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The piezoelectric constant of zinc-sulfide has been calculated
in two ways. First, by regarding it as a purely ionic crystal and
considering that all of the atoms are equally effective in producing
the moment, and second, by regarding it as a purely covalent
crystal and considering only the nearest neighbors. In the former
case, the result agrees completely with that obtained by Born
and Bormann.

The moment produced in an homogeneous elastic deformation
is considered to be zehr, where hr is the variation of the distance
between the sulfur and zinc atoms on deformation and ze is the
charge on the ions. Ne Grst find the moments due to all the sulfur
atoms at a given distance from a zinc atom in the crystal. Re-

solving these along the axes and summing, we get the piezoelectric
equations of the crystal. Next, the moments due to various sets
of sulfur atoms are summed so as to obtain a quickly converging
result, and from this the piezoelectric constant can be obtained.
The piezoelectric constant for a purely covalent crystal (formal
charge on Zn atom 2—,and on S atom 2+) is found to be S.4X104
and that for a purely ionic crystal (formal charge on Zn 2+ and
on S atom 2—) —15.8X10'. Since the observed value of the
piezoelectric constant (—4.20X 104} lies between these two
extremes, it is seen that the crystal has 67 percent ionic character
and a formal charge of 0.68 unit on zinc and —0.68' unit on
sulfur.

HK piezoelectric constant of zinc-sulfide has been
calculated by Born and Bormann' on the basis of

the lattice theory. It is proposed to calculate it here
by an alternative method used by the author' for
O.-quartz, which enables us to calculate the piezoelectric
constant directly from the structure of the crystal.

The Si—0 bonds in a-quartz were considered to be
largely covalent because of the large value of the Si—0
force-constant, ' ' namely, 5.0X10' dynes/cm and the
high values of dissociation energy' (184 kcal) and the
hardness (7.0) of the crystal. The forces between the
silicon and oxygen atoms are therefore of a short range
character; i.e., the forces between the nearest neighbors
are large in comparison with those between the next
nearest ones. It was therefore supposed that in the
case of e-quartz the nearest neighbors alone would be
e6'ective in determining the moment, and the polariza-
tion was computed on this basis. The supposition
appears to be well justified, since there is good agree-
ment between the observed and calculated values. ~~

For a purely ionic crystal, since the forces between the
neighbors are weak and those between the next nearest
are not negligible, the piezoelectric moment would have
to be computed by considering all of the atoms.

Zinc-sulfide is considered to be partly homopolar and
partly ionic. ' It may be expected that the force per
unit displacement between the zinc and sulfur atoms is
much smaller than that between the silicon and oxygen
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atoms in quartz; and this is, indeed, indicated by its
smaller hardness (4.0) and dissociation energy' (97 kcal)
and greater compressibility (—38X10 " cm'jdyne).
Ke have, therefore, computed its moment in two ways:
firstly, by considering it as a purely ionic crystal, and
secondly, by regarding it as a purely covalent crystal
and considering only the nearest neighbors. The results
obtained in the first case are identical with those
obtained by Born.

Zinc-sulfide is a cubic crystal, the side of the unit cell,
a, being 5.427A, and the closest distance between the
zinc and sulfur atoms equal to 2.35A. There are four
zinc and four sulfur atoms in the unit cell, the zinc
atoms being at the corners and face-centers of the unit
cell, and the sulfur atoms at points (q, ~, ~), (~, ~3, g),
(L ~~, 3~), and (~3, 4s, l). There is only one piezoelectric
constant, e14, given by the equations:

pa=&&4Nys& pw=~z4gxzg ps=&wgzy& (1)

where p„p„,p, are the components of the electric
moments along the axes, and N„„e„,and N,„arethe
strain components.

For finding the moments we suppose that a homo-
geneous elastic deformation acts on the crystal, and
that the axes of the crystal are also the axes of the
strain so that they remain unchanged after the strain.
In an elastic deformation, the distances between the
zinc and sulfur atoms would be altered. For a purely
ionic crystal, we can assume that each zinc atom
carries a charge of +2 units, and a sulfur atom a charge
of —2 units. The electrical moment produced by a
change in the distance, r, between a zinc and a sulfur
atom would be 2ehr. If hr is considered to be positive,
there would be a motion of the positive charge away
from the negative charge, so that the moment would be
directed from the sulfur to the zinc atom along the
line joining them. The direction cosines of the moment
can be obtained by subtracting the coordinates of the

' Reference 6, p. 216.
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sulfur atom from those of the zinc atom. The moments
can then be resolved along the axes.

In a homogeneous elastic deformation, the change in
the distance, r, between two points P and Q caused by
the strain can be expressed in terms of the strain
components. Love" has shown that the change in the
length of a line PQ after strain is given by the expression:

hr =r(Pn„+rnmn„„+n'n„+frnu,„+rnnn„,+inn„), (2)

where r is the length of a line PQ before strain, l, ns, n
are its direction cosines, and I, , u „,etc., are the strain
components. If we associate P with a zinc atom and Q
with a sulfur atom, the resolved parts of the moments
along the axes due to the elastic deformation would be
given by the expressions:

p, =2ehr l, p„=2ehr rn, p, =2ehr n .(3.)

In order to obtain the piezoelectric moment for the
crystal, we should first find the moments due to all the
sulfur atoms at a given zinc atom. We consider the
zinc atom P which lies at the origin (0, 0, 0) of our unit
cell, and find the moments 2ehr due to all the sulfur
atoms at the same distance r from I' in the crystal.
These can be resolved along the axes as indicated in
Kqs. (3) and summed. In this way we obtain the piezo-
electric equations as given in Eqs. (1). The next step
is to add the moments due to various sets of sulfur
atoms at different distances from I' so as to obtain a
quickly converging result. This has been possible by
using a method similar to that described by Slater" for
finding the Madelung constant for NaCI. Knowing the
moment due to all of the sulfur atoms at any zinc atom,
we can easily determine the piezoelectric moment for
the unit-cell; and from this we can obtain the value of
the piezoelectric constant by dividing by the volume
of the unit cell.

We must first find all the sulfur atoms which surround
the zinc atom (0, 0, 0). It is easy to show that these are
situated at points (n,u/4; nsa/4; nsa/4), where n~, n2, ns
are any three numbers selected from the set 1, —3, 5,—7, 9, —11, 13, —15, etc, The distance from the origin
to any point is (nP+nm'+ns')& a/4. The number of
sulfur atoms at this distance can be determined easily.
lf n&, n&, n3 are all dNerent, there are six ways of
arranging them, and since each can be positive or
negative, there are eight possible combinations of signs
giving 48 terms. But, since the product of n~, n~, n;
must be either positive or negative, we have only 24
points. If two indices are equal, we have 12 points; and
if all are equal, we have only 4 points.

If, therefore, we have a group of four points for which
the moments act along the directions whose direction-
cosines are (—f, —rn, n), (—l,—rn, n), (l, —rn, n), and
(f, ns, —n), the resolved parts of moments along the

"A. E. H. Love, MAhemcfical Theory of Elasticity (Dover
Publications, ¹w York, 1944), pp. 38, 39.
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TAaLE I. Values of the moments resulting from neighboring
groups of sulfur atoms at any zinc atom.

Values of
m'3

1 1 1—3 1 1—3 —3 1—3 —3 —3
1 5 1
1 5 —3
1 5 5—3 5 —3—3 5 5
5 5 5

Distance r
from the zinc
atom at the

origin

(3)& a/4
(11)& a/4
(19)~.a/4
(27)~ a/4
(27)~ ./4
(35)& a/4
(51)~ a/4
(43)~ a/4
(59)~ a/4
(75)& a/4

Number s
ot sulfur
atoms at

distance r

4
12
12
4

12
24
12
12
12

(slegeI)
(nP+o8+ss~)

1/3
9/11—27/19
1—15/27

18/7
-25/17
135/43
225/59—5/3

axes will be given by

p.= (2e—) (4rlmn) n„„
with similar terms for p„and p,. (4)

Relation (4) can be easily verihed with the help of
relations (2) and (3). Since we are ending the moments
at the zinc atom at the origin (0, 0, 0), .we can express
the values of l, m, and n in terms of n~, n2, and n3.
These are, without regard to their signs,

i=ny/(nl +n2 +n3 ) M n2/(nl + 2n+nI )
n =n3/(np+ nms+ nss) &.

Since r=(n~'+ns'+nl')& a/4, expression (4) now be-
comes

p.= 4n~n—sns(2ea) n„./4(n~'+ ns'+ n3')

with similar terms for p„and p,.
Let us now consider s sulfur atoms (where s is a

multiple of four) at distance r from the zinc atom at the
origin. Since the direction cosines of the moments due
to these atoms can be arranged in groups of four of the
type considered above, the moments along the axes
due to the s sulfur atoms at distance r from the origin
is given by

p.= sngnsn, (2ea—)n„,/4(n, '+ns'+n, ') (6)

with similar terms for p„and p, . The values of the
quantity g given by the expression ——,'s(n~nmnm)/

(nP+nP+ns2) are tabulated in Table I for di&erent
values of n&, n2, n3. It may be seen that the sign of the
moment changes for different values of n~, n2, and n3,
since the sign of the product nin2n3 also changes. Table
I can be extended to include higher values of n~, n~, and
n30

To find the resolved parts of the moments along the
axes resulting from all of the sulfur atoms at different
distances from the zinc atom at the origin, or in other
words, to obtain the value of the quantity, g, for the
crystal, we adopt the following procedure which gives
a quickly converging result. We consider the zinc atom
P(0, 0, 0) inside a cube whose side extends from —ina
to dna along the three axes of the crystal. All points
with all three indices (n&, n&, n&) equal to n lie at the
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YAaLE II. Variation of moment with cell dimensions.

1
3
5
7
9

11

Total number of
sulfur atoms

32
108
256
500
864

Total moment

—0.0416666—0.1545964—0.1206254—0.1217672—0.1215307—0.1216475

e14= —7.9zX 10'. (7)

We can now consider the moments arising from the
nearest neighbors only. If ze is the charge on the ion,

(-2, X4)

5'g fS goo x- roars chrIrcIcfer
I

p-gh inc on Zn ato~

(Z, -IS8)

FIG. 1.Dependence of the piezoelectric constant on the
ionic cbamcter,

corners of the cube, those with two indices equal to n
lie at the edges of this cube, and those with one index
equal to e lie in the faces of this cube, while the re-
maining points, with indices all diGerent from n, are
wholly within the cube. Their contributions are there-
fore ~, 4, @, and 1, respectively.

In this way we have calculated moments for all
values of e up to 11.The results are given in Table II.
It is thus seen that the result rapidly converges to
—0.1216. This quantity multiplied by (2eu) gives the
resolved part of the moment from all the sulfur atoms
in the crystal at any zinc atom.

Similarly, , the resolved part of the moment arising
from all of the zinc atoms at any sulfur atom would be
the same. The total moment is, however, not doubled
and remains the same, since each ion is counted twice,
once when the zinc atom was at the origin and secondly
when the sulfur atom was at the origin. Since there are
four zinc and four sulfur atoms in the unit-cell, the
piezoelectric moment along the axes would be multiplied

by four; i.e., —4(0.1216)2eu. The piezoelectric constant
e14, being equal to the moment per unit volume, is given
by eq4= —0.9728eu/a'= —0.9728e/a'. Since e=4.77
X10—10 3nd g—5.427X10 s cm we get 14= —15.8
X10'. If, however, the charge on the ion is ze instead
of 2e we have

then from Table I, the resolved part of the moment
from four sulfur atoms at any zinc atom is —$X)(zes),
and proceeding in the manner described in the previous
previous paragraph we get

e14= —2.7zX10'. (8)

If zinc-sulfide were perfectly covalent, there would be
a formal charge of 2—on zinc and 2+ on sulfur. ' The
value of e&4 for a purely covalent crystal is therefore
+5.4X10, while that for a purely ionic crystal has
been shown to be —15.8X10'. According to Cady" the
best experimental value of e14 is —4.2X10', which lies
between the two extremes.

We can, therefore, roughly estimate the proportion
of the ionic to the covalent character in the following
manner. The charge on a zinc atom for a 100 percent
ionic crystal is +2 units and for a 100 percent covalent
character it is —2 units. If, therefore, the crystal has
x percent ionic and 100—x percent covalent character,
the formal charge may be assumed to be

s=4a —2, where o=@/100. (9)

Similarly the value of e14 for a 100 percent ionic char-
acter (a=1) is —15.8X10' and for a 100 percent
covalent character (a=0)+5.4X10'. Therefore, for a
crystal which is x percent ionic and 100—x percent
covalent, and has a formal charge of z units, the
piezoelectric constant e14 is given by

e~4 = —7.9as—2.7(1—a)s. (10)

Using Eqs. (9) and (10) it is possible to obtain s for
any value of e&4. Since the observed value of the latter
is —4.2X104, we get a=0.67 and s=0.68. This shows
that the atoms have 67 percent ionic character, and
that the formal charge on zinc is 0.68 unit. This
appears to be a quite reasonable conclusion for, accord-
ing to . Pauling, also, the bonds have enough ionic
character. Relation (10) has been plotted graphically
in Fig. 1. It appears that the piezoelectric constant is
zero when the ionic character is 50 percent and then
diminishes rapidly towards —15.8 as the ionic character
increases. Since the ionic character may be supposed to
increase with the increase of temperature, the value of
e,4 would diminish (towards higher negative value) on
heating the crystal. Further, if the crystal be considered
to be 100 percent ionic at its melting point (1020'C),
it can be seen by a linear intrapolation that even at
the absolute zero of temperature the value of e14 would
have an appreciable negative value (about —0.7).

The results obtained for the purely ionic crystal are
identical with those of Born. The second relation in
expressions (5) of Born and Bormann reduces to
e14= —7.6zX10', which is identical with our expression
(7). Expression (3) of their paper, which has been
quoted in later literature also,"does not contain z, the

~ Walter G. Cady, I'ieso-E/ectricity (McGraw-Hill Book Com-
pany, Inc. , London and New York, 1946), p. 229."Reference 12, p. 743.
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charge on the ion. The value of e14 calculated from this
expression" is —23X10'. From relation (7) derived in

the present paper we 6nd that for a purely ionic crystal
z=2, and e14= —i5.8&10'. This at first sight appears
to be a discrepancy; but since the second relation in

"Herzfeld, Handbuch der ExPerimenta/ Physik (VII), Teil 2,
p. 341.

expressions (5) of Born is identical with our expression

(7), it only means that the value 6.5 of k—ko, which has
been used to calculate e~4 from expression (3) of Born,
would give a value of s which is 23/15.8 (or 1.5) times 2.
This is also veri6ed with the help of the 6rst relation
in expressions (5) of Born which gives a relation
between z and k —ko, and we 6nd z=3.03. The value
of k ko —(6.5) needs to be revised.
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The lowest state of an antiferromagnetic substance is investigated by using the Ising model for the spins.
By means of a method of Luttinger and Tisza it is found possible to derive earlier results of Anderson very
simply.

I. INTRODUCTION

ECKNT neutron di8raction experiments of Shull
on antiferromagnetics have been interpreted by

Anderson' in terms of a model in which spins interact
with not only their nearest neighbors, but also with
their next-nearest neighbors. NbeP had already intro-
duced such a model to explain the large ratios of the
"paramagnetic" Curie temperature 8 to the actual
transition temperature T,. The basic point of improve-
ment in Anderson's version is the 6nding of con6gura-
tions of the spins which give lower energies than the
ones which were used by Ne, el. The existence of these
configurations has two eBects: (1) the 8/T, ratios are
increased, and are more in conformity with experiment;
(2) the configurations predicted seem to be just those
found by Shull in his neutron dii8raction experiments.
Anderson chose the con6gurations he did largely on the
basis of plausibility and intuition, and the question
arises as to whether or not these are really the con-
6gurations of lowest energy. It is the purpose of this

paper to show in a systematic and rigorous manner that
this is indeed the case. The technique used is a generali-
zation of a method developed by Luttinger and Tisza, '
and applied by them to the case of dipole interactions
in crystals. The present problem is simpler, however, and
allows of a much more complete solution.

IL GENERAL METHOD

The model used is essentially that of Ising, 4 in which
each quantum mechanical spin is replaced by a scalar

' P. W. Anderson, Phys. Rev. 79, 705 {1950).The reference to
Shull's work is also to be found in this paper. A very clear sum-
mary of Anderson's work is to be found in J. H. Van Vleck,
Report to the Grenoble Conference, Grenoble, 1950.

~ L. N&1, Ann. physique 3, 137 (1948).' J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
' G. IsIng, Z. Phystk 31, 253 (1925).
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where p, =&1 (or pP=1). For a given arrangement of
spins (i.e., a given set of values of p;) it is very easy to
calculate the energy of the array. One can also ask
what the arrangement of spins on the lattice points
must be so that E is a minimum. Now the expression for
E is a quadratic form in the spins p, , and were it not for
the complexity of the constraining conditions p,'= 1, it
would be a simple matter to 6nd its minimum. We can
replace (just as in reference 3) the "strong conditions"
p,,~=1 by the "weak" conditions

Z~ v&'=&, (2a)

where E is the number of spins present. This equation
follows (by addition) from the strong conditions, but is,
of course, considerably less stringent. If we minimize E
under the condition (2a) and find that our solution also
satis6es the strong condition, then we will have solved
the problem. The essence of our method is that this
proves to be the case. The minimization of Eq. (1)
under the condition (2a) is, of course, a standard
problem in the theory of quadratic forms. The solution
is given by the lowest eigenvalue of the matrix of the
quadratic form. ' Our problem is then to find the smallest
eigenvalue of Eq. (1) for the case of simple cubic (S.C.),
body centered cubic (B.C.) and face centered cubic

k Courant-Hilbert, Ne&odee der Mathematzschen Physik
{Verlag J. Springer, Berlin, 1931), Vol. I, p. 26.

"spin" which can take the values %1.It is assumed that
there is an interaction energy y()0) between nearest
neighbors (NN) and interaction energy a(&0) between
next-nearest neighbors (NNN). In this case the energy
may be written

E=2h Zr pf Zi p'+RQ ll' Q p'], (1)


