
CASCADE SHOWER THEORY

with the average energy values of 5.72 and 5.68 kev
are +0.06 kev and &0.04 kev, respectively. The
weighted mean of these values is 5.69&0.04 kev.

Slack et ct."have pointed out that the accurate de-
termination of the average energy release in tritium
enables one to make an equally accurate determination
of the maximum beta-energy release. They have carried
out a computation using the above value for the average

" Slack, Owen, and Primakoff, Phys. Rev. ?5, 1448 (1949}.

energy and obtained a value of 18.6+0.2 kev for the
maximum energy, a result which is in close agreement
with the results of proportional counter measurements
of the maximum energy. "

The half-life determined in this study is slightly
greater than the value of 12.1&0.5 years reported by
Novick, 4 and is considerably greater than the value of
10.7+2 years reported as a preliminary value by
Goldblatt et at.' It does, however, fall within the esti-
mated error associated with each of the previous values.
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The diffusion equations of cascade shower theory are solved by means of a perturbation method. The Grst
approximation is taken to be that solution obtained by Snyder using the so-called completely screened
cross sections for the elementary processes of bremsstrahlung and pair production. The correction to this is
then calculated using more refined approximations to the Bethe-Heitler cross sections.

The results, which lend themselves to accurate numerical work only in the case of light elements and high
incident energies, indicate with respect to Snyder s solution that (1) the shower maximum is decreased in
height and slightly shifted to greater depths, (2) there is a decrease in the average number of electrons present
at small absorber depths and a correspondingly larger number at large depths. The magnitude of the cor-
rection is larger than had been previously assumed. Numerical results are given so that the correction to the
solution under the assumption of completely screened cross sections can be readily calculated for all light
elements when the incident particle is either a single photon or a single electron.

I. INTRODUCTION

'HE latest and most accurate calculations on the
cascade theory of showers are those of Snyder'

who gave solutions of the diffusion equations of the
theory of such a nature that accurate numerical results
were readily derivable therefrom. The calculations,
however, were based on the assumption of so-called
"completely screened" or "asymptotic" cross sections.
That is, the cross sections used were those valid for high
energy particles, and too high a probability was assigned
to those elementary processes associated with the lower
energy particles in the shower. The purpose of this
paper is to calculate the correction to the Snyder solu-
tion introduced by the use of more accurate cross
sections.

Efforts to employ more accurate cross sections have
already been made by Corben' and by Chakrabarty, '
but their calculations were based on none too numeri-
cally accurate solutions of the diffusion equations for
the completely screened case, and on none too accurate
approximations to the appropriate Bethe-Heitler cross

~ This paper is based on a dissertation submitted in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy at New York University. This work was performed at
Brookhaven National Laboratory under the auspices of the AEC.**Now at Westinghouse Research Laboratories.

' H. S. Snyder, Phys. Rev. ?6, 1563 (1949).
'H. C. Corben, Phys. Rev. 60, 435 (1941).'S. K. Chakrabarty, Proc. Nat. Inst. Sci. Ind. 9, 323 (1943}.

sections. ' The order of magnitude of the effect of this
rehnement as here calculated is much greater, and the
results are in a more general form than is indicated by
the work of these authors.

II. THE DIFFUSION EQUATIONS

The well-known diffusion equations of the cascade
shower theory are

aP(E, t, E,) aP(E, t, E,)
=t3

00 dE'
+2 y(E', t, Ep)E(E, E ) E'

+lim
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g g g+~
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By(E, t, E~;p) EdE'
P(E', t, Ep)R(E', E)

Ot ~g 2
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—q(E, t, E,) t It.(E', E) . (2)
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4 H. A. Bethe and W. Heitler, Proc. Roy. Soc. 159, 432 (1937}.



I. B. BERNSTEIN

importance in the genesis of a cascade shower.

R0(E, E')
R(E, E') =

1+el E'/E(E E') —
t

where

(6)
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FIG. 1. Cross section modifying function &1(p) es. p.

P(E, t, Eo) is the number of electrons, y(E, i, Eo) the
number of photons per unit energy at thickness t in the
energy range between E and E+dE. t is distance
measured in radiation units 3,

6= [(4s'X/137) (e /mc')' In(183z &)] '.t

K= (mc'/z&)255/(15. 6—-',4 Ins).

In what follows, it is convenient to measure energy
in units of E as shown in Table I.

IG. THE TRANSFORM METHOD' '

For any admissible function F(E, t) Iet us define the
following:

Laplace transform

PF(E, s) =
J

dt e "F(E,1).
0

KF(p, i)= ll dj —
ii

—
i F(E, i).

Ep) &pj

p is the ionization loss per unit length of t. R(E, E') Mellin transform

is a factor' common to the cross sections for brems-
strahlung and pair production. Eo is the total energy in
the incident spectrum of electrons and photons.

In the "complete screening" approximation one takes
Then

(9)

R(E, E') =R0(E, E')= 1 a(E/E')+—a(E/E')',
a= a+4/3,
a=9 ln(183s &) const. =0.025,

) P

(3) KQF(p, s) = d
(
—

) (
—(, dt e "F(E,t) (-10).

I. p) Lp& J,
in which case the diffusion equations (1) and (2) can be
solved by means of a Laplace transform with respect to
t and a MeBin transform with respect to K

More accurately, the cross sections are given by

By the Laplace and Mellin inversion theorems

f ds
F(E, t)= ' e"9F(E s)

~L, 2'
4i(p) —s4 his

R(E, E') =Ra(E, E')
4 ln183 —g4 inc

(4)
dp (E) n i——

F(E, i) =
)
—

[ KF(p, i),
J 2 i&P)

(12)

where

p = (100/st)
i
mc'E'/E(E E')i—(5)

and Q&(p) is given in Fig. 1.
Equation (4) predicts smaller values of the cross

sections for given values of E and E' than does (3), the
difference being greater the smaller is E.

Since p&(p) is known only numerically, it is not
feasible to use (4) directly in a solution of the diffusion
equations. It is expedient, however, to use the following
empirical expression which fits (4) to within two percent
over the ~hole range of Fig. 1, which is the range of

TAsLE I. Energy units used es. Z.

1 5 10 20 30 40 50 60 70 80 90

a(Mev) 8.30 5.63 4.81 4.11 3.74 3.53 3.37 3.27 3.15 3.08 5.00

t As kindly pointed out to me by Professor J. A. wheeler, in
the case of light elements, the z~ appearing in the expression for b,
should be replaced by z(z+ 1):J. A. %heeler and VV. E. Lamb,
Phys. Rev. 55, 858 {1939).

where I. and M are contours parallel to the respective
imaginary axes, running from i ~ to +i ~, and to—the
right of all singularities in the respective complex
planes. Therefore,

t ds t' dp pE)
F(E, t)= l e" '

I
—

~
KJF(p, s).

~ c 2s i ~ sr 2+i E P J

In this paper we con6ne ourselves to a consideration
of two initial spectra, a single incident electron of
energy Eo, and a single incident photon of energy Eo.
In this latter case, the solutions of the diffusion equa-
tions will be set off by a dagger. All other incident
spectra are but linear combinations of these with appro-
priate weighting functions. Those solutions obtained by
taking R(E, E') =Ro(E, E') (the "complete screening"
approximation) will be denoted by a subscript 1, that is,
Pi(E, t, Eo) and yi(E, t, Eo).

' L. Landau and G. Rumer, Proc. Roy. Soc. 166, 277 (1938).
%'. Y. Scott, Phys. Rev. 80, 611 (1950).

7G. Doetsch, Theoric Nod Aeurendleg der Lap/ace Transfor-
esation (Verlag. Julius Springer, Berlin, 1937).
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In addition to these it will be necessary, for use in the
iteration scheme to follow, to have a solution to the
equation obtained from (1) by deleting the term

2)t 7(E', t, Eo)E(E, E')dE'/E'

taking R(E, E') =Eo(E, E'), and with the initial con-
dition of one incident electron of energy Eo. This solu-
tion will be denoted by Po(E, t, Eo).

If now one operates on the diffusion equations with

(23)

(24)

1 o a
+ (21)

(p+I p+2 p+3)
'

1. a a
C(p)= — +-, (22)

P+2 P+1 P
8= 1—-'a,6

p(p) = d lni'(p)/dp.

Equations (13), (14), and (16) are all linear difference
equations of the form

G(P, s)g(P, s)+Pg(p 1, s)=—v(P, s). (25)

A formal solution of (25) in the form of a complex
integral is

the result is

Go(p s)KpPo(p s Eo)+PKPPo(p —1 s Eo)

= (1/P)(Eo!P)", (13)

Gf(P, s)KQP&(P, s, Eo)+PPQPP, (P 1, s, Eo)—
= (1/P) (Eo/P) ",

KVy(p, s, Eo)+[C(p)/(s+D))KBP, (p, s, Eo),

G~(p, s)K(P~t(p, s, Eo)+PKPP~t(p 1, s, Eo)—

&(p) 1«.i
s+Dp( p)

KBygt(p, s, Eo)

C(P) 1
t

Eo& '
KPP ~(p, s, Eo)+

i

—i, (17)
s+D s+D E p )

Go(p, s) =s+2 (p),

R(p, s)=s+& (p) B(p)C(p)/(s+—D),
and

~ (P) = &[0(p+1)—0(1)j+-' —1/(P+1) (P+ 2),

t do or I'(p+ 1)
g(p, s)=—

~ Ir 2mi sinork I'(p+k+2)
X y(P+k+1, s)Q(P+1, k, s), (26)

where E is a contour parallel to the imaginary axis,
running from —i~ to +i~ in the strip —I&Re cr(0
(26) is valid if the integrand is regular in this strip, goes
to 0 sufficient strongly at ~, and Q(p+1, o, s) satisfies

Q(p+ 1, 0, s) = 1, (27)

G(p, s)Q(p+1, o, s) =Q(p, k+1, s). (28)

A formal solution of (27) and (28) is

G(p+K, s)
Q(p+1, o, s)= limG(1V+1, s) g . (29)

x=&G(P+k+K, s)

For those G(p, s) and oo(p, s) with which we are con-
cerned, the conditions on the integrand are satis6ed,
the limit in (29) exists, and (26) is a true solution.

(18) In what follows that solution of (28) in which

G(p, s) =Go(p, s) will be denoted by a subscript 0, that
in which G(p, s) = G~(p, s) by a subscript 1.

One can now write the solutions of the electron dif-
(20) fusion equations as

„dp t E~ -o-~ „d«r(p+I) ~Eo~ o++~
Po(E, t, I:o)= ——

~

e" I Qo(P+1, k, s),
p ~g. 2ori ~sg2ori 0 p) &x2ori sinmr I'(p+k+2) ( p )
1 t. ds t dp (E y

-"-'
t dk or I'(p+1) t'Eo) "+'+"

Qi(p+ 1, k, s),
p "r, 2ori & or 2ni ( p ) & x 2wi sinork I'(p+k+2) E p )

(30)

(31)

1 ds dp (E) ~ '
t dk or I'(p+1) pEo't '+'+' J3(p+k+1)

Pi'(E, t, Eo) = ——
i Q(I(p+1, k, s). (32)

p &r, 2ori &or 2m' 5 p ) &x 2si sinmk I'(p+k+2) E p ) s+D

The quantity which can be readily calculated how-
ever, is not P(E, t, Eo) but rather X(0, t, Eo), where
X(E, t, Eo) is the so-called integral spectrum defined by

V(E) t, Eo)=)F dE P(E& t) Eo). (33)

Note that X(0, t, Eo) is the average number of electrons
at thickness t and is given in terms of the Mellin

transform as

X(0, t, Eo) =pKP(0, t, Eo). (34)

In order to show the equivalence of say (31) with the
result of Snyder, it is necessary to invert the Laplace
transform, To this end we de6ne

t (P) = —o[~(p)+Dj
+xo C~(p) —Dj'+4~(p)C(p) I', (35)
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Then

v= (P) = —K~(p)+D] vrhence
—k ) [~(p)—D]'+4~(p)~(p) }' (36)

Qg(p+1, n, s)
G~(p s) = Ls—~ (P)][s—v(P)]/(s+D)

Moreover, one can write

Q(P+p+j, 1—j, s)Q(P+1, p'+j, s)
Q(p+1, o, s) =

G(p+ p+j, s)

j=i 23

(37)
(s+D)Qi(P+o+j, 1—j, s)Qg(P+1, o'+j, s)

(39)
[s I —(p+~+j )][s v—(p+~+i )]

and it is convenient to invert the Laplace transform in
terms of the poles of the integrand of the inversion

(3g) integral. Hence

1 t dp t dn (E)-v' pr

P & x 2pri & sr 2pri & P ) sin pr

p(p+1) (Ep) v+&+1
l
Q(p+p+j)+D]ptv(v+rr+2)

a F(P+o+2) & P ) i-& p(P+p'+j) —v(P+a'+j)

[v(p+ ~+i )+D3&'""+'+"
XQ~(p+~+ j, 1—j, u(p+~+ j))Q~(p+ 1, ~+j, p(p+~+ j))+

v(p+~+ j) p(p—+a+j)

XQ&(P+ +j, 1—j, v(P+ +j))Q (P+1, 0+j, (P+o+j)) . (40)

While p, and v have simultaneous branch points, note
that upon going around a branch point the net eBect is
an interchange of p and v. This circumstance leaves the
integrand of (40) unchanged since it is symmetric in

p and v. Therefore, because the integrand is single

valued and non-singular over that region of the new
p-plane over which we shift contours, we may let p+j
go into p and then shift all contours to the contour X+2.
By contour X+2 is meant the line obtained by shifting
E parallel to itself, 2 units to the right. The result is

p y
'

I
dp I d~ ~ F(p+1) ~E,~ +'fEp- -'

f,(E, s, E,)=p
l
—

l l

—
I

i=& ( Epl ~sr 2pri "&+p2xi sinprp F(p+o+2 —j) ( p) ( pl ~(P+~) v(P+~)—
l [v(P+~)+D]&'"'"+'Qi(p+~ 1—j ~(p+~))Qi(p+1, ~, ~(p+~))

[v(p+~)+D—]e'"&v+'&Q&(p+o, 1—j, v(p+o))Q, (p+1, p, v(p+o)) }. (41)

This is identical with Eq. (38) of Snyder' if one makes
the following identifications:

e=j 1, y=P—+0, y+s+1=o,

&.(y, s) = 1'(s+ 1)Qi(r+s+1 —s, ~(r))

&.(r, s)=f'(s+1)Q (r+s+1 —s (r))

1 (y+1)
~-(r) = (-1)" Qi(r, —I, ~(r)),

r(y+1 —~)

1'(y+1)
&-(r) = (-1)" Qi(r -pp v(r))

F(y+1—pp)

One property of the diBusion equations which must
be possessed by any true solution and. which, in par-
ticular, is possessed by the Snyder solution is

pCO

diN(0 i, Ep)=PRE'(0 0 Ep)=Ep/P. (42)

This is a statement of the conservation of energy,
namely that all the energy originally in the incident

spectrum, in the model used in setting up the diA'usion

equations, is absorbed by ionization loss.

IV. ITERATION SCHEME

The Mellin transform method depends for its success
on the fact that in the "complete screening" approxi-
mation the function Rp(E, E') is homogeneous, depend-
ing only on the variable E/E'. This is no longer true
if one wishes to use Eq. (6). However, since one would
not expect the correction to the "complete screening"
solution caused by the introduction of (6) to be exces-
sively large, a perturbation method is indicated.

The most convenient perturbation method is arrived
at by writing the diffusion equations in the form of a
single integral equation. To do this one 6rst solves Eq.
(2) in the form

y(E, s, Ep) = r(E, 0, Ep) exp[—S(E)s]
pt

+ dx exp[—(s—x)X)(E)]
4p

CO EdE'
X I P(E' ~ E,)R(E E) (43)

g/2
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(44)

—llm
8~0 Lt @+~

E —E
P(E', r, Eo)Ro(E', E' E) —dE'

p/g

E'dE'
P(E, t,—Ep) Rp(E, E') — =S(E, t, Ep), (45)

+2

where

oo

S(E, t, Ep) = lim P(E', t, Eo)R)(E', E' E)—
E Z/ds'-

—P(E, t, Ep), R,(E, E')
Eo

oo dg/
+2 I R(E, E') y(E, 0, Ep) exp/ X)(E—')t]

E'

+
~

dx exp[ —(t—x) X)(E')]
0

is the gamma-ray absorption coefficient.
The electron diffusion equation (1) can now be

written

BP(E, t, Ep) BP(E, t, Ep)tt-
Bt 8E

hand side of (46), and will be denoted by Po(E, t, Eo).
The next approximation is obtained by so using
Po(E, t, Ep), etc.

For calculmtional purposes it is more convenient to
work with the Laplace-Mellin transform of Eq. (36)
rather than directly with the equation itself. This is

RBP(p, s, Ep) = dE KBPp(p, s E )
0

XPS(E', s, Ep)+Rior(P, s, Ep), (49)

which yields

1"
9X(0, s, Ep) =PJ dE'9RJPp(0, s, E')

0

X9S(E', s, Ep)+PRPor(0, s, Ep). (50)

V. THE CORRECTION IN THE CASE OF A
SINGLE INCIDENT ELECTRON

dp r do
8Ã(0, s, Ep) =gap(0, s, Ep)+

& ~ 2' 4~ 2mi

1 1(p+1)
X

2ori sinso sinn. o' I'(o'+2) I'(p+a+2)

r do' m'

Let us calculate the 6rst iteration, based on Eqs. (50)
and (6), in the event that the initial condition is a
single incident electron. Here or(E, t, Eo) =Pp(E, t, Eo).

The Laplace transform of Xo(0, t, Ep) is then, after
appropriate changes of variable,

oo g/dg//

X i" P(E", x, Eo)R(E", E')

and we have written

(46) ~Eoq '+ +'
X }

—
}

P" " 'Qo(1, ~', s)Qi(p+1, a, s)

X I 28(p, a', s)+8(p, a') —K(p, a') }, (51)
R(E E ) =Rp(E E )+Rg(E) R') ~ (47)

Interpreting the left-hand side of (45) as governing
the propagation of an electron suGering only ionization
loss and bremsstrahlung under the assumption of com-
plete screening and the right side as a source function
incorporating the sects of pair production and screen-
ing, one can write, since Pp(E, t, Ep) is the Green's
function:

@(p, a, s) =
J 4 P

0

X . dx
Jp

x"(1—ax+ ax')

)le-
+1 s+ S)} —

}
. 1—x (xP)

f f'

P(E, t, Eo)=J
dt ) dE'Pp(E, t t', E')—

XS(E', t', Ep)+or(E, t, Ep), (48)

where or(E, t, Ep) is some multiple of Pp(E, t, Eo) satis-
fying the desired initial condition on P(E, t, Eo).

The integral equation is now in a form suitable for
solution by iteration. The 6rst approximation to the
solution of the diffusion equations using (6) can be
obtained by using P~(E, t, Eo) in evaluating S(E, t, Ep)
according to (44), and strbstituting this in the right-

ld o (co ac@+a)
X)! doo, (52)

co xp
+1

CO

x' —ax+ a
&(P ')=J~ die " '„'

0 ~ p 1+x(&—1)

x&Lx' —(2—a)x+a]
K(p, o')= dip " ' dx

~tp 1+$(1—x)
(54)
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Note that this result has been obtained by reversing
the order of integration from the stepwise inversion of
the transforms. This implies, that, while the a and r'
contours remain as before, the p contour in any term
in (51) be parallel to the imaginary axis and in a strip
determined by the conditions for convergence on the
integrals (52), (53), and (54). But the regions of con-
vergence are as follows:

(52) converges if —1&Re(p—o' —2) &0
0&Re p; (55)

(56)

g for
CO ts, 1

h(o' s)= dgg
—" '—

~'+1 ~0 ~k "o
1—cx+Qx

(59)
t'1 'I

+1 s+n
1+x . (xgl .

Therefore, if we deform the path of integration of
the g(p, o', s) term to coincide with that of the other
terms in the integrand of (51) the contributions of the
intervening poles will be

t da p do' rr o (Eo) '+"+'

~«2oi «2ori sinorasinora' c p J

1

(53) converges if —1(Re(p—o' —1)(0;
(54) converges if —1(Re(p —o' —1)&0

—1(Re p, (57)

which conditions follow from a consideration of the
several integrands at the limits of integration. The
requirements are then that the p contour lie in the
strip —1&Re(p—o'—2)&0 for the term containing
5(p, o', s) and in the strip —1(Re(p—o'—1)&0 for
the other terms.

The next step in the evaluation of the 6rst iteration
is an evaluation of the p integral in (51) in terms of the
poles of its integrand. Integration by parts of (52) shows
that the analytic continuation of the function there
deaned by the real integral has poles at p —o'=0, &1,
k2, ; p=0, —1, —2, - . Moreover, the strength of
the first-order pole at p= o'+1 is

B(a'+1)C(a'+1)/2(s+D)
=g[Go(a'+1, s) —Gc(a'+1, s)] (58)

while the strength of the 6rst-order pole at p= 0 is

from the pole at p= 0. One can write

fdo x 1
I, —QIo', (0, s, Eo) ~'

~«2ori sinora I'(a+2)

since
XP ' '2h(o, s)Qo(1, o, s), (61)

N'1(0, s, Eo) =—t do 1 (Eoq +'

i

—
~ Q.(1... ) «2)

~ 2~ir(a+2) EP)

I

do. t da' s o. 1
II=

~ ~ ~ ~«2si &«2ori sinora sinoro' I'(cr+a'+3)
0+cr'+2

xi —
iEp)

LQo(1, o'+1, s)Qc(o'+2, cr, s)

—Qo(1, a', s)Q, (a'+1, cr+1, s)]. (63)

In the Grst term of (63) let o' go into o'—1, and then
shift the contour back to the contour E. The pole at
0'= 0 contributes. In the second term let o go into 0 —1
and shift the contour back to E. The pole at o = 0 con-
tributes. The result is:

I
do

I

do' s. s. 1
II=—

«2ori ~«2ori sinoro sinora' I'(o+a'+2)

(E q
a+a'+I

X
i

—
i Qo(1, o', s)Qi(a'+1, o, s)

I
do or 1 (Eoy '+'

"«2si sinora I'(o+2) E p &

XQo(1, 0, s)Qc(1, a, s)

t

da
t

da' o. o. 1
+

&«2ori " 2ori sinoro sinorcr' I'(a+o'+2)

(g y
cr+or +1

Qo(1, a', s)Qc(a'+ 1, a, s))

In order to simplify I1we note that, as a result of (29),

Go(a'+1, s)Qo(1, o ', s) = Qo(1, o '+1, s),
Gc(a'+1, s)Qc(a'+2, o, s) =Q&(a'+1, o+1, s),

and therefore

XQo(1, o', s)Qc(o'+1, 0, s)

since

X Qo(1, o', s)Qc(a'+2, o, s) r dcr' o. 1 ]Eoq "+'
I'(o+ o'+3) +g'

XLGo(o'+1, s) —Gc(cr'+1, s)] (60) «2rri sincrcr' I'(a'+2) ( p J

from the pole p=o'+1, and

p do'
t

da or or 1 1 =QN1(0, s, Eo)—Q¹(0s, Eo) (64)

~ «2si ~ 2rri sinora sinorcr' I'(cr'+2) I'(a+2)
(E ) a+I

t Eoq a+1

P ' 'Qo(1, cr', s)Q (1, a, s)2h(a', s) 8No(0, s, Eo) = — dcr Qo(1, o, s)(pi al «SHlorcr p(cr+2) ( p )
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Equation (67) can now be written as

D -a2

s+D (s+D)' Bo'

and in view of (27), and the cancellation of the double
integrals.

One can, therefore, write the Laplace transform of Fs= —a
the correction to Snyder's solution in the form:

Q&o(0, s, Eo) —9%(0, s, Eo)

p der x 1
= —8Xg(0, s, Eo)

&x 2wo sinw. o I'(o+2)

do f dr
&&Qo(1, o, s)P ' '2k(o, s)+

~

+27lZ ~2ÃZ

dp w 1 I'(p+1)

2wo sinwo sinwo' I'(&r'+2) I"(P+a+2)

) @+or+1

X{ —
i

P" " 'Q (o1, 'a&)Q(P+1 a &)

X{2m:(p,.', )++(p, ')—@(P, '){
The p contour for the triple complex integral in (65)

is a line parallel to the imaginary axis in the strip
0&Re(p —a' —1)(0; —1(Eep&0. The next singu-

larity to the right of the contour lies at p = a'.
The order of magnitude of the contribution of this

term can be estimated crudely by considering p —o' to
be very nearly zero, and noting that the integral is very
roughly P1V&(0, s, Eo)(1/Eo). (In the same fashion the
single complex integral term is roughly of order 1/P. )
But in all cases of interest in shower theory Eo is greater
than 10P. Hence we neglect the contribution of this
term.

Therefore, to this order, in virtue of the convolution
theorem for Laplace transform one can write:

Xo(0, t, Eo)—X|(0,t, Eo)

in'tl 2 lnP 1
Wi(x) — Wo(x)+ —W, (x), (70)

where

Qo(1, o, s) —as
8W|(s)=

r(.+2) . , (~+D)o

as/(s+ D) ',—

B Qo(1, o, s) —as
9Wo(s) =-

Bo I'(&r+2), o (s+D)'

(71)

—us
lim { in{ s+A(X+1)j

(g+D)o waco (

do x 1
P ' 'Qo(1, o, s)2h(o, s). (69)

~ x+i 2wo sinw o I'(a+2)

Since the location of the next pole is at 0.=1, the
integral in (69) can be estimated to be of order 1/ti'. It
is not feasible to evaluate the contribution of the next
pole since it is of fourth order and its residue is too
complicated for ready numerical calculation. Moreover,
it is not even clear that this residue, by itself, is a proper
Laplace transform. Therefore, to order 1/tl, we can
write the correction to the completely screened solution
in the form

t

Ão(0, t, Eo)—$|(0, t, Eo)= ajr dxÃ1(0, t x, Eo)—

(o —* .)(*) ()
0

d0 ~ 1
8F(s)=-

~x 2wi sinwa I'(a+2)

XQo(1, a, s)IB '2k(o, s). (67)

To this order the first iteration (66) satisfies the
boundary conditions since the correction as calculated
in (66) is obviously zero for t= 0.

It is convenient to evaluate (67) in terms of the poles
of its integrand to the right of the 0=contour. The Grst
of these is of the third order and occurs at o =0, a 1/a
contribution coming from the term w/sinw, a k/o'
contribution from the term k(a,s). The pole strength,
as determined by integration by parts of (59), is

A'(k) i
1

—O(1), (72)
o=i s+A (k) )

B' Qo(1, o, s) —as
8Wo(s) =

Bo' I'(a+2), o (s+D)'
—as t'

lim{ in{ s+A(X+1)j
(g+ D) 2 Nmoo i

A'(k) i ' A'(k)'
+Z- ~+A(k)& = .&+A(k)j'

A "(k)
+|p(,)o ~ (,) 1.

s+A (k)

—24(1NW (~) (73)

.s+D (s+D)o (s+D)'
(6g) Here primes indicate differentiations. BQo(1, o, s)/Bo.

and B'Qo(1, o, s)/Bo were calculated by taking logarith-
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WI(t) W~(t) W'~(t) 8'I(t) W'&{t) W'3(t)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2,0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

4.6
4.8
5.0
5.2
5.4
5.6

-1.000
-O.?24-0.507-0.337-0.205-0.104-0.028
+0.028

0.069
0.097
0.116
0.128
0.134
0.135
0.134
0.130
0.124
0.117
0.110
0.103
0.095
0.087
0.080
0.073
0.066
0.059
0.054
0.048
0.044

—0.302
+0.299

0.492
0.521
0.498
0.431
0.356
0.279
0.207
0.142
0.087
0.040
0.002—0.028—O.OS2-0.069-0.080-0.091-0.096—0.098—0,099-0.097-0.094—0,091—0.086-0.080—0.075-0.070

2.051
1,.590
0.756
0.215-a.'154

—0.393-0.519—0.584—0.590—0.547—0.500-0.416-0.339-0.267-0.202—0.145-0.098-0.041—0.004
0.026
0.052
0.074
0,092
0.104
0.112
0.118
0.121
0.122

5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
94
9.6
9.8

10.0
11
12
13
14
15
16
17

0.039
0.034
0.030
0.027
0.024
0.021
0.019
0.017
0.015
0.013
0.012
0.010
0.0094
0.0083
0.0072
0.0064
0.0056
0.0050
0.0040
0.0038
0.0034
0.0029
0.0029
0.0015
0.0008
0.0004
0.0002

-ages—0.060-0.055-0.051-0.047-0.043—0.039-0.035-0.032-0.028-0.026-0.023—0.021-0.018-0.016—0.014—0.013-0.011-0.010-0.0089-0.0080-0.0071-0.0041-0.0023-0.0014-0.0007-0.0004—0.0002-0.0001

0.121
0.119
0.1.14
0.1)0
0.106
0.101
0.097
0.091
0.086
0.080
0.075
0.072
0.064
0.059
0.055
0.050
0.047
0.043
0.040
0.037
0.034
0.031
0.031
0.020
0.011
0.0057
0.0030
0.0015
0.0001

Thar. E II. Tables of the lV(t)'s for use in numerically e6ecting the
convoiutions indicated in Eqs. (70) and (70'}.

Expression (81) converges for all t&0 and diverges like
ln—t as t approaches zero. The series in (81) can be

summed numerically by means of the Euler summation
formula, which also permits one to develop an approxi-
mation formula for Ur(t) valid near t=0. Also one can
write

Ug(t) =g ItA'(k)' —A"(k) Ie "'"".
k=1

(82)

Ug(t)= ~ dhUt(h)Ut(t —h),

Equation (82) too is evaluable numerically by means of
the Euler summation formula, the series converging for
t &0.

The other quantities, both U's and lV's, can then be
computed numerically, in stepwise fashion, according
to the prescription

t

Ug(t)=)~ dhU, (t h)e D*—
,

0

mic derivatives of the infinite product representation
for Qg(1, o, s).

The Laplace inverses of (71), (72), and (73) are
readily obtainable in terms of single and double series
of the Dirichlet type, but it is more convenient for the
derivation of a table of values to adopt the following
scheme.

Let us define

PU, (s)= lim
~

1n[s+A(X+1)]
Nmoo g

A'(k) ~ 1
(74)

&=ts+A(k)) s+D

4p

U4(t) = Ug'(t)+DUg(t),

Ug(t) = chUg(t h)e D', — —

U (t) = I dhUg(t h)e—
"o

Wr(t) =e o'(Dt —1),

W, (t) = —P(1)W, (t) —U, (t)+DU, (t),

Wg(t) = —U4(t)+DUg(t) —Ug(t)+DUr(t)

+2$(1)[Ut(t) —
D Ug(t) ]

(83)

«g(s) = Ut(s)/(s+D),

8Ug(s) = [8U,(s)]g,

8U4(s) = (s+D)9Ug(s),

-
r A'(k) q

' A"(k)
~Ug(s) =Z

g-t Es+A(k)) s+A(k).

~Ug(s) =~Us(s)/(s+D),

QU (s) =SU (s)/(s+D).

(75)

(76)

(77)

(78)

(79)

(80)

+[Il'(1)'—f'(1)]Wr (t).

The lV's are tabulated in Table II and suitable approxi-
mation formulas for t 0 are given in Table III.

It is now possible to evaluate the correction to
Xr(0, t, Ep) to the order of accuracy represented. by
(70), by carrying out numerically the indicated inte-
grations, using the values of Xt(0, t, Eg) given by
Snyder 1

It is interesting to note that to this approximation

The H/"s can be defined in terms of these, as is done
later.

Then

A'(k) ~ A'(k)
I, +Q e—g(g) & (81)

s-t A(k) —D s-t A(k) —D

TAnr, E III. Approximation formulas for use in effectiny part of the
convolutions indicated in Eqs. (70) and (70).

8'g(t} —lnt f—1+1.550t—0.60t')+1.007—0.881t+0.17P
Writ)~inst L

—1+1.549t—0.30tg)—lntL2. 015—1.757t+0.63tgj
+1.276-21844t+1.85t

0&t&0.2

K. Knopp, Theory end A pp/ideation of Ingnite Series (Blackie
and Son, Ltd. , London, 1928).
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40
dtiVp(0, t, Ep)

oo ~oo pt
dttt7i(0, t, Eo)+) dta)' dxiVi(0, t x, Ep)—

0 0 0

condition (42) is satisfied by the corrected solution
because —N I

N~ air ctrtd H~o

Fa

Pit

ln'P
X Wi(x)—

21nP 1
Wp(x)+ —Wp(x)

ln'P 2 lnP
Wi(x)—

P P

1
W, (x)+-W, (x) . (70')

Since in the "complete screening" approximation
(subscript 1) the solution of (1) and (2) for any initial

spectrum is but a linear combination of the solutions for
a single incident electron and single incident photon,
we see that to order 1/Ep in the first iteration the cor-
rection introduced by screening is always in the form
of a convolution over the "complete screening" solution.

VI. DISCUSSION AND CONCLUSIONS

The introduction of the more accurate cross sections
into the di6usion equations means that the probabilities

TABLE IV. Representative values of various parameters.

P (Mev}
5 (cm)
X (Mev}

pj's

Air

103
34.2
5.15

20.0

115
43.4
5.70

20.0

Al

55.6
9.80
4.55

12.2

25.9
1.84
3.85
6.72

Pb

7.00
0.525
3.05
2.27

=PiVi(0, 0, Ep)+aiVi(0, 0, Ep)

ln'P 2 lnP 1
—9Wi(0) — 8Wp(0)+ —9Wp(0)

P P

=Eo/P

since
0&& i(0 0 Eo)=Eo/P

while the Laplace transforms of all the W(t)'s contain
as a factor s/(s+D)' and hence all the 9W(0)'s are zero.

If one examines the case in which the incident spec-
trum is a single photon of energy Ep, then to order 1/Eo
the results come out in the same form. The result there is

$$pt(0, s, Ep) —gait(0, s, Ep)
= 9&V, t(0, s, Ep)PF(s) (66')

and again to order 1/P

Vpt(0, t, Ep) —Sit(0, t, Eo)

t

= a t dxX&t(0, t x, Ep)—
J0

FrG. 2. $(t} the average number of electrons induced by a single
incident electron of energy E0 es. absorber thickness t. p=ioniza-
tion loss per unit radiation length; Snyder solution XI(t};corrected
solution X2(t}- lnE0/p= 8.

for the various elementary processes (bremsstrahlung
and pair production) are decreased, the decrease being
larger the smaller is the energy E0 of the parent particle.
This implies that X(0, t, Ep), the average number of
electrons at thickness t, must be smaller initially than
that calculated under the assumption of complete
screening. But, the area under $(0, t, Ep) is Ep/P
regardless of the cross sections used. Therefore, there
must be a corresponding increase in $(0, t, Ep) for large
values of t. These qualitative results are verified by
those of the numerical calculations which can be con-
sidered to be accurate.

One would expect that the screening correction should
depend on the energy of the incident particle in such a
way that if this latter is high then the screening cor-
rection is low, and vice versa. This property is pos-
sessed by both (66) and (70). In both of these the
dependence on Eo/P is given through .Vi(0, t, Eo), the
average number of electrons at thickness t under the
assumption of complete screening. The larger Eo/P, the
larger is the value of t for which the maximum in
iVi(0, t, Ep) occurs. Since in both cases the function with
which tVi(0, t, Ep) is convoluted exhibits exponential
decrease for sufficiently large values of t, (66) and (70)
yield proportionally smaller corrections, the larger is
Eo/P

The dependence on material is introduced essentially
through the P (ionization loss per unit length) de-

pendence of the term with which iV&(0, t, Ep) is con-
voluted. This term, and hence the correction, is an
increasing function of 1/P and, therefore, of Z.

The estimate which led to (66) as a good approxima-
tion to the correction as given by the 6rst iteration is
crude but plausible. Physically, if we note the origins
of the terms 5(p, a ', s), 8(p, a '), and K(p, a ') in (57),
the estimate says that the correction to the Snyder
(complete screening) solution is largely due to the cor-
rection of the cross section for pair production alone.

For reasonably high incident energies, the correction
is only about 10 percent at the maximum of $&(0, t, E,).
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TAsLE V. Part 1. S~ f ng() Snyder solution in the case of ae case 0 a single incident electron, E~ t thee corresponding corrected solnt'
p'p) N—"W {21np/p)+N W {I/p)

¹S'g ¹+WI ¹+Ws Ni Ng ¹+Ws NPW'a

~ =5

Ng+W'I

I
2
3

5
6
7
8
9

12
14
16
18

3.75
4.55
3.85
2.81
1.94
1.22
0,68
0.48

—1.36—2.00—1.47—0.44
0.36
0.80
0.97
0.88

—0.44
0.86
1.58
1.55
0.76
0.03—0.48—0.67

1.08
0.92—0.96
2%37—2.23—1.29—0.30
0.55

4.87
8.86

10.13
9.07
7.09
5.23
3.52
2.39
0.90
0.31

—1.57—3.55—4.00—2.84—0.88
0.71
1.72
2.08
1.75
1.06

—0.69
0.55
2.43
3.63
3.08
1.54
0.10—1.03—1.56—1.32

0.95
2.44
0.03—3.08—4.93—4.51—2.70—0.60
1.15
2.59

5.68
14.46
21.17
23.60
22.01
18.40
13.97
9.96
4.72
1.99
0.79
0.30
0.12

—1.54—5.38—8.27—8.55—5.33—2.26—1.28—3.64
457
3.55
2.05
1.10
0.55

—0.87—0.25
2.91
6.28
7.70
6.43
3.60
0.48—3.46—0.39—0.20—0.08—0.05

0.87
3.06
2.20
2p 13—7.67—11.30—10.50—6.50
1.59
6.55
5.28
3.88
2.21

1 6.33
2 267
3 41.0
4 53.42
5 57.33
6 54.20
7 46.42
8 37 25

10 20.16
12 9.67
14 4.0
16 1.67
18 0.67
20 0.10

—1.89—6.98—15.26—20.22—18.85—12.79—4.72
+2.69
10.68
10.70
7.45
4.35
2.14
1.02

a~6
—0.99—1.38

1.51
9.79

16.28
17.56
14.55
7.86—3.88—9.94—8.39—5.62
3021

—1.58

0.88
3.10
5.07
2.19—9.40—20.08—23.82—20.95—3.44

10.77
15.45
12.56
8.10
4.41

6.7
33.1
68.7

1063
135.0
142.1
135.2
119.2
75.6
41.1
20.2
9,1
3.9
1.6

—1.57—10.64—25.26—38.96—46.89—42.46—28.13—10.65—18.22
27.43
23.72
16.11
9.00
4.49

—1.22—3.70
1.43

12.79
26.71
38.89
39.92
31.18
3.30—17.34—22.30—18.06—11.84—6.62

0.01
5.48

11.46
6.68—6.63—31.19—48.92—54.26—28.66

12.04
34.06
36.01
26.73
17.06

8.5
44.3

115.8
201.5
287.5
335.4
357.5
346.0
261.3
155.2
85.5
42.2
18.9
8.0

—1.89—13.12—39.96—74.53—102.71—107.34—93.99—64.42
6.27

58.8
67.4
51.5
32.9
18.8

e=8
—1.60—5.67—2.99
15.59
44.70
77.12
90.89
89.60
40.83—18.32—53.22—52.63—41.13—29.62

—0.38
9.08

27.61
31.64
11.02—38.33—84.57—115.81—118.63
11.86
76.72
98.60
84.34
59.56

Hence one might expect that the 6rst iterati

nature of the functions involved a o e accurate deter-
o e errors is not feasible.

It is possible to obtain
ut it is prohibitively laborious to calculate a yno

is arge. This is true for light elements. Tabl IVs. a e gives
e various pararn. eters to be

calculations.
o e used in the

In view of th'this discussion we see that the numerical
calculations made are applicabl l

'
en sica e on y to light elements

and moderate or hor high initial energies. Tables ofo theco-

those initial condition
' ' '

a
or e calculation in the c

~ ~

i ions consi ered in this a
given in Table V. In th hese the indices 0 and E
suppressed. They are based h

0 are

p etely screened solutionl
ase on t e values for the ccom-

ion given y Snyder '
epresentative results are ive

Fo ~ ~

iven in igs. 2 and 3.
igure 4 indicates how well th

cross sections here used that is . , i

e approximation to
at is q. (6), agrees with the

I.O

20
oslo HaO-. -"

.6
lal- ",5
K 4

16

5 IO l5 20

Fxo. 3. E(f) th
ude t electro of ene gy Eo egy, o P= o

ng . nyder solution X~{t); cor-
4

0 .i,2
I I I I

.3 .4 .5 .6 .7 .8 .9 LO

F

Fn. 4. RE E'
~ . , ) the d&Gerential robabilit yo p po

na energy transferred. Labels
e e gy ec o otso ep
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TABLE V. Part 2. N& (/) Snyder solution in the case of a single incident photon, Nm (/}=the corresponding corrected solution.
)nEO/P, Nxt'W= Jo' dgNi(t x—)W(x), ¹t(t)=Nxt(t)+1.358LNqt*W&(lneP/P) N, t'Ws(21nP/P)+Nqt'WI(1/P) j.

¹ f ¹P8'i ¹f~S'a ¹f*Wg ¹f ¹f*8'g ¹f*Wa ¹f~8'I ¹f*W) N j,f*S'a Nif+8'g

1.88
3.59
3.86
3.34
2.49
1.75
1.12
0.80
0.29

—0.57—1.43—1.58—1.04
0.25
0.38
0.71
0.79
0.63

—0.33
0.12
1.06
1.45
1.17
0.52—0.07—0.45—0.61

0.30
0.89
0.09—1.26—1.99—1.56—0.78
0.04
0.91

2.27
5.97
8.51
9.02
8.04
6.S1
4.85
3.48
1.60
0.65

—O.S8—2.15—3.39
302 7—2.06

—0.55
0.73
1.51
1.78
1.29

—0.42—0.22
1.20
2.67
3.07
2.34
1.14—0.06—1.33—1.40

0.26
1.19
1.13—1.05—3.34—4.21—3.53—1.99
1.07
2.29

3.1
8.85

16.19
20.40
21.60
19.96
16.93
13.20
7.40
3.28
1.32
0.52
0.19

—0.44—3.13—6.03—7.60—6.86—4.40
—1.33

1.44
4.03
4.01
2.77
1.50
0.76

—0.56—0.39
1.06
4.04
6.21
6.53
5.01
2.55—1.83—3.36—3.11—2.05—1.13

0.39
1.71
2.15
0.16—4.19—8.67—9.11—7.75—0.61
4.24
5.67
4.66
2.92

l 32
2 13.33
3 272
4 42.5
5 51.2
6 535
7 49.9
8 43.0

10 26.5
12 13 8
14 6.8
16 35
18 1.9
20 05

—0.82—4.18—10.19
-15.58—17.96—15.57—9.75—2.90

7.07
10.57
7.97
4.80
2.80
1.75

—0.61—1.54
0.65
5.14

11.29
15.01
14.88
11.25
0.01—7.25—8.42—6.32—4.14—2.09

0.20
1.78
4.93
2.68—2.99—12.?1—18.90—20.46—9.59
5.88

13.51
13.20
9.32
5.42

3.6
13.9
46.0
78.9

109.0
130.1
133.9
126.5
93.5
54.5
29.4
13.5
5.8
2.6

—0.90—4.57—14.79—29.78—39.60—41.79—35.52
—22.54

6.59
23.86
24.75
18.58
11.79
6.50

—0.74—1.28—2.86
5.56

18.30
29.26
36.41
34.49
13.38—9.18—20.75—19.17—14.18—9.18

0,15
2.28
5.12

12.04
1.25—16.48—33.21—46.19—37.46—3.99

25.48
34.54
29.99
20.93

8.5
24.4
71.0

140.2
218.2
285.2
326.0
342.1
291.4
201.2
113.5
61.2
29.9
9.9

—2.58—8.17—23.S4—49.71—78.53—95.01—97.00—81,22—14.15
39.38
64.34
57.29
39.92
25.64

—1.55—1.29—2.34
5.46

25.79
52.13
74.22
83.75
59.71
4.52—37.99—53.39

-44.06—29.94

1.34
3.51
8.16

16.24
12.82—14.38—51.47—75.63—108.9—49.54
28.52
81.11
85.43
66.55

corresponding Bethe-Heitler values in the case of pair
production.

From these, qualitatively, the eGect of the correction
on Sy(0, t Ep) is an initiai decrease, a decrease in the
maximum and slight shift of the maximum to greater
depths, and a consequent increase for large I,.
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Snyder, who suggested the problem and gave constant
guidance and encouragement; to Dr. W. T. Scott for
his many suggestions; and to Miss Theresa Danielson,
Mrs. Dale Meyer, and Mrs. Louise Trebing, who did
most of the numerical work.


