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charge on the ion. The value of e14 calculated from this
expression" is —23X10'. From relation (7) derived in

the present paper we 6nd that for a purely ionic crystal
z=2, and e14= —i5.8&10'. This at first sight appears
to be a discrepancy; but since the second relation in

"Herzfeld, Handbuch der ExPerimenta/ Physik (VII), Teil 2,
p. 341.

expressions (5) of Born is identical with our expression

(7), it only means that the value 6.5 of k—ko, which has
been used to calculate e~4 from expression (3) of Born,
would give a value of s which is 23/15.8 (or 1.5) times 2.
This is also veri6ed with the help of the 6rst relation
in expressions (5) of Born which gives a relation
between z and k —ko, and we 6nd z=3.03. The value
of k ko —(6.5) needs to be revised.
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The lowest state of an antiferromagnetic substance is investigated by using the Ising model for the spins.
By means of a method of Luttinger and Tisza it is found possible to derive earlier results of Anderson very
simply.

I. INTRODUCTION

ECKNT neutron di8raction experiments of Shull
on antiferromagnetics have been interpreted by

Anderson' in terms of a model in which spins interact
with not only their nearest neighbors, but also with
their next-nearest neighbors. NbeP had already intro-
duced such a model to explain the large ratios of the
"paramagnetic" Curie temperature 8 to the actual
transition temperature T,. The basic point of improve-
ment in Anderson's version is the 6nding of con6gura-
tions of the spins which give lower energies than the
ones which were used by Ne, el. The existence of these
configurations has two eBects: (1) the 8/T, ratios are
increased, and are more in conformity with experiment;
(2) the configurations predicted seem to be just those
found by Shull in his neutron dii8raction experiments.
Anderson chose the con6gurations he did largely on the
basis of plausibility and intuition, and the question
arises as to whether or not these are really the con-
6gurations of lowest energy. It is the purpose of this

paper to show in a systematic and rigorous manner that
this is indeed the case. The technique used is a generali-
zation of a method developed by Luttinger and Tisza, '
and applied by them to the case of dipole interactions
in crystals. The present problem is simpler, however, and
allows of a much more complete solution.

IL GENERAL METHOD

The model used is essentially that of Ising, 4 in which
each quantum mechanical spin is replaced by a scalar

' P. W. Anderson, Phys. Rev. 79, 705 {1950).The reference to
Shull's work is also to be found in this paper. A very clear sum-
mary of Anderson's work is to be found in J. H. Van Vleck,
Report to the Grenoble Conference, Grenoble, 1950.

~ L. N&1, Ann. physique 3, 137 (1948).' J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
' G. IsIng, Z. Phystk 31, 253 (1925).
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where p, =&1 (or pP=1). For a given arrangement of
spins (i.e., a given set of values of p;) it is very easy to
calculate the energy of the array. One can also ask
what the arrangement of spins on the lattice points
must be so that E is a minimum. Now the expression for
E is a quadratic form in the spins p, , and were it not for
the complexity of the constraining conditions p,'= 1, it
would be a simple matter to 6nd its minimum. We can
replace (just as in reference 3) the "strong conditions"
p,,~=1 by the "weak" conditions

Z~ v&'=&, (2a)

where E is the number of spins present. This equation
follows (by addition) from the strong conditions, but is,
of course, considerably less stringent. If we minimize E
under the condition (2a) and find that our solution also
satis6es the strong condition, then we will have solved
the problem. The essence of our method is that this
proves to be the case. The minimization of Eq. (1)
under the condition (2a) is, of course, a standard
problem in the theory of quadratic forms. The solution
is given by the lowest eigenvalue of the matrix of the
quadratic form. ' Our problem is then to find the smallest
eigenvalue of Eq. (1) for the case of simple cubic (S.C.),
body centered cubic (B.C.) and face centered cubic

k Courant-Hilbert, Ne&odee der Mathematzschen Physik
{Verlag J. Springer, Berlin, 1931), Vol. I, p. 26.

"spin" which can take the values %1.It is assumed that
there is an interaction energy y()0) between nearest
neighbors (NN) and interaction energy a(&0) between
next-nearest neighbors (NNN). In this case the energy
may be written

E=2h Zr pf Zi p'+RQ ll' Q p'], (1)
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(F.C.). The S.C. case does not, so far as we know, have However,
a realization in nature, but it forms a simple intro-
duction to the techniques employed here. Q exp[i(s( —ss') l]=Nb„„;

III. THE SIMPLE CUBIC CASE

If we introduce a matrix E,; dehned by

2 Z(i E(iisgisis

then our problem is to find the lowest eigenvalue of the
matrix ~~E;;)). It proves to be convenient (just as in the
theory of fourier series) to allow complex values for the
spins p;. Any array occurring in nature will, of course,
have real p,;, and these will be built up of superpositions
of arrays with complex elements. With this in mind we
redefine the weak condition as

and, therefore,

E=X Q [gy(cosgi+COS)(s+COS)(s)+2a(COSK) Cos)(s

+COSKs COSKs+COSKs COSK()]
~

Cg~ . (5)

This shows that the energy is now diagonal, and that
the eigenvalues are

E(K)=X'r/(cos)(i+cosKs+cos)(s)
+2r(cos)(i cosKs+cosKs cosKs+cos)(s cosK()5&

where r=a/y, the ratio of next-nearest to nearest
neighbor interaction. Writing the energy in units of Ey
as e()() we have, finally,

and the energy as
Zi isi*isi=+i (2b)

c(K) =COSK)+ COBKs+ COS Ks

+2r(COSK( cosKs+cos)(s cosKs+cos)(s cosK(). (6)
E=k 2', i E'i) '') i. (3b)

Just as in the case of the normal coordinates of a
solid, we have translational symmetry in our energy
matrix ~~E;;~~~; and, therefore, the characteristic vectors
(or basic arrays, as we shall call them here) must be of
the form'

is. . . =e'(""+ "+ '"=exp[s( 1)].l 1lml3 (4)

or
p=Qg cgZg

g ~s(a1l1+srglg+)rel3)
I l1l2L3

Now the nearest neighbors to li, ls, ls are given by (l,&1,
ls, ls), (li, is&1, ls), (li, l~, is&1) and the next-nearest
neighbors are given by (l,, is&1, /, &1), (ii+1, 1&, l&&1),
(ii+2, is+1, ls). Therefore, the expression (3b) reduces
to

E=ss g P expels(s: ss') l]c„—c;*
a, a' l1glg

&&Py(e'"'+e
' '+e' '+e '"'+e'"'+c ' )

+(s(c((gi'+gs')+c —((gl'+gs')+ c((gi'-gs')

+~—s(~'—~')+&s(~'+~')+&—s(a'+~ )

+c((gi gs')+c s(gs' —gs')+c((gs'+gs')

+c—((gs'+gs')+ c((gs' —gs')+ c—((gs' —gs') )]

Here l1, l2, l3 are integers which define a point in the
crystal lattice, «, =(2sr/L)N;, the I; being integers
—$L&i);&+~~L, and Ls=X. We have assumed a
periodic boundary condition, but it is easy to see that
this involves no loss in generality. This result can be
verified directly by substitution. Let us call an array
of the form (4) Z, . Then any array may be written
(finite fourier series) so that the strong condition is once again satisfied. The

configuration consists of rows of spins along the s axis,
each of which is surrounded by four antiparallel rows
of spins.

IV. THE BODY CENTERED CASE

In treating the B.C. case it is convenient to introduce
the concept of the held Fl at a lattice point 1,

F(= —[7 2 is) +—c( Q is( ].
NN to l NNN to l

With this definition the energy (3b) becomes

E=—xs Zs ) s*&)

Since Fl is a linear function of the pl s, we can introduce
vector notation (in X space) and write

$11 ' $1N P1
F2 g2

We now must seek the minimum value of Eq. (6) as a
function of x. It can easily be shown that for r &» this
minimum is given by cos~&=cos~2=cos~3= —1, while
for r & 4' the lowest state is given by two of the cosines
being —1 and the other being +1 (for example,
cosK) = cosKs = —1, cos)(s ——+1). For r &-'„ the con-
hguration is given by

= (—)"'"'"
l1l2 l3 l1l2l3

so that the strong condition is satisfied. The con-
hguration consists in each spin being surrounded by six
antiparallel neighbors. For r&4, the configuration is
given by (for example)

' F. Seitz, 3IIodere Theory of SoLids (McGraw-HiH Book Com-
pany, Inc., New York, 1940), p. 125. , FN, , SN1' SNN, , PN,
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The characteristic vectors of the energy will then be the then obtain
characteristic vectors of the matrix g, i.e., pie " = ppi pi= ppm

p) or
*2 g

—i (tr1+eg+cg) * ~g
—$s(~+gg+a3)

That is, the characteristic vectors (or basic arrays, as we
have called them) have the property that the Geld at
any point in the lattice is proportional to the spin at
that point.

Now let us call the array on the lattice points A, that
on the body centers S. Ke shall use the notation

to characterize the array completely. From our previous
argument on translational symmetry it follows once
again that

A l
——pi exp[i(x I)], Bl p2 exp[—i—(x.I)].

Such an array will have for the field at a lattice point 1

If we take p~= 2, we then obtain

~~)s(lrI+~+st3)
)

which give us the two required solutions of Eq. (8).
That these are really solutions can be veri6ed easily by
direct substitution in Eq. (8). The corresponding
characteristic values are

fy = —[2 a(cos&li+ cos&lg+ cosKi)
&8+ cos2Ki cos, &l2 cos2Ki]. (11)

Since —&r&K;&&r, cos(-', &l;)&0; and, therefore,

f &f+, Ep= 2Nf+, —E+&E .
In looking for the lowest state we need only consider

Fl(Lp.)= exp—[i(x I)][p2p(1+e '"')(1+e '~)(1+e '"') E =Ny[r(cosKi+cosKg+cosel) —4cos2Kicos2Kicosy&ll].

+p,a(e~+e '~+e'&+e '~+e'~+e '&)],

while the field at the body center 1 will be

F l (B.C.)= exp[—i(il I)][p.iy (1+e'")(1+e'&)(1+e'")

+p2a(e'"+e '"+e'"&+e '"&+e'"+e '")].

The characteristic value equation reads

F l(l.p.)=fpi exp[i(x I)],
F,(B.C.) =fp, e~[i(~ I)],

ol
PP+ pmr=fpl» pl~ + lp2ifp2»

X—:—2a(cos&li+ cosKg+ cosKl)»
~—=—v(1+e '")(1+e '"*)(1+e '")

(8)

Defining for convenience e=E /Ny

e= r(cos&li+cos&li+cos&ll) —4 cos2Ki cosyK2 cos»iK&&& (12)

we have only to find the minimum value of e. Once
again, it is a matter of elementary calculus to show that
for r (~3 the minimum is given by ~;=0 and the cor-
responding energy is e=3r—4. This means that we
have a uniform arrangement of spins on the lattice
points and a uniform (but oppositely directed) arrange-
ment on the body centers. The strong conditions are
clearly satisfied, since p'(l.p.)=1, p'(B.C.)=+1. For
r&~~ the situation is a little more complicated. The
lowest arrangement is given by a;=Ax, and the cor-
responding energy is e= —3r. However, at first glance
the characteristic vectors seem to be complex. For
example

These equations can be solved directly. It is pos-
sible, however, to write down the solution at once, as
the following considerations show. Let I be the opera-
tion (translation) which moves the lattice points up to
their nearest adjoining body centers. Then

pi exp[i(il I)] pie
—'l"'+&+~i exp[i(x I)]

T
pm exp[i(il 1)5 p.i exp[i(il I)]

~ (9)

However, this translation is merely a renaming of
lattice points and body centers; and, therefore, the new

array must also be (apart from a factor) the same basic
array. Therefore,

( )4+i&+4

1

The situation is easily remedied by noticing that in
this case E =E+(cos-,'&r=0), so that there is a degen-
eracy. %'hen degeneracy is present, we can take a linear
combination of the two characteristic vectors; and it is
once more a characteristic vector with the same charac-
teristic value. Now,

( )4+&&+I&

pi exp[i(ic I)] pi exp[i(il I)]I =p
p2 exp[i(r. I)] pm exp[i(x I)]

(10)

where p is a scalar factor. Using Eqs. (9) and (10) we

so that by building

( ) 4+&&+l&

&22i

Pg +Pl PI —P/+ " 1
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we get basic arrays which are real and which satisfy the
strong conditions. Because of this degeneracy, we see
that the spin array at the lattice points is completely
uncorrelated with the array at the body centers, a
result which has already been noticed by Anderson.

V. THE FACE CENTERED CASE

We shall not give the details for this case, but merely
indicate the methods and results. If we split the array
into its four components and write

s(ip)
y (xs face)
p (xyface) '

p (ys face)

then the translation group gives us

pz

)4)
——~' exp[3(44. l)].

P3

p4

The corresponding energies are

E)——Ny[r(COSKZ+ COSK3+ COSK3)+ 2(COS3 K& COS3 K3

+Coss'K3 COS3K3+COSSK3 COSSKg)]l

E3——Ny[r(COSKy+cosK3+cosK3)+2( —cos3K) cossK3
COS3 K3 COS3K3+COS3 K3 CosyK3)]q

E3——N r[r(COSK&+ cosK3+ cosK3)+2 (cos3 K3 cos3 K3

COS3K3 COS3K3—COS3K3 COSSKg)],

E4=Ny[r(cosK3+cosK3+cosK3)+2( cos3K) cos3K3
+COSSK3 COSSK3—COSSK3 COSSK))].

Since COSK;/2&0, it is clear that E,, E3, E4&E).
Therefore, we can ignore E~. By symmetry, it makes no
difference which of the three remaining E's we choose.
Let us take E2, and de6ne

=4E2/N'r =f( cosK+3cos2K+ csoK)+32( cos3 K) cos)K3
COS'SK3 CosyK3+COS3 K3 COS3K3).

The 6nding of the minimum of this expression is as
always fairly straightforward. We 6nd for r & & that the
configuration with ai= &m is that of minimum energy.
We can choose as our array, any of the arrays

Further, just as in the body centered case, we can apply
translation operators which translate the various com-

ponent lattices into each other. The conditions derived
from the requirements of invariance under these trans-
lations are enough to determine the form of the charac-
teristic vectors completely. There are four types

&)i (Xl+~)

exp[i(34. l)],
g$ i {4r2+3t3)

( ) ) i+)4+)3

~i
because of the degeneracy in the energy values. Clearly,
these satisfy the strong conditions, and show that (for
r) $) there is no correlation between the order in the
diferent faces. As in the body centered case, there are
slight complications for r ($.The complex arrays which
minimize the energy are K, =K3——0, K3=&3r (or similar
arrays with l, 2, 3 permnted). This gives basic arrays
of the type

(2)
~$ i {3ti+3r3)

exp[3(34 l)],

1

)4 (2) ( )l3l

wi

1

)4)( )= ( ))34 Wz

&i.
g) 3 {4r2+K3) By combining these properly it is easy to see that we

can construct basic arrays of the form

~)i (ski+)C3)

exp[i(34 1)],

~)i ()t2+~)

1
1

(—)" and—1
—1

1
—i

(—)"—1
1

(4)—
~$ i (3'+)r3)

exp[3(34 1)].

qadi

{ag+ag)

which satisfy the strong conditions. As Anderson has
already noted, the existence of this degeneracy shows
that the spins are correlated only in planes. That is, the
lattice points and xy face are correlated, as are the yz
and zx faces, but they are not correlated with each
other.


