a uniform charge distribution in the atomic
polyhedron nearest to the field point. By appropriate
averaging, this potential is expressed as a function of x
only. Accordingly the resulting function becomes

Vi) = (2/s02) f "V r)sds,

where 7= (x+1d)*+ 5%, d is the distance between atomic
planes parallel to the surface and s¢’d equals the volume
of the atomic polyhedron. For r<r,, V.(r)=3e/2r,
—er?/2r2 and for r>r,, V.(r)=e/r.

By this somewhat arbitrary procedure, one can
express as a function of x,

é(ps)—d(pi) = po+Ve(x) —1.2¢/r,,

where ¢, stands for the barrier potential. Direct
evaluation gives

1

1
~Efpf¢bdr—5fp,(V,—1.26/r.,)dr

= (—0.034+0.043) 172/ m.

The final value for the surface energy of sodium turns
out to be 0.032 in n#%../m, or 88 ergs per cm?, on the
basis of the self-consistent solution.

IV. CONCLUSION

The results of these calculations are summarized for
the cases of copper and sodium, together with experi-
mental data for comparison, in Table I. The result of
the square barrier calculation can be applied directly
to any metal since it varies as the 4/3 power of the
electronic density. The self-consistent barrier is special-
ized for the electronic density of sodium. In the fifth
column are given experimentally determined values for
the surface tension of the molten metals near the
melting point.® The surface tension, or free energy per
unit surface, can be obtained from the surface energy
(more strictly speaking the surface enthalpy) by sub-
tracting the product of the absolute temperature times
the surface entropy. This latter quantity has been
evaluated by Huang and Wyllie! using the calculation
of Brager and Schuchowitzky® of the part of the specific
heat of a solid which is proportional to the surface.

8 For more extensive listings of this quantity see references 2
or 4.

9 A. Brager and A. Schuchowitzky, Acta Physicochemica 21,
1001 (1946).
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Their results are given in column 3 and combined with
the tabulations in the preceding columns in column 4
for comparison with the data from the molten metals.
Reliable measurements of surface tension for solids are
difficult to find but recently Udin, Shaler, and Wulff'
have employed the technique of observing the elonga-
tion and contraction of fine wires under small loads at
high temperatures to obtain an apparently quite reliable
value for the surface tension of copper. Their value for
this quantity just above the melting point is given in
column 6 of Table I.

It is evident from a comparison of columns 4 and 5
in Table I that in all cases the calculations give values
considerably smaller than the experiments. Of the
quantities which a more complete theory might have
included there does not appear to be any which would
readily remove the discrepancy. (a) A consideration of
the short range repulsive forces between ions would
lower still more the calculated values, though this term
is not large. (b) The calculations are strictly for a solid
metal and the experimental evidence is for the most
part taken on molten metals but the evidence of the
measurements on copper indicate that surface tension
is larger in the solid than in the liquid phase (as seems
rather sensible intuitively). (c) Surface energy calcu-
lated here applies to the freshly cleaved surface. Surface
tension measurements refer to equilibrated, or partially
equilibrated, surfaces where the density of the surface
layer has been reduced. Since the lowered surface
density corresponds to a more thermodynamically
stable state, this also has the effect of decreasing the
surface energy. (d) In this calculation the surface has
been assumed to be geometrically plane, which is a
valid approximation for the close-packed surfaces.
Smoluchowski!! has shown for tungsten that the energy

10 Udin, Schaler, and Wulff, Met. Trans. A. I. M. E. 186

(February, 1949).
11 R, Smoluchowski, Phys. Rev. 60, 661 (1944).
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differences between crystal surfaces should be quite
appreciable. The inclusion of surface planes, other than
closest packed, would alter results in the right direction
but it appears unlikely the correction would be large
since for the equilibrated specimen surfaces of low
energy would predominate.

To summarize the results of this investigation. It
would appear that surface tensions for metals as calcu-
lated on a free-electron model for surfaces of closest
packing are less than half those found experimentally
for molten metals. This discrepancy is in the opposite
direction from that reported by the more recent treat-
ments of this problem, where the investigators did not
insist on the conservation of charge. The replacement
of the usual square barrier by one shown to be self-
consistent had the effect of still further increasing the
discrepancy. It is difficult to surmise what may be the
cause of the present disagreement. It should be remem-
bered that these values for surface energy are obtained
from the rather close cancellation of two large terms.
Small errors in evaluation or uncertain assumptions,
usually physically satisfactory, may play a part. It may
be that the free-electron model is simply too crude for
this problem and to improve the results one must take
into account the periodicity of the metallic potential
field. The presence of the surface disturbs the charge
distribution as far back as the position of the centers of
the first layer of atoms. The interaction of this modu-
lation of wave functions in the neighborhood of the
ionic core, which one overlooks in the free-electron
model, could possibly be important in determining the
surface energy.

The author wishes to express his appreciation to
Mr. G. Wyllie for stimulating correspondence. He is
indebted to Mr. Nieh Tsung-li for assistance in the
numerical integration of the wave functions in the
self-consistent field.



