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In this paper we have given a specific example of a Hamiltonian of a non-linear field theory, a Hamiltonian
density completely free of time derivatives. In accordance with the general theory developed previously,
this Hamiltonian is one of the constraints between the canonical variables and, therefore, vanishes every-
where. To obtain this function, we have developed methods that will also permit the construction of Hamil-
tonian densities in any field theory in which the Lagrangian density is quadratic in the first derivatives.
Our Hamiltonian differs from the one obtained by Schild and Pirani in that they use Dirac’s method to
derive a Hamiltonian that is invariant but contains velocities, so that their canonical field equations cannot
be solved with respect to the time derivatives of all canonical variables. In our formalism, the canonical
equations contain no time derivatives on the right-hand sides, but the adoption of a particular Hamiltonian
is equivalent to the adoption of a particular coordinate condition and gauge condition. However, once we
have obtained any one Hamiltonian density, we can readily obtain any other one (and thus go over to
arbitrary coordinate and gauge conditions) by combination with the other constraints of the theory in
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question.

1. INTRODUCTION

N two previous papers,"? it was shown that any set

of field equations which can be derived from a
variational principle can be cast into the canonical
form, with a Hamiltonian which vanishes identically.
With the introduction of canonically conjugate vari-
ables, the so-called momentum densities, and with the
(arbitrary) singling out of some direction at each world
point (local “time”-axis), it is possible to reformulate
the whole formalism in such a manner that the differ-
ential equations are all first-order equations, solved
with respect to the “time”-derivatives. On a single
“space”-like hypersurface, a small set of equations
must be satisfied which do not involve any “time”-
derivatives. One of these constraints is the vanishing of
the Hamiltonian density. Other constraints are inti-
mately associated with the covariance properties of the
theory. If we introduce? “parameters,” three con-
straints follow from the invariance of the theory with
respect to parameter transformations; if the theory is
covariant with respect to general coordinate transfor-
mations we shall have four constraints corresponding
to coordinate covariance; finally, gauge invariance of
the electromagnetic field leads to one constraint of its
own. The number of constraints always equals the
number of arbitrary functions involved in the transfor-
mation group. Once the constraints are satisfied on one
hypersurface, the field equations automatically insure
that the constraints remain satisfied permanently.

The usefulness of the canonical formalism consists in
the relative ease with which the new field equations
and their solutions can be discussed. Furthermore, we
expect that the quantization of the theories in this form
will be a relatively easy and straightforward procedure.

We have given a proof of the existence of the Hamil-
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tonian previously,? but did not provide a procedure for
its construction. The purpose of this paper is to indicate
such a procedure for the large class of theories in which
the Lagrangian density is homogeneous and quadratic
in the first derivatives. The calculations are then
carried through to completion for the best-studied
example of a covariant field theory, Einstein’s theory
of gravitation with an electromagnetic field. The
application of the formalism thus obtained to the prob-
lem of motion and its quantization will be provided in
subsequent papers.

2. THE BASIC FORMS WITH A QUADRATIC
LAGRANGIAN

Consider a Lagrangian density which is a homo-
geneous quadratic function of the first derivatives of
the field variables y4, which, in other words, possesses
the form

L=AA’Bﬂ(y)yA, pyB,n- (21)

For constructing the momentum densities and other
pertinent functions, we shall introduce the ‘“param-
eters” of II, the u®, {. The modified Lagrangian, JL,
will then be homogeneous of the first degree in the
“time”-derivatives of all the field variables, including
the coordinates. In the special case (2.1), this homo-
geneous function of the first degree will be a homo-
geneous quadratic form, divided by a homogeneous
linear form. In fact, straightforward calculation shows
that JL is given by the expression

JL= ()G ey, (2.2)
where the coefficients G*® and /¢ are:
GAB=A4eB7Jt 1 ,,
GA,=A4PBJt yp o J (U2, o8, ,— 4 ,1,5), (2.3)

Guv=A4PB7y 4| T (U™ ot s — 0", n)yBlaJ(“‘. oy =% 3t,q),
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and

14=0, 1,=Jt,. (2.4)

The significance of the indices a, b, - - - is the same as
in II, p. 485. Now we can form without difficulty the
expressions for the (NV4-4) canonical momentum densi-
ties w2 and also for the matrix A of II, Eq. (3.13), which
is closely associated with the algebraic constraints on
the canonical field variables y,, 7% We obtain the
following expressions for the momentum densities,
first in the “lumped” notation (in which the original
field variables and the coordinates are treated uni-
formly),

wo= (19 4)~H(G¥e+ G I — G¥l®)y b, 2.5)
and then in the “extended” notation,
A= 27 H(GAB - GA),
Ne=20"HG,BYp+Gpo?)
— T2t W(GABY 4y B+ 2G4 437+ Gpoi?2%).  (2.6)

The canonical momenta are all homogeneous of the
zeroth degree in the dotted variables. The components
w4 are fractions in which both numerator and denomi-
nator are linear homogeneous forms; the \, are fractions
of quadratic forms.

The partial derivatives of the algebraic constraints
with respect to the momentum densities are all null
“vectors’ of the matrix A. The components of A are

Asd=2(ly,)3

X (Go¥eli—Goeldld—GPalele4-Gelel®) g pa - (2.7)
in the “lumped” notation and
AAB=2J-\4eBo]; Tt
A4, =2T71G4,—2T72t, ,A4PB° ] ,

XUt ayntymial (u o s—u ot )4, (2.8)
Aw=27""Gy»
=277 [Jt, (G4 a+Gpit?) + T, ,(GPYp+Gust?) ]
+27-37¢ ,Jt 2L

in the “extended” notation.

In what follows, we shall denote the algebraic con-
straints by identifying symbols: the three “parameter”
constraints

0= Ya|sT°, (29)

by g.; the four “coordinate’ constraints
0= FA;‘B’}’BWA-”, vy Kn(yc;ycl 8 x’la): (2.10)

by gu; and in the presence of an electromagnetic field,
the “gauge” constraint

0=Jt 4", (2.11)
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by ¢. The remaining constraint will serve as the
Hamiltonian density and will, therefore, be denoted by

. H. This last and most important constraint is connected

with the homogeneity of the Lagrangian. Inasmuch as
the canonical momenta are homogeneous of the zeroth
degree in the “time”-derivatives, including the 2*, they
must satisfy at least one algebraic identity, and we
shall find that this identity is algebraically independent
of the constraints (2.9) and (2.10). Our task is to
discover this identity.

The algebraic constraints between the canonical
variables must hold for any combinations of the field
variables consistent with the expression (2.5) for the
momentum densities. We shall, therefore, for any
combination of parameter values and field variables,
construct a symbolic “vector space” in which the time
derivatives ¢, are the coordinates. The functions ¢,
(2.5), are then specific zeroth-degree homogeneous
functions of the coordinates in that vector space. In
any transformation of the g, into new g,” with non-
vanishing Jacobian, the ‘“coordinates” of our vector
space will undergo a linear transformation, and the
momentum densities will transform contragrediently to
them. We shall refer to the ¢, as “coordinates,” and
we shall call quantities with the same transformation
law “contravariant vectors.” By the same token, the
m° form a covariant vector, the G*® a covariant sym-
metric tensor, etc. In attempting to find an algebraic
relationship between the momenta (2.5) and the y,
which will serve as our Hamiltonian density, we shall
look for combinations which are invariant with respect
to the “coordinate transformations” in this symbolic
vector space. We are thus led to examine the typical
vector-algebraic formations available.

If we look over the “building blocks” that might
possibly be used in setting up our desired relation, we
find that there are given to us a covariant vector, /¢,
and a covariant symmetric tensor G°®, apart from the
coordinates g, themselves. But since our relationship
is to be a constraint in the y, and 7* only, satisfied
identically in Egs. (2.5), the coordinates must enter
only by way of the functions #°. In addition, we have
the invariant subspaces of the null vectors of the tensors
Act and G We know that the w-derivatives of the
various algebraic constraints are null vectors of the
tensor A®®, Some of them are null vectors of G*® as well,
as we shall show now.

Take first the derivatives of g,. We have

G*>(3gs/0m®) =G by,
G%yys=G*Pyp+GA 27,
=A49B7Jt [Tt ;ypist Ve (U7, ob s — %7, 8, 5)2")5 ]

-0, (2.12)
Go®yo15=G,PyB1s+Gpox,=0.

In other words, the “vector” with the components
Yajs is @ null vector of G°b. Next we shall form the
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product of G** by the w-derivaties of g, In this case,
the result is not zero, but proportional to J¢ ,:

9g,/9mB=F5,C7y0Jt 1, 8g,/oN,=0
GAB(dg,/dnB)=A4#B°Fp,C7ycJt Jt, ,Jt ,=0,
GB(dg,/omB) =Tt ,(A4*Boy, JFpC7Jt . Jt ,yc).

(2.13)

Thus, while the four vectors (dg,/d0n®) are not them-
selves null vectors of G*?, there exist three independent
linear combinations that are.

The dot product of the “vector” I by any of the
seven known null vectors of A%® vanishes, as can be
proven by a brief computation. Finally, the dot product
of these null vectors by the ‘“vector” w* leads back to
the constraints already known. Thus, we require an
additional “tensor” to produce the Hamiltonian, and
such a tensor would naturally be the inverse of G4,
were it not for the fact that G*? is a singular matrix
and therefore possesses no inverse.

3. THE QUASI-UNIVERSE

We can construct a contravariant symmetric tensor
by finding the solution of the following conditions:

GELGei=0, EqG*Eou=0. 3.1)

These conditions possess a solution, even though G°® is
singular, but the solution is not uniquely determined.
[Only for a regular matrix G, Egs. (3.1) will determine
uniquely the ordinary inverse G™L.7] For a singular
matrix G, like the one we have to deal with in our
present problem, we shall call E the “quasi-inverse” of
G. The significance of E can be ascertained most easily
in a “special” coordinate system, in which the null
vectors of G are parallel to coordinate axes.? In such a
special coordinate system, G takes the form

& 0
(7))
0, 0
The most general solution of Egs. (1.14) in this special
coordinate system is

Lok
E= ( £ )
hT,  hTgh
Here g! is the inverse of the matrix g, and the rec-
tangular matrix % is completely arbitrary. The super-
script 7 denotes the transpose. If we set % equal to
zero, we get as a solution a matrix which commutes
with G and which we obtain by replacing each non-zero

eigenvalue of G by its reciprocal value, while retaining
the zero eigenvalues unchanged. (Naturally, if there

3.2)

(3.3)

3 Of course, G does not transform as a matrix, but as a symmetric
tensor; but just as in matrix calculus, the existence of null vectors
precludes the formation of a ‘contravariant metric tensor,”
which would be the precise analog to the inverse in matrix
calculus.

are no zero eigenvalues, i.e. if G is regular, then the
quasi-inverse of this form goes over into the inverse.)
All possible solutions of (3.1) can be transformed into
each other by means of suitably chosen coordinate
transformations. In the special coordinate system [in
which G has the form (3.2)], the transformation matrix

leading from
e 0
a5 o)
0, O

to (3.3) has the form

1,
s=(
g,

The transformation law for G is

(3.4)
0
), y'=Sy, E'=SEST=E. (3.5)

1, 0
G'=(ST)"'GS-1, where S‘1=( ), (3.6)
—iTg, 1

and if S, (3.5), is applied to G, (3.2), the latter goes
over into itself.
For use in the following section, we shall prove the

covariant relationship
GEl=1. 3.7

Being normal to all null vectors of A and, therefore,
a fortiort, to all null vectors of G, the covariant vector
! must, in a “special” coordinate system, possess the

form
A
z=( )
0

This form is invariant with respect to coordinate
transformations (3.5), since the transformation law for
lis

(3.8)

= (ST). (3.9)

If we now compute the left-hand side of Eq. (3.7) in a
system in which E has the form (3.4), we have the
result (3.7) immediately, and since the expression
(GEI—1) is a covariant vector, it will vanish in every
coordinate system if it vanishes in one.

4. THE HAMILTONIAN DENSITY

If we possess the form E [any one solution of (3.1)],
we are able to form additional invariants. Applying
matrix notation to (2.5), we can write for the vector =:

21
r=—Gy——@GTGy)l, J=ITy, “.1)
7R

and if we multiply this expression by E to form a
contravariant vector, we get

2 1
Er= - EGy — — (j7Gy)EL 4.2
7 Gy ﬂ(y Gy) *.2)
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Now we can form the scalar #TEm,

7TEx= (ITEl)(yTGy/J?)? (4.3)
and the scalar ITEm,
ITEx=2— (ITE)(TGy/J?). (4.4)

Between these two quantities, we can eliminate the ¥,
completely, and we obtain the algebraic relationship

(7El)(x"Ex)— [2— (" Ex) =0. (4.5)

The left-hand side of this last constraint is suitable as
a Hamiltonian density. In theories which possess co-
ordinate covariance in addition to the trivial parameter
invariance, the Hamiltonian simplifies even more.
In Section 7, we shall show that the scalar (I”El)
vanishes, and therefore, because of Eq. (4.3), the
Hamiltonian density reduces to

H=1nTEr=0. (4.6)

5. THE FIRST TRANSFORMATION

With the establishment of Egs. (4.5) and (4.6), the
construction of a Hamiltonian density has been reduced
to an algebraic problem, namely the determination of
the “tensor” E. Instead of merely reporting the result,
which can be verified, of course, by substitution into
Eqgs. (3.1), we shall go through the complete calcula-
tions, because they show how the same work may be
carried out with a different theory. The guiding idea in
these calculations is the continued transformation of G
until it is brought as closely as possible into the form
(3.2). To find the inverse of the regular matrix g is
relatively easy.

The first of this series of transformations isolates the
three parameter constraints g,. Inasmuch as the corre-
sponding three null vectors of the matrix G have the
form

9g4/0m4=ya1s= (Y15, 2}5), (.1

we shall introduce a new “coordinate system’ in the
linear vector space of the ¥, in which these three
vectors become coordinate axes. The null vectors of
the covariant tensor G are, of course, themselves
contravariant vectors. If the three null vectors (5.1)
are to become parallel to three particular coordinate
axes, then the transformed matrix G (which we shall
denote by G’) will have only zeros in the corresponding
three rows and columns. Naturally, these requirements
do not determine the transformation matrix uniquely,
though it is clear that the transformation matrix for
covariant vectors must contain the three null vectors
(5.1) as matrix rows or columns. Calling that matrix 4,
so that

G'=AGAT, A=(ST)" (5.2)
[see Eq. (3.6)], and separating for convenience the
rows and columns with indices 4, B, --- from those

with indices p, o, - - -, we find that a convenient trans-
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formation matrix is

§p, 0
A= YBiry xalr 3 (53)
0, i

where v” are four quantities which, for the time being,
shall remain undetermined. The determinant of A
equals v°J¢, and we must, therefore, require that

v=1"J¢ ,7#0. (5.4)
Applying the transformation 4, we find that
G480, G4
G=| O, 0, 0 , 5.5)
G,B, 0, G,v™°
0
r={o0), (5.6)
v
and
7rA
=| 0 (5.7
2P\,

Clearly, the quasi-inverse of the matrix (5.5) can be
chosen so that three of its rows and columns consist
entirely of zeros, thus:

Esp 0 E,
E={o0o o0 o) (5.8)
Eg 0 E

If we make that choice, we have from now on to deal
only with covariants in an (N-+1)-dimensional space,
instead of an (N-4-4)-dimensional space. In this re-
duced space, our covariants will have the forms:

GAB, GAavc
= ( ), (5.9)
G,E, G’
0 0
= ( ), = ( ) (5.10)
v N,
and
_ (Ess, Ea
E= ( ) . (5.11)
Ep, E,

6. THE SECOND AND THIRD TRANSFORMATIONS

We shall write the four cooordinate constraints
(2.10) in the abbreviated form

gu=ttpar—K,, w,a=F4,5"ypJt,. 6.1)

In the (V+1)-dimensional space and in the coordinate
system denoted by bars (G, etc.), the gradients of these
four constraints take the form

w=('e')
U= .
“\o

(6.2)
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Because of Egs. (2.13), we have further

_ 0
Ga,.=( )
U,

(6.3)
U“= VY4, pAA"BVJt, MU= ‘Z)"G,,B‘MMR‘

Our task is now to further transform the coordinates
so that additional rows and columns of the G-matrix
will be filled with zeros. To this end, we shall introduce
the transformation matrix D with the components

DAy, 0
D={ w4, 0} (6.4)
0, 1

to be used for the transformation of covariant vectors
and tensors. The indices 4’, B/, -+, are to run from 1
to N—4, and the coefficients D4’4 are to be chosen
according to convenience, with the only proviso that
the determinant of the matrix D (and that means the
N-rowed sub-determinant in the upper left-hand corner)
shall not vanish. The resulting covariants shall be
denoted by double primes. In the following expressions,
each column and row is broken down into three portions,
of which the first has (V—4), the second 4, and the
third 1 component. For G we get

G"=DGDT
DA ,GABDB'y 0, DA 4G4’
= 0, 0, Us ) (65)
»G,BDB'g, U,  Gpv’r’
the vector I remains unchanged,
0
"={o0), (6.6)

?

and for the vector 7", finally, we have the two alterna-
tive expressions

DA'AWA DA’A,".A
m'=\ wart )= K, (6.7)
°\, W

Inasmuch as the vectors .4 are not null vectors of
@, the second transformation does not make any com-
plete row or column of G’ vanish, as the first transfor-
mation did. Of course, it would be an easy matter to
find three independent linear combinations of the four
numbers U, that vanish, and thus, by a further trans-
formation, to produce three further completely empty
rows and columns. Presumably, the resulting (V—2)-
rowed matrix would be non-singular and could be used
as the submatrix g of Egs. (3.2) and (3.4). But such a
procedure would destroy the symmetry between the
four coordinate directions of physical space, the four
directions characterized by Greek indices. That is why
we shall adopt a different procedure to find the quasi-
inverse.

We shall show that we can define a third transfor-
mation matrix T which removes from the matrix G”,
Eq. (6.5), the first and third portions in the last row
and the last column, which, in other words, reduces
G" to the form

G"=TG'TT

GvB 0, 0
= 0, 0, Uy} (68)
0, U,

GA'B'= DA’ , DB’ xGAB,

We shall find the quasi-inverse of G”’ below. The
matrix T has the following form:

34’5, 0, 0
T= 0 57, 0)

) (6.9)
—Gp oD GCr?, p7, 1

Gprc is the inverse of the (non-singular) matrix G4'%,
G oGAE'=64"¢i, (6.10)

and ¥ are four quantities subject only to one require-
ment, that the dot product of ” by U, has a specified
value, namely

U,B#=34v7(G,AG,PDA 4D 5G a1 —Gpe).  (6.11)

This last condition follows from straightforward compu-
tation of the transformation that leads from G” to G’
in accordance with Egs. (6.8) and (6.9).

Once we have reduced G’ to the form (6.9), we can
obtain its quasi-inverse directly. The matrix E”’ has
the components

Gap, 0, O
E"=} 0, 0, o} (6.12)
0, a, 0

where ¢* are four quantities subject to the only require-
ment that

O'#Up= 1. (6.13)

That the matrix (6.12) is really the required quasi-
inverse, or, at least, that it is one possible form of the
quasi-inverse, can be verified by direct substitution
into the defining equations (3.1).

Before we can obtain the expression for the Hamil-
tonian density, we must apply the third transformation
to our two vectors /” and 7”’. Again, I’ does not change
at all,

=]

"M=1"={0 ,
?

(6.14)

and for 7’" we get
DA'Aﬂ.A
= K, . (6.15)
v\, +B°K,— v*G,A D4’ 4G 4+ 5 D?' pmB



86 BERGMANN, PENFIELD,

7. THE HAMILTONIAN

The first and obvious result of our expressions (6.12),
(6.14), and (6.15) is that the scalar (/TE!) vanishes.
To obtain the Hamiltonian density, we have, therefore,
to evaluate the expression (4.6). Instead of transforming
E"" back into E (by applying the three transformations
A, D, and T in reverse), we shall determine the Hamil-
tonian by working out the expression («T'”E"’x'").
By substituting the appropriate expressions, we get
first

H= iGA'B'DA'ADB'B‘n’ATB

+ 3K, 04(v"N 402K ,— G4 p DA 4 DB 5G4, vorB).  (7.1)

This expression could be used as the Hamiltonian
density. Its principal drawback lies in the presence of
the four-vectors o# and B* which are arbitrary except
for one cumbersome normalization restriction each,
Egs. (6.11) and (6.13), respectively. We shall now
show that both of these formations can be eliminated.
To this end, we must determine the relationship be-
tween U, and K,. We have already obtained an expres-
sion for U, in Eq. (6.3). If we now use the constraint
(2.10) to get an explicit expression for K, as well, we
find:

Ku=wuam4d =204, 4(GAByp+G4,2°)

=20, AA4#B7Jt yp o= 201U, (7.2)

This result enables us to use directly the conditions
(6.11) and (6.13) to eliminate ¢* and 8. We have

Kot=20"1U,0#=2v"!

(7.3)

and
K,B*=2v"1U,8*

=07"19207(G,AGEDA 4D¥ 5G4 —Gps). (7.4)
These two expressions, substituted into the Hamiltonian
density (7.1) yield the expression

H= vy
X[3Gar5:DA’ 4 DB’ p(Jt, ;wA— 2GA,) (Jt, B — 2GP,)
FLOJtoANTE ) —Gor ). (7.5)

In this expression for the Hamiltonian density, the
four-vector »* remains undetermined, except for the
inequality (5.4). However, a short computation shows
that the choice of this vector merely affects the manner
in which the parameter constraints (2.9) enter into the
Hamiltonian. In II, it was pointed out that the choice
of Hamiltonian is not unique, but subject to an algebraic
combination with the other constraints. The choice of
the rectangular matrix D4’4 has no effect on the
eventual form of H, except to permit the addition of
linear and quadratic combinations of the coordinate
constraints (2.10). Thus, the Hamiltonian (7.5) pos-
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sesses exactly the degree of arbitrariness required by
the general theory.
The canonical field equations take the form

Ja=0H /0w, 0= —5H/bya. (7.6)

In particular, we find that the derivatives of the
coordinates x* with respect to the parameter ¢ are
determined by the expressions

#0=0H JoN,= v1vp = (J1,,27) 105, (1.7)

The choice of the four-vector v will, therefore, be
largely governed by the desired relationship between
the coordinates and the parameter.

Finally, we shall show in passing that the relationship
(4.4), with vanishing last term, does not lead to a
suitable Hamiltonian relationship. By substituting into
the scalar (ITEm) the expressions (6.12), (6.14), and
(6.15), observing in the process the relationship (7.3),
we find that the resulting constraint is a linear combi-
nation of the coordinate constraints (2.10) alone and,
therefore, not suitable as a Hamiltonian density.

In Section 8, we shall work out the general expression
(7.5) for the particular Lagrangian that characterizes
the general theory of relativity with electromagnetic
terms.

8. THE HAMILTONIAN OF GENERAL RELATIVITY
WITH ELECTROMAGNETIC FIELD

The Lagrangian density of the general theory of
relativity has the following structure, if the electro-
magnetic field is included :*

L= Lgrav‘*‘Lel: (81)

where

Lgrav= [(—g) */167”‘]?”

() e

and
L= —[(-—g)*/léw}b“"@,. (8-3)
¢u» stands for
¢uv=¢u, v_¢y,y (8.4)
and
QL= grPE Py (8-5)

The ¢, are the four electromagnetic potentials. This
Lagrangian density contains the field variables and
their first derivatives only, but is not a scalar density.
Therefore, it belongs to the general class of Lagrangians
considered in I. It is also homogeneous quadratic in
the first derivatives of the field variables.

We shall now rewrite L to show the coefficients
A4#Bs. Renaming dummy indices and factoring we get:

L=A@Prdog o o +VErrg, b, 4,

4 See, for instance, P. G. Bergmann, I'ntroduction to the Theory
of Relativity (Prentice-Hall, Inc., New York, 1942), p. 193 fi,
Egs. (12.56) and (12.65).
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AlaPrn 99 = [ (—g)}/1287k]
X {Lg=#(grg*+gogr)+gr (g g +gg™) ]
e (grgP P~ 24%g"")
—Lg=(gPrg®+g#gm)+gP (g7g>+g%g) I},
Yrero=[(—g)Y/8m](grg—g"8").

The coefficients A and ¥ are symmetric in (4p) and
(Bo),

(8.6)

, (v8)0 — A (76 7 up, vo — Vo,
AleBo (ydo = A (¥ )U(nﬂ)p’ Yreva— Yo, e,

(8.7)
A is, besides, symmetric in each bracketed index pair

AlaB)p, (v)o = A (Ba)p, (v8)o (8.8)

In order to substitute into Eq. (7.5), we must deter-
mine the null vectors corresponding to the various
constraints and, besides, we must make a choice for the
reducing matrix D4’,. There is also a slight complica-
tion in that we have, in addition to the parameter and
coordinate constraints, the gauge constraint (2.11).

Altogether, we have 14 variables, of which 10 are
gravitational and 4 electromagnetic potentials. The
matrix G48 with 14 rows and columns actually consists
of a 10X10 and a 4X4 matrix, with the rectangular
off-diagonal spaces filled entirely with zeros. As a
first step, we shall determine the actual expression for
GAB,

GEedad
(77 2)
0 G

Gedad =[(—g)}/1287«]
XX (gergh-+ghrgad—2gfgr?)
+2(gP XX+ grO X2 XB)
— (g XBX 04 g XBX T4 ghr X a X} gBOX X)),
Gw=[(—g)}/8r](X*X*— Xg*),
Xo=Jt gg®8, X=Jt Jt g%,

(8.9)

The first of these two submatrices has the four null
vectors

Up(y8) = Jt, 7gm!+]t, 88uv, (810)

and the second submatrix has the single null vector J¢,,.
These expressions are the null vectors obtainable from
the general theory. It is, however, very easy to verify
their being null vectors by straightforward computation.

Accordingly, we require two separate matrices suit-
able for the role designated in the preceding sections by
the symbol D4’4. One 10X 6 matrix must reduce the
gravitational submatrix to a non-singular 6X6 matrix,
while another 4X 3 matrix will reduce the electromag-
netic coefficients to a non-singular 3X3 matrix. These
reducing matrices must have the further property that
they are linearly independent of the null vectors indi-
cated above. In an effort to maintain the symmetry

between the four (physical) coordinate directions, we
chose matrices which, in effect, project four-vectors
and four-tensors (in physical space-time) into the three-
dimensional space of the parameters #°. And since the
matrix elements of D must be independent of ¢-deriva-
tives, we set:

D= gupX* my

L (8.11)
D (mnyur= 3 8up&ro (AP m& | 0t X% X7 ).
The resulting expression for GA'8’ is
GA'B'= (G(“b)(Cd) 0 ),
0 Gmn
Gatyear=[(—8)*X/128m«]
(8.12)

X (gacgbd+gadgbc— 2gabgcd))
Gmn= —[(_g)}X/SW]gan
Emn= guvX*| m¥” | n.

We must now find the inverse of this non-singular
matrix. We shall first introduce the expressions

D™= X1X°T (u™ b ,—u™ k) (8.13)
with the property
Dmyxt| = 6™, (8.14)
and
grr=gr DDy, g7 gne= 0", (8.15)

The inverse matrix must be built up from the g,

The inverse electromagnetic matrix can be found by
inspection. The determination of the gravitational
matrix is only slightly more laborious. There are only
two possible combinations of g™* which satisfy all the
requirements of symmetry (namely that the matrix
G@®¢d be symmetric within each bracketed pair of
indices and that it be symmetric with respect to an
interchange between the two index pairs as wholes).
All that needs to be done is to determine the numerical
coefficients of these two possible combinations. The
final expression for the inverse is then

Gleded
e (" 1)
0’ Gmn
(8.16)

G(ab)(cd) —_ [327|.K/(_g)]X](gacgbd+gadgbc_gabgcd),
G —[8r/(— )X g™

This inverse matrix now must be multiplied by
D4’ 4D¥'p. The result of this operation is

Gepos, O )
0, G./’
| (8.17)
Gapyrtr =321/ (— @ X J(Yar¥Bs+Yat¥ By —YasY+3),
Gu=— [SW/(_g)*X}Yw;
Yor=guw—JtJt,.

D4’ 4D¥ 5G4 =G ap= (
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The matrix G4p that we have thus defined is, of
course, a quasi-inverse of the matrix G483, Eq. (8.9).
In the expression for G,,, we can replace v,, by g,
because J¢, is a null vector of that matrix. But the
same replacement can be made in the matrix G.g)(vs,
because the replacement is nothing but the addition of
a linear combination of the null vectors (8.10). Thus,
the first term in the bracket of Eq. (7.5) has been
determined.

The second term can be copied without change. In
the last term, we must substitute the correct expression
for G,.. The expressions for G4,, G,, are lengthy, but
are obtained by routine calculations from the defining
equations (2.3). We shall write them down, too, intro-
ducing as an abbreviating notation the differential
operator

yAlsj(us‘pt,a—us.atvn)EyA[;w]- (8.18)

This differential operator satisfies the product rule of
differentiation. With its help, we obtain the following
expressions:

G B, =[(—g)¥/128m«]{ (logg) rn1 (g2 X P+ gF"X %)

— 298P 1 Tt ,— 2X [ 8P 1r01+ (logg) (17

(8.19)
1271, (g8 1r1 + 8778 1r01) }»
GHo=[(—g)Y/8m1(g*"X?— g X ")y (701
and
Gpo=[(—)¥/1287«]
X {8[28° 118 apteer — (1088) 1.1 (1088) 1101 ]
— 2Lt (10gg) 11518111 (1088 1401 ]
—4ga5(8" 118" 1101) }
+[(—g)/8r](g*g" —g*8* Iuti1brter.  (8.20)

With these substitutions, the final expression for the
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Hamiltonian density becomes
H=1v"r0" {3(N\Jt ot NTE, ) —Goo

+[8mk/(— ) X ](gargps+ g8y — GabGrs)
X (BTt ,—2G(B ) (w7 Tt ,— 2G1D,)

—[27/(— )*X Jgu W*Jt, ,— 2G*,)
X @'t ,—2G%,)}.
9. CONCLUSION

The Hamiltonian density which we have obtained is
a rather formidable expression, but it is a quantity
composed exclusively of the canonical variables and
their “spatial”’ derivatives. The canonical differential
equations are of the first differential order and solved
with respect to them. Thus, the continuation of a
solution of the field equations in the ¢-direction can be
accomplished by a series of iterated integrations.
Naturally, the Hamiltonian (8.21) with (8.19) and
(8.20) is not the most general expression imaginable
that can be used for the Hamiltonian. We can multiply
it by an arbitrary (but non-zero) function of the
dynamical variables and the parameters (and such a
factor will affect the relationship between the parameter
¢t and the coordinates), and we can add arbitrary linear
combinations of the coordinate constraints g, Eq.
(2.10). The addition of parameter constraints g, will
have no other effect than would the adoption of partic-
ular expressions for the arbitrary wz*. Thus, having
obtained one expression for H, we can easily find all
other possible expressions, and we can thus use the
equivalent of any coordinate condition and parameter
condition desired. As for the gauge constraint (2.11),
adding ¥ with any factor to the Hamiltonian amounts
to the adoption of a particular gauge condition.

The new formalism available will be used to give a
new derivation of the equations of motion, which was
first achieved by means of an approximation method
by Einstein, Infeld, and Hoffmann. We shall obtain
the instantaneous acceleration of singularities rigor-
ously by assuming a certain field at a time / in agree-
ment with all the algebraic constraints (including the
vanishing of the Hamiltonian density) and then con-
tinuing into the future (or past). Later we expect to
quantize the theory and to examine problems involving
radiative processes.

(8.21)



