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In this paper we have given a specific example of a Hamiltonian of a non-linear field theory, a Hamiltonian
density completely free of time derivatives. In accordance with the general theory developed previously,
this Hamiltonian is one of the constraints between the canonical variables and, therefore, vanishes every-
where. To obtain this function, we have developed methods that will also permit the construction of Hamil-
tonian densities in any field theory in which the Lagrangian density is quadratic in the first derivatives.
Our Hamiltonian differs from the one obtained by Schild and Pirani in that they use Dirac's method to
derive a Hamiltonian that is invariant but contains velocities, so that their canonical field equations cannot
be solved with respect to the time derivatives of all canonical variables. In our formalism, the canonical
equations contain no time derivatives on the right-hand sides, but the adoption of a particular Hamiltonian
is equivalent to the adoption of a particular coordinate condition and gauge condition. However, once we
have obtained any one Hamiltonian density, we can readily obtain any other one (and thus go over to
arbitrary coordinate and gauge conditions) by combination with the other constraints of the theory in
question.

1. INTRODUCTION
'

N two previous papers, "it was shown that any set
~ - of 6eld equations which can be derived from a
variational principle can be cast into the canonical
form, with a Hamiltonian which vanishes identically.
With the introduction of canonically conjugate vari-
ables, the so-called momentum densities, and with the
(arbitrary) singling out of some direction at each world
point (local "time"-axis), it is possible to reformulate
the whole formalism in such a manner that the diGer-
ential equations are all 6rst-order equations, solved
with respect to the "time"-derivatives. On a single
"space"-like hypersurface, a small set of equations
must be satisfied which do not involve any "time"-
derivatives. One of these constraints is the vanishing of
the Harniltonian density. Other constraints are inti-
mately associated with the covariance properties of the
theory. If we introduce' "parameters, " three con-
straints follow from the invariance of the theory with
respect to parameter transformations; if the theory is
covariant with respect to general coordinate transfor-
mations we shall have four constraints corresponding
to coordinate covariance; finally, gauge invariance of
the electromagnetic field leads to one constraint of its
own. The number of constraints always equals the
number of arbitrary functions involved in the transfor-
mation group. Once the constraints are satisfied on one
hypersurface, the field equations automatically insure
that the constraints remain satisfied permanently.

The usefulness of the canonical formalism consists in
the relative ease with which the new 6eld equations
and their solutions can be discussed. Furthermore, we
expect that the quantization of the theories in this form
will be a relatively easy and straightforward procedure.

We have given a proof of the existence of the Hamil-
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' P. G. Bergmann, Phys. Rev. 75, 680 (1949), referred to as I.
~ P. G. Bergmann and J. H. M. Brunings, Rev. Mod. Phys.

21, 480 (1949), referred to as II.

tonian previously, ' but did not provide a procedure for
its construction. The purpose of this paper is to indicate
such a procedure for the large class of theories in which
the Lagrangian density is homogeneous and quadratic
in the first derivatives. The calculations are then
carried through to completion for the best-studied
example of a covariant field theory, Einstein's theory
of gravitation with an electromagnetic 6eld. The
application of the formalism thus obtained to the prob-
lem of motion and its quantization will be provided in
subsequent papers.

J-=~"'"(r)r~,.y~. '
For constructing the momentum densities and other
pertinent functions, we shall introduce the "param-
eters" of II, the I', t. The modified Lagrangian, JI.,
will then be homogeneous of the first degree in the
"time"-derivatives of all the held variables, including
the coordinates. In the special case (2.1), this homo-
geneous function of the 6rst degree will be a homo-
geneous quadratic form, divided by a homogeneous
linear form. In fact, straightforward calculation shows
that JI. is given by the expression

JL=(t'j,) 'G 'j jb,

where the coeKcients 6 ' and t are:

GAB +A pBoJt Jt
G"„=A"I'~ Jt,y&~,J(u', t „—u' P,),

(2.2)

(2.3)

G„„=tt"&eyg~ Q(u" ,t „ u" „t ,)y, ~),,J—(u'„, t ,„ u*, p, .), ,
—

2. THE BASIC FORMS WITH A QUADRATIC
LAGRANGIAN

Consider a Lagrangian density which is a homo-
geneous quadratic function of the first derivatives of
the 6eld variables yA, which, in other words, possesses
the form
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and
l~=0, /„=Jt, „. (2.4)

The significance of the indices a, b, ~ ~ is the same as
in II, p. 485. Now we can form without difhculty the
expressions for the (/+4) canonical momentum densi-
ties s' and also for the matrix tl. of II, Eq. (3.13), which
is closely associated with the algebraic constraints on
the canonical Geld variables y, m . We obtain the
following expressions for the momentum densities,
first in the "lumped" notation (in which the original
field variables and the coordinates are treated uni-
formly),

xa (ldft ) 2(Ga—blc+Gaelb Gbcla)1't y

and then in the "extended" notation,

~A —2J 1(GABj +GA~a)

1%,„=2J '(G„~jIi+G~')

(2.5)

J 'Jt, „(—GA—
tlAjs+2GA.jAx'+Gp~&x~) (2.6).

0=y, j,x,
by g„. the four "coordinate" constraints

(2 9)

The canonical momenta are all homogeneous of the
zeroth degree in the dotted variables. The components
m" are fractions in which both numerator and denomi-
nator are linear homogeneous forms; the X„are fractions
of quadratic forms.

The partial derivatives of the algebraic constraints
with respect to the momentum densities are all null
"vectors" of the matrix A. The components of A are

A'= 2(l'j,)—'

X (G"l'l G"l'l—" G' l'—l'+G' l'l') j .jA (2.7)

in the "lumped. "notation and

A~B 2J—iA ~pBaJt J
A~ —2J 'G~ —2J 2Jt Q~IB~Jt

X[Jt,.yii+yii), J(u', .t,„u',„t,.)x1'), (—2.8)

2J 'G

2J '[Jt,„(GA.jA+G, ~—~)+Jt, .(Gp ys+G~'))
+2J 'Jt, „Jt,J'L-

in the "extended" notation.
In what follows, we shall denote the algebraic con-

straints by identifying symbols: the three "parameter"
constraints

by P. The remaining constraint will serve as the
Hamiltonian density and will, therefore, be denoted by
B.This last and most important constraint is connected
with the homogeneity of the Lagrangian. Inasmuch as
the canonical momenta are homogeneous of the zeroth
degree in the "time"-derivatives, including the i&, they
must satisfy at least one algebraic identity, and we
shall Gnd that this identity is algebraically independent
of the constraints (2.9) and (2.10). Our task is to
discover this identity.

The algebraic constraints between the canonical
variables must hold for any combinations of the Geld
variables consistent with the expression (2.5) for the
momentum densities. We shall, therefore, for any
combination of parameter values and field variables,
construct a symbolic "vector space" in which the time
derivatives j, are the coordinates. The functions m,
(2.5), are then specific zeroth-degree homogeneous
functions of the coordinates in that vector space. In
any transformation of the j, into new j,' with non-
vanishing Jacobian, the "coordinates" of our vector
space will undergo a linear transformation, and the
momentum densities will transform contragrediently to
them. We shall refer to the j, as "coordinates, " and
we shall call quantities with the same transformation
law "contravariant vectors. " By the same token, the

form a covariant vector, the G b a covariant sym-
metric tensor, etc. In attempting to find an algebraic
relationship between the momenta (2.5) and the y,
which will serve as our Hamiltonian density, we shall
look for combinations which are invariant with respect
to the "coordinate transformations" in this symbolic
vector space. We are thus led to examine the typical
vector-algebraic formations available.

If we look over the "building blocks" that might
possibly be used in setting up our desired relation, we
find that there are given to us a covariant vector, l,
and a covariant symmetric tensor G b, apart from the
coordinates j, themselves. But since our relationship
is to be a constraint in the y, and x' only, satisfied
identically in Eqs. (2.5), the coordinates must enter
only by way of the functions m'. In addition, we have
the invariant subspaces of the null vectors of the tensors
A ' and G '. We know that the +-derivatives of the
various algebraic constraints are null vectors of the
tensor A'b. Some of them are null vectors of G b as well,
as we shall show now.

Take first the derivatives of g, . We have

G '(Bg,/8 ') =G 'y („
GA byb~ QAByB~ +@A

O=F„„"y "Jt,„K„(y„y,i„x i,), —(2.10)
= tt A's'Jt, [Jty&~,+y&, ~

Q(u, '.t „—u", „t,)x"~,)

by g„; and in the presence of an electromagnetic Geld,
the "gauge" constraint

(2.11)

Gt ybI Gt yBI ~+GI~~I tt

=0, (2.12)

In other words, the "vector" with the components

y,j, is a null vector of G '. Next we shall form the
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product of G" by the m-derivaties of g„. In this case,
the result is not zero, but proportional to Jt, :

Bgg/87r =Fsp ycJt, ~) Bg~/clXp=0

G" (Bg /Bxs)=A"'s'F~ c'ycJt, ,Jt, pJt, =O, (2.13)

G (Bg /Bn) . Jt (A ~ .
y~ ~F~ c.Jt,Jt, ,yc).

are no zero eigenvalues, i.e. if G is regular, then the
quasi-inverse of this form goes over into the inverse. )
All possible solutions of (3.1) can be transformed into
each other by means of suitably chosen coordinate
transformations. In the special coordinate system [in
which G has the form (3.2)j, the transformation matrix
leading from

(C
'

&O, O)
(3 4)

f1, OyS=
( ~, y'=Sy, E'=SEpSr=E. (3.5)
Ehrg 1)

1, Oy
G'=(Sr) 'GS ' where S—'=

) ~& (3.6)
E —h'g 1)

Thus, while the four vectors (Bg„/Bxs) are not them-
selves null vectors of G b, there exist three independent
linear combinations that are.

The dot product of the "vector" l by any of the to (3.3) has the form
seven known null vectors of A b vanishes, as can be
proven by a brief computation. Finally, the dot product
of these null vectors by the "vector" x' leads back to
the constraints already known. Thus, we require an
additional "tensor" to produce the Hamiltonian, and The transformation law for G is
such a tensor would naturally be the inverse of G b,

were it not for the fact that G b is a singular matrix
and therefore possesses no inverse.

G"E G' =0, E bG"E,g
——0. (3.1)

These conditions possess a solution, even though G" is
singular, but the solution is not uniquely determined.
LOnly for a regular matrix G, Eqs. (3.1) will determine
uniquely the ordinary inverse G '.j For a singular
matrix G, like the one we have to deal with in our
present problem, we shall call E the "quasi-inverse" of
G. The signi6cance of E can be ascertained most easily
in a "special" coordinate system, in which the null
vectors of G are parallel to coordinate axes. ' In such a
special coordinate system, G takes the form

3. THE QUASI-UNIVERSE

We can construct a contravariant symmetric tensor
by 6nding the solution of the following conditions:

and if S, (3.5), is applied to G, (3.2), the latter goes
over into itself.

For use in the following section, we shall prove the
covariant relationship

(3.7)

Being normal to all null vectors of A and, therefore,
u fortiori, to all null vectors of G, the covariant vector
l must, in a "special" coordinate system, possess the
form

(3 g)

This form is invariant with respect to coordinate
transformations (3.5), since the transformation law for
/ 1S

(Sr) 'l (3 9)

(O, Oi
(3.2)

The most general solution of Eqs. (1.14) in this special
coordinate system is

tg', h

& h~, h~gh&
(3.3)

Here g
' is the inverse of the matrix g, and the rec-

tangular matrix h is completely arbitrary. The super-
script ~ denotes the transpose. If we set h equal to
zero, we get as a solution a matrix which commutes
with G and which we obtain by replacing each non-zero
eigenvalue of G by its reciprocal value, while retaining
the zero eigenvalues unchanged. (Naturally, if there

' Of course, G does not transform as a matrix, but as a symmetric
tensor; but just as in matrix calculus, the existence of null vectors
precludes the formation of a "contravariant metric tensor, "
which would be the precise analog to the inverse in matrix
calculus.

4. THE HAMILTONIAN DENSITY

If we possess the form E Lany one solution of (3.1)],
we are able to form additional invariants. Applying
matrix notation to (2.5), we can write for the vector m:

2 1
~= —Gy (j"Gt't)l, J= lry, ——

J J' (4.1)

and if we multiply this expression by E to form a
contravariant vector, we get

2 1
E~= —EGtl ——(PGtt) El

J J' (4.2)

If we now compute the left-hand side of Eq. (3.7) in a
system in which E has the form (3.4), we have the
result (3.7) immediately, and since the expression
(GEl—l) is a covariant vector, it will vanish in every
coordinate system if it vanishes in one.
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Now we can form the scalar +~Ex,

n VEv'= (lrEl) (pGjj/J )~

and the scalar /~Ex,

(4.3)

formation matrix is

0
A=I yes„*i, t

(o,
' (5.3)

PEer= 2 (F—El)(P&j/J') (4.4)

Between these two quantities, we can eliminate the j,
completely, and we obtain the algebraic relationship

where v' are four quantities which, for the time being,
shall remain undetermined. The determinant of A
equals v Jt, and we must, therefore, require that

(FE/) (~VE~) [2——(FEv.)$'=—0. (4.5)

The left-hand side of this last constraint is suitable as
a Hamiltonian density. In theories which possess co-
ordinate covariance in addition to the trivial parameter
invariance, the Hamiltonian simplifies even more.
In Section 7, we shall show that the scalar (FEl)
vanishes, and therefore, because of Eq. (4.3), the
Hamiltonian density reduces to

e=v Jt,&0.

Applying the transformation 3, we find that

GAB 0 GA ve)
G'=i O, O, O

G,~, 0, Ge.Vev')

0)
f'=/ o,

(5 4)

(5 5)

(5.6)

H= ~m ~8~=0.

5. THE FIRST TRANSFORMATION

(4.6)
and

~ge/~& ye)e (yA[ee & )e)e (5.1)

we shall introduce a new "coordinate system" in the
linear vector space of the j, in which these three
vectors become coordinate axes. The null vectors of
the covariant tensor 6 are, of course, themselves
contravariant vectors. If the three null vectors (5.1)
are to become parallel to three particular coordinate
axes, then the transformed matrix G (which we shall
denote by G') will have only zeros in the corresponding
three rows and columns. Naturally, these requirements
do not determine the transformation matrix uniquely,
though it is clear that the transformation matrix for
covariant vectors must contain the three null vectors
(5.1) as matrix rows or columns. Calling that matrix A,
so that

G' AGAV, A=(5r) ' (5 2)

With the establishment of Eqs. (4.5) and (4.6), the
construction of a Hamiltonian density has been reduced
to an algebraic problem, namely the determination of
the "tensor" E. Instead of merely reporting the result,
which can be veri6ed, of course, by substitution into
Eqs. (3.1), we shall go through the complete calcula-
tions, because they show how the same work may be
carried out with a diBerent theory. The guiding idea in
these calculations is the continued transformation of 6
until it is brought as closely as possible into the form
(3.2). To find the inverse of the regular matrix g is
relatively easy.

The first of this series of transformations isolates the
three parameter constraints g, . Inasmuch as the corre-
sponding three null vectors of the matrix 6 have the
form

(5 &)

Clearly, the quasi-inverse of the matrix (5.5) can be
chosen so that three of its rows and columns consist
entirely of zeros, thus:

(E~a
E'= O O O i.

(E, o ED)
(5.8)

If we make that choice, we have from now on to deal
only with covariants in an (X+1)-dimensional space,
instead of an (X+4)-dimensional space. In this re-
duced space, our covariants will have the forms:

AB GA ve

('VeGe
e GeeVeV )

(5.9)

and

E V) EV9,)

(+LB' +A
t

(Ev, EP )

(5.10)

(5.11)

0. THE SECOND AND THIRD TRANSFORMATIONS

YVe shall write the four cooordinate constraints
(2.10) in the abbreviated form

g„=N„ger ' E„, N„g =Fg„~"ysJt—. (6.1)

In the (X+1)-dimensional space and in the coordinate
system denoted by bars (G, etc ), the grad. ients of these
four constraints take the form

Lsee Eq. (3.6)j, and separating for convenience the
rows and columns with indices A, 8, . from those
with indices p, a, , we And that a convenient trans-

F""&
(0) (6.2)
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Because of Eqs. (2.13), we have further

U„=vyg, g"&s Jt,u„s, = s&G eu B.
(6 3)

Ke shall show that we can define a third transfor-
mation matrix T which removes from the matrix G",
Eq. (6.5), the first and third portions in the last row
and the last column, which, in other words, reduces
G" to the form

G"'= rG"r~
Our task is now to further transform the coordinates
so that additional rows and columns of the 6-matrix
will be filled with zeros. To this end, we shall introduce
the transformation matrix D with the components

G~~ 0 0
o, o, v„,

I, o,'v'„, 0")' (6 g)

(Da' 0)
D=/ u„", 0 /,

1)

GA'B' DA' ~'~AB
(64) We shall find the quasi-inverse of G"' below. The

matrix T has the following form:

(DA' GABDB'

o,
s G,~De's,

0,
0,
U„

D ' G.')V„~, (6.5)
Gp 'v~0

the vector / remains unchanged,

to be used for the transformation of covariant vectors
and tensors. The indices A', 8', ~, are to run from 1

to X—4, and the coe%cients D"'~ are to be chosen
according to convenience, with the only proviso that
the determinant of the matrix D (and that means the
X-rowed sub-determinant in the upper left-hand corner)
shall not vanish. The resulting covariants shall be
denoted by double primes. In the following expressions,
each column and row is broken down into three portions,
of which the first has (X—4), the second 4, and the
third 1 component. For G" we get

G"=DGD~

P'g 0, 0)
o, s„, 0~.

Gii c D—'cG r' P" 1J
(6.9)

Gii c is the inverse of the (non-singular) matrix G"'e',

G, ,GA'B' gA' (6.10)

and P" are four quantities subject only to one require-
ment, that the dot product of P" by U, has a specified
value, namely

pp& p&p~(G AG BDA'ADB BGA'B' Gpe) (6.1.1)

This last condition follows from straightforward compu-
tation of the transformation that leads from G" to G"'
in accordance with Eqs. (6.8) and (6.9).

Once we have reduced G'" to the form (6.9), we can
obtain its quasi-inverse directly. The matrix E"' has
the components

t"=/ o t (6.6)
(G~s, 0, 0)

o, o,
0, ~~, 0

(6.12)

and for the vector x", finally, we have the two alterna-
tive expressions

u„,~" /= I
Z'„

Pt'~p V9q

(6.7)

Inasmuch as the vectors u„~ are not null vectors of
C, the second transformation does not make any com-

plete row or column of G" vanish, as the first transfor-
mation did. Of course, it would be an easy matter to
6nd three independent linear combinations of the four
numbers U„ that vanish, and thus, by a further trans-
formation, to produce three further completely empty
rows and columns. Presumably, the resulting (1V—2)-
rowed matrix would be non-singular and could be used
as the submatrix g of Eqs. (3.2) and (3.4). But such a
procedure would destroy the symmetry between the
four coordinate directions of physical space, the four
directions characterized. by Greek indices. That is why
we shall adopt a difkrent procedure to 6nd the quasi-
inverse.

(6.14)

and for m'" we get

DA' ~A

~
z„

vga +p&~ epG ADA AGA'B'D Bg )
(6.15)

where 0.& are four quantities subject to the only require-
ment that

(6.13)

That the matrix (6.12) is really the required quasi-
inverse, or, at least, that it is one possible form of the
quasi-inverse, can be verified by direct substitution
into the defining equations (3.1).

Before we can obtain the expression for the Hamil-
tonian density, we must apply the third transformation
to our two vectors l" and m". Again, l" does not change
at aH,
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II= —,'Gg gg
D~'gD~'g~"m

+-'E 0~(89. +p~z GA B D—"'AD 'BG" B~w ) (7 1)

This expression could be used as the Hamiltonian
density. Its principal drawback lies in the presence of
the four-vectors 0& and p" which are arbitrary except
for one cumbersome normalization restriction each,
Eqs. (6.11) and (6.13), respectively. We shall now
show that both of these formations can be eliminated.
To this end, we must determine the relationship be-
tween U„and E„.We have already obtained an expres-
sion for U„ in Eq. (6.3). If we now use the constraint
(2.10) to get an explicit expression for It„as well, we
hnd:

F„=N„AxA=2J 'u„A(GAByB+GA i')
=2g„gA" Jt pyg, =2@ 'U (7 2)

This result enables us to use directly the conditions
(6.11) and (6.13) to eliminate 0" and P". We have

F. THE HAMILTONIAN

The first and obvious result of our expressions (6.12),
(6.14), and (6.15) is that the scalar (lrE/) vanishes.
To obtain the Hamiltonian density, we have, therefore,
to evaluate the expression (4.6). Instead of transforming
E'" back into E (by applying the three transformations
A, D, s,nd 7.

' in reverse), we shall determine the Hamil-
tonian by working out the expression (sr"'E"'vr"').
By substituting the appropriate expressions, we get
hrst

sesses exactly the degree of arbitrariness required by
the general theory.

The canonical field equations take the form

jo= BH/8n', 7r'= bH/—8y, . (7 6)

In particular, we find that the derivatives of the
coordinates x& with respect to the parameter t are
determined by the expressions

x'=OH/Wp e '——v&=-(J1 v')-'v& (7 7)

The choice of the four-vector z» will, therefore, be
largely governed by the desired relationship between
the coordinates and the parameter.

Finally, we shall show in passing that the relationship
(4.4), with vanishing last term, does not lead to a
suitable Hamiltonian relationship. By substituting into
the scalar (trE~) the expressions (6.12), (6.14), and
(6.15), observing in the process the relationship (7.3),
we find that the resulting constraint is a linear combi-
nation of the coordinate constraints (2.10) alone and,
therefore, not suitable as a Hamiltonian density.

In Section 8, we shall work out the general expression
(7.5) for the particular Lagrangian that characterizes
the general theory of relativity with electromagnetic
terms.

8. THE HAMILTONIAN OF GENERAL RELATIVITY
WITH ELECTROMAGNETIC FIELD

The Lagrangian density of the general theory of
relativity has the following structure, if the electro-
magnetic field is included

and
E„0~=2v 'U„cr&=2e—'

E„P&=2s 'U„P&

(7.3) 1.=Jg„+I.,),
where

L„..= p( g) &/167r~5g&—"

(8.1)

B lel'~e(G AG—BDA'ADB'BGA'B' G ) (7 4)

These two expressions, substituted into the Hamiltonian
density (7.1) yield the expression

and

( 0 p
xi

pg pv
(8.2)

pp vo

(8.3)L.~= L( g)'/16~-3~" -~.'

x[gGA'B'DA AD B(J( 7rA 2GA )(J( sB 2GB )

+,'(X,Jt,.+7.Jt, ,)—G„.5. -(7.5)

@„,stands for

and
(8.4)

(8 5)

In this expression for the Hamiltonian density, the
four-vector e& remains undetermined, except for the
inequality (5.4). However, a short computation shows
that the choice of this vector merely afkcts the manner
in which the parameter constraints (2.9) enter into the
Hamiltonian. In II, it was pointed out that the choice
of Hamiltonian is not unique, but subject to an algebraic
combination with the other constraints. The choice of
the rectangular matrix D"'~ has no eGect on the
eventual form of H, except to permit the addition of
linear and quadratic combinations of the coordinate
constraints (2.10). Thus, the Hamiltonian (7.5) pos-

The @„are the four electromagnetic potentials. This
Lagrangian density contains the held variables and
their first derivatives only, but is not a scalar density.
Therefore, it belongs to the general class of Lagrangians
considered in I. It is also homogeneous quadratic in
the first derivatives of the field variables.

We shall now rewrite L, to show the coeKcients
A~&~ . Renaming dummy indices and factoring we get:

P(aP) p, (yb)ag
g + P'y, p, vo@

4 See, for instance, P. G. Sergmann, Introduction to the Theory
of Relativity (Prentice-Hall, Inc. , New York, 1942}, p. 193 8,
Eqs. (12.56) and (12.65).
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tt(at)) p(«, b) c= [(—g) «/128«]

X {[g'(g"'g'+g"g")+g"'(g-g'+g-g"))
+g"(g"g"+g"g"-2g'g")

[gac(gt)«gbp+g(&bg«p)+g(&a(ga«gbp+gabg«p)]!

I'"' "'=- [(—g)'/8 )(g"'g"'—g""g")

The coeflicients A and V are symmetric in (Ap) and
(B{p),

)1{ap&p, («il&c g(«b&a{a«OP I PP, cc p'cc, PP (8 7)

A is, besides, symmetric in each bracketed index pair

Dmy, =gt p& {m)

1
D(mn)pp ngppgpc(& )m& ) +n& {n& {m)~

The resulting expression for G"' '
is

PG(ab)(cd&GA'B'

0 G„„)

(8.11)

between the four (physical) coordinate directions, we
chose matrices which, in eGect, project four-vectors
and four-tensors (in physical space-time) into the three-
dimensional space of the parameters u'. And since the
matrix elements of D must be independent of t-deriva-
tives, we set:

,tt (rxP) p, (»)~—g(Ptx) p, (») r (8 8)
G( b)( d) —[(—g)«X/128«rK]

In order to substitute into Eq. (7.5), we must deter-
mine the null vectors corresponding to the various
constraints and, besides, we must make a choice for the
reducing matrix D"'~. There is also a slight complica-
tion in that we have, in addition to the parameter and
coordinate constraints, the gauge constraint (2.11).

Altogether, we have 14 variables, of which 10 are
gravitational and 4 electromagnetic potentials. The
matrix G~B with 14 rows and columns actually consists
of a 10&(10 and a 4X4 matrix, with the rectangular
oG-diagonal spaces filled entirely with zeros. As a
first step, we shaH determine the actual expression for
GAB

(8.12)
X (gacgbd+gadgb. —2g, bg, d),

G = —[(—g) «X/8«r]g „,

g „—=g„„& {
&"I„.

We must now find the inverse of this non-singular
matrix. We shall first introduce the expressions

D" =X 'XPJ(um—, pt, p u, pt, „)— (8.13)

with the property
D)rt tt gm

gmrt —gp, «PD)rt D)s gt%rtg $m

(8.14)

(8.15)p)(»)

!GAB —
{

0 G~") The inverse matrix must be built up from the g ".
The inverse electromagnetic matrix can be found by

inspection. The determination of the gravitational
matrix is only slightly more laborious. There are only
two possible combinations of g

" which satisfy all the
requirements of symmetry (namely that the matrix
G( ')('") be symmetric within each bracketed pair of
indices and that it be symmetric with respect to an
interchs, nge between the two index pairs as wholes).
All that needs to be done is to determine the numerical
coeScients of these two possible combinations. The
final expression for the inverse is then

(G(ab)(cd) O)
GAB =!

E o, Gj
(8.16)

G(ab)(cd) —[32~K/( g)«X](gacgbd+gadgbc gabgcd)

G( {)&(«b&= [(—g) «/128)rK]

X[X(g"g"+g'"g' —2g'g")

+2(g sX«Xb+g«'X Xd)

—
(g «X&X'+g 'X~X«+g~«X X'+gd'X X')]
Gp"= [( g)«/8~](X X"p—Xgp")—

(8.9)

Xa J) gaP I=JE Jt pg~t.

The first of these two submatrices has the four null
vectors

(8.10)„(»)=,~g„g+Jt yg„~)

and the second submatrix has the single null vector Jt, „.
These expressions are the null vectors obtainable from
the general theory. It is, however, very easy to verify
their being null vectors by straightforward computation.

Accordingly, we require two separate matrices suit-
able for the role designated in the preceding sections by
the symbol D~'~. One 10X6 matrix must reduce the
gravitational submatrix to a non-singular 6X6 matrix,
while another 4)&3 matrix will reduce the electromag-
netic coeKcients to a non-singular 3&3 matrix. These
reducing matrices must have the further property that
they are linearly independent of the null vectors indi-
cated above. In an e6ort to maintain the symmetry

Gmn [8~/( g)«X)gmn

This inverse matrix now must be multiplied by
D~'~D 'B. The result of this operation is

G„„=—[8)r/( —g) «X)y„.,

q„„=g„. Jt,gt, . —

(G( w(»»
D"'AD'BGA B =GAB={—

O, G„„)'
(8.17)

G(-s)(») = [32«/( g)'X)(V-»sb+V-bV—B« V.(rr»), —
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The matrix G~~ that we have thus defined is, of
course, a quasi-inverse of the matrix GAs, Kq. (8.9).
In the expression for G„„we can replace y„, by g„„
because Jt, „ is a null vector of that matrix. But the
same replacement can be made in the matrix G( p)(~q),

because the replacement is nothing but the addition of
a linear combination of the null vectors (8.10). Thus,
the first term in the bracket of Eq. (7.5) has been

determined.
The second term can be copied without change. In

the last term, we must substitute the correct expression
for Gp The expressions for 6-~„6„are lengthy, but
are obtained by routine calculations from the defining

equations (2.3). We shall write them down, too, intro-

ducing as an abbreviating notation the differential

operator

yA],&(ii', .t, .—tt;.t, ,) =—yA fp ]. (8.18)

G' ".= L(—g)'/128 j{(losg) - (g"X'+g'X )

—2g g '(„]»,,—2X'[g („]+(logg)(,.]g ]
(8.19)

+2», .(g"g"(-]+g'g"(-l) },

G".= [(-g)'/8~3(g"'X'-g"'X')& ( ]

and

G,.= [(—g)&/128ir]]j

X {g [2g [cp]gp]][«] (logg)[sp] (logg) [pp] j
2Lg f«](l Kg)l ~pl+g (1~pl( gg)(«l j
4g-t (g"f-]g—'"(,])}

+[( g)'/8~j(g""g—"' g""g")&p( p]4'—f l (8 2o)

With these substitutions, the final expression for the

This difFerential operator satisfies the product rule of
difFerentiation. Kith its help, we obtain the following

expressions:

Hamiltonian density becomes

H = s-'sps {-',(X,Jt,.+X.Jt, ,)—G,.
+[8]r~/( —g)'Xj(g,g]]g+g. igp„—g.sg„]])

X(n. &Jt, 2G[ —@,)(vr&'Jt, 2G[&—'].)
—[2~/( —g) &Xjg„„(]tpJt,—2Gp, )

X Q "Jt,. 2G",—) I . (8.21)

9. CONCLUSION

The Hamiltonian density which we have obtained is
a rather formidable expression, but it is a quantity
composed exclusively of the canonical variables and
their "spatial" derivatives. The canonical differential
equations are of the first difFerential order and solved
with respect to them. Thus, the continuation of a
solution of the Geld equations in the t-direction can be
accomplished by a series of iterated integrations.
Naturally, the Hamiltonian (8.21) with (8.19) and

(8.20) is not the most general expression imaginable
that can be used for the Hamiltonian. Ke can multiply
it by an arbitrary (but non-zero) function of the
dynamical variables and the parameters (and such a
factor will afFect the relationship between the parameter
t and the coordinates), and we can add arbitrary linear
combinations of the coordinate constraints g„, Eq.
(2.10). The addition of parameter constraints g, will

have no other efFect than would the adoption of partic-
ular expressions for the arbitrary ~&. Thus, having
obtained one expression for JJ., we can easily find all
other possible expressions, and we can thus use the
equivalent of any coordinate condition and parameter
condition desired. As for the gauge constraint (2.11),
adding ]t with any factor to the Hamiltonian amounts
to the adoption of a particular gauge condition.

The new formalism available will be used to give a
new derivation of the equations of motion, which was
first achieved by means of an approximation method

by Einstein, Infeld, and HofFmann. We shall obtain
the instantaneous acceleration of singularities rigor-
ously by assuming a certain field at a time 10 in agree-
ment with all the algebraic constraints (including the
vanishing of the Hamiltonian density) and then con-
tinuing into the future (or past). Later we expect to
quantize the theory and to examine problems involving
radiative processes.


