
PH YSICAL REVIEW VOLUME 80, NUM BER 5 DECEMBER 1, 1950

Singular Potentials*
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The difliculties arising in quantum mechanics when the potential is highly singular are considered. It is
found that the Hamiltonian needs further speci6cation in such cases. This may be done conveniently by
requiring a 6xed phase for the wave functions at the origin. A proof that all the well-known singular examples
are amenable to this treatment is given. For illustration the spectra for spin zero and one-half particles in
the 6elds of highly charged nuclei are found. It is also shown that a complete set of eigenfunctions for a vector
particle in a Coulomb 6eld can be found.

I. INTRODUCTION

sINCE the advent of quantum mechanics, a number
of problems have been found which seemingly do

not fall into the formal structure of the Schrodinger
equation and its conventional interpretation. Thus,
with sufficiently singular potentials, the customary
methods of finding energy eigenvalues and eigenfunc-
tions fail. When these examples have been encountered
in the literature, they have been rather summarily dis-
missed. In this paper an attempt will be made to show
how the exceptional cases may be dealt with and what
physical interpretations are necessary.

Historically, the 6rst' place where these difhculties
showed up was probably the strongly attractive 1/r'
potential. Other non-relativistic examples are potentials
which behave as 1/r" near the origin with u) 2 and the
tensor force problem with a 1/r' singularity. With rela-
tivistic wave equations, even a Coulomb potential is
highly singular. Thus, for spin 0 or ~ particles, "singu-
lar" ca~s arise if the nucleus is sufficiently highly
charged. For spin 1, difIiculties arise in any Coulomb
6eld. ' It will be shown that the difhculties in these
diverse problems can all. be resolved by the same
technique.

II, THE 1/r~ POTENTIAL

Consider the non-relativistic Schrodinger equation
with a potential

V(r) = L
—Vof(r/ro)/(r/ro) "] (1).

On separation of the angular dependence, the radial
wave equation is:

d'u Xf(x) l(1+1)
+ — —vP u=0, 0&x&~, (2)

dx' x" x'

~here

x=r/ro, X=MVoro'/5' g=ro( —ME/i»')»»t =u/r. (3)

assumed that
j(0)=1.

Assuming I to be expressible as a power series in the
neighborhood of the origin beginning with x&, the in-
dicial equation for (5) is:

or
p(p —1)+X=0,

p= o+(o —l )».

(6)

(7)

For X& ~ the treatment is conventional and can be found
in reference 1. For X& 4, that is if the potential is suffi-
ciently attractive, (7) shows that both solutions of (5)
behave in essentially the same way. An elegant means
of deciding between the solutions of (5) has been given
by Von Neumann' using the general principles of quan-
tum mechanics. These tell us that a complete, quadrati-
cally integrable, orthonormal set of solutions of (5) is
needed. Since

lgdT~ u (x)dx,
Jo

Eq. (7) shows that all solutions are quadratically inte-
grable in the neighborhood of the origin. Usually this
integrability condition suffices to distinguish between
the two independent solutions (7). Here the orthogonal-
ity condition must be used. Take the general solution
of (5) to be real. Then for small x

u Ax» cos(X' lnx+8),

) ' = (x——,')».

Since for the general arguments that follow, the exact
functional form of f(x) and the value of t are unimpor-
tant, we shall consider the case f(x) =1 and S states
only. Then for the 1/r' potential the radial Schrodinger
equation is:

d'I X
+ —vP u=0.

dx x

*This work was supported by a grant-in-aid from the Institute
for Advanced Study, supported by the AEC.' Mott and Massey, Theory of Atom& Collisions (Clarendon
Press, Oxford, 1949), p. 30.

~H. C. Corben and I. Schwinger, Phys. Rev. 58, 953 (1940);
I. Tamm, Phys. Rev. FS, 952 (1940).

Suppose further that the solutions are chosen so as
to fall oB exponentially with large x. Then for small x

' Private communication from W. Pauli.

Hence, X&0 implies an attractive potential. It is where
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u, A,x& cos(V lnx+B, ),
u2~A2x& cos(V lnx+B2), (9a)

and A and 8 are arbitrary constants.
Consider solutions of (5), u& and u2, corresponding to

two different g& and q2. These satisfy

the corresponding solutions will Lfrom Kq. (9)] be-
have as:

then u is of the requisite form (9b). Using the asymptotic
forms of the Bessel functions, one Gnds for large x

cosn=0,, (19)

u= {[e'+e '~)e"'+(constant)e "*I. (18)
(22r2/) ~

Hence, if

d u, /dx+L(). /x) —gP]u, =O, (1Oa) or

d'u2/dx'+ t (X/x') —2/2'ju2= 0. (10b)
n 2 7f'p (20)

Multiplying (10a) by u&, (10b) by u2, subtracting, and
integrating yields:

(2/p 2/2'))f —u2u2dx=A2A2X' sin(B2 —B,). (11b)
0

Hence, in general, solutions corresponding to two difer-
ent energies are not orthogonal. However, if it is re-
quired of the solutions that

Bg ——Bg=B (12)

QG

dug dug

(2/P —2/2') ~l u2u, dx= u, ——u2—. (11a)
0 dx dx 0

Usually the orthogonality relations are deduced from
the vanishing of the right-hand side of (11a).However,
here one obtains on inserting (9a) and remembering
that u& and u2 vanish at infinity:

where n is any positive or negative integer, u decays
exponentially.

Inserting (17) into (20) and solving for 2/ gives the
eigenvalues:

~.=exp{ (B—(u+2)~)il 'j. (»)
From (3) it can be seen that the bound states then

form a point spectrum extending from minus infinity to
zero. At zero there is a point of accumulation. From (21)
it is seen that a displacement of 8 by a multiple of x
has no effect on the spectrum.

III. THE 1/r" POTENTIAL: n)2
The Schrodinger equation is:

d'u/dx'+ [(X/x") —2/2ju= 0. (22)

Since the singular behavior is diferent for each n in
this form, it is convenient to introduce the new variable

B,=B+n, (13)

then orthogonality is achieved. (It is to be noted that
choosing

y ~l—an

in terms of which (22) becomes:

(23)

where n is a positive or negative integer will also insure
orthogonality. It is shown below that no greater gener-
ality is so obtained. ) The significance of B will be
discussed later.

The eigenvalue problem for (5) can now be stated.
%e require those values of q for which u vanishes ex-
ponentially for large x and behaves as

u x& cos(Y lnx+B), (9b)
for x small.

The eigenvalues and eigenfunctions can now be com-
puted. Two linearly independent solutions of (5) are:

n
+ ——+ X—

dy2 22 2 y dy (22 2)2 y2a/m —2
u= 0. (24)

u=e ~v. (25)

Here we are interested in the behavior of the solution
for large y. It is obvious that a series of descending
powers of y will not satisfy (24) since the occurrence of
the 'A term will always require the vanishing of the
highest power in the series, and hence of the entire
series. The correct treatment at such essential singu-
larities is well known. ' Let

u = x&Ig;/, (2/x), (14)

where I is the Bessel function defined by %atson. 4

Taking as solution the linear combination

n
'V + 203+

n —2y-

u=x2[e' I;/, (2/x)+e-' I,), (2/x)],

one finds for small x that

(15) 4) On 4q' n —2
+ +0!+

(I—2)' (22—2)y (22—2)' 2my

2/= 0. (26)

Hence, if
u=2x& cos(7' ln2/x+ n).

a=8—X' lng,

(16)
If we choose

(17)
u2= 4X/(n 2)'—, — (27)

' G. N. 9'atson, Theory of Bessel Functions (The Macmillan
Company, New York, 1944), p. 77.

~ See E.L. Ince, Ordinary Differential Equations (Dover Publica-
tions, New York, 1944), p. 425.
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it is possible to obtain a descending power series for e.
The highest power is y~ where

p= —n/2(n —2). (28)

As in Section II, consider the solutions m» and n2 of

d'ug/dx'+ L(X/x") —gP]up ——0, (30a)

d' pu/d x+[(X/x") r12—2]u~ ——0 (30b)

where q» and q~ are two different values. In particular
it is required that I» and u2 vanish at in6nity. Then for
small x

2
ug Agx"i cos

( i +ByI—2 Ex"—')
(31)

2
u2 A2x"" cos

( ( +B2 .
n 2. ix—=2&

As usual one finds:

(~i'-n2')
do

dg» dN2
u2uidx= u~ —u, . (32)

x dx 0

Insertion of the asymptotic forms for small and large x
gives:

r"
(sl 'g2 ) I

u9u&dx= A &A ~V srn(B& —B2). (33)

Hence, if all eigenfunctions are required to behave as

0~x "~4 cos
2

i+B,
n —2 &x=)

(34)

where now 8 is a 6xed phase factor common to all
eigenfunctions, we will have orthogonality. Conversely,
it can be said that the requirement of vanishing at
in6nity and having the designated behavior for small x
makes the eigenvalue problem uniquely soluble.

IV. DISCUSSION OF THE NON-RELATIVISTIC CASE

The principal difference between "singular" and
"non-singular" potentials is seen to be that in the latter
case the solutions of the Schrodinger equation subject
to the condition of quadratic integrability form a com-
plete orthonormal set. In the singular case the solutions
are too numerous and hence, over complete. Some other
parameter in addition to the functional form of the
potential is needed to specify completely the potential.
This is conveniently taken as the phase, B.

This distinction may be expressed in physical terms

Restricting ourselves to real solutions the behavior of
the general solution of (22) for small x is:

2
u Ax"" cos

i )
+B . (29)

n —2 &x" ')

somewhat differently. In any physical problem in which
we express the interaction between two systems by
means of a potential which becomes infinite when the
distance between them becomes zero, we are dealing
with an idealization. Thus, the Coulomb interaction
between an electron and a nucleus is not strictly propor-
tional to 1/r down to r= 0. The finite size of the nucleus
sets one limit. Even for a single proton there is the
probable finite radius of the proton. The important
point is, however, that if the 1/r law holds down to
su%.ciently small distances the eigenvalues and eigen-
functions are essentially independent of exactly when or
how the power law breaks down. For potentials as
singular as 1/r' or greater, this is no longer true. The
eigenvalues and eigenfunctions do depend on the nature
of the cut-off. The main conclusion from the above work
is, though, that only a single parameter is needed to
describe the situation for small distances. Thus it is not
necessary to know exactly at what distance the power
law breaks down and what functional form replaces it.
All one would need to know from experiment is the
value of 8 for the given system.

From this it is seen that 8 describes the breakdown
of the power law at small r. For a simple model one
might consider the true potential to be 1/r" down to
r= e and then to be an in6nitely high repulsive square
well. Then 8 is directly related to the "cut-oG radius, "e.

For the non-relativistic cases, this discussion is rather
academic, since the spectrum of energy values is a point
spectrum extending from minus in6nity to zero, plus
the usual positive energy continuum. That the negative
energies are discrete follows from the quadratic integra-
bility of the wave functions. That the spectrum extends
to minus infinity is obvious, since the Hamiltonian
operator is not bounded below. Now no physical system
has an infinite binding energy. Therefore such singular
potentials have no application as an approximation in
the calculation of term values of real systems. One
possible remaining application is to describe some
scattering processes. Resonance, for example, is well

exemplified by scattering by such potentials.
If only the non-relativistic Schrodinger equation mere

to be considered, these highly singular potentials might
well be forgotten.

V. RELATIVISTIC WAVE EQUATIONS WITH SINGULAR
POTENTIALS —SPIN 1/2

Here the situation is altered considerably. Firstly,
much weaker in6nities in the potential are "highly
singular. " Even the Coulomb fieM gives rise to diK-
culties of the form considered above. Secondly, the dis-
crete energy levels of a relativistic system are restricted
to the region between ~wc'. Thus, it certainly will not
be possible to ignore singular potentials because they
lead to infinite binding energies.

The most famous singular example is that of the
Dirac equation for an electron in the Coulomb field of
a fictitious nucleus of charge such that nZ&137. Sepa-
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rating out the angular dependence the equations for the where

radial wave functions may be written in the form given

by Bethe. '
X= +[a'Z' —x']',

(x p—X)/nZ = ue*&,

(44)

du u ( aZ l
1 E — —i—w,

dr r I r)
dw w t' nZq—+x,—=

i
1+E+ iu-.

dr r I r)

and C and 8 are two unknown constants.
Consider Eqs. (35) corresponding to two different

energies E1 and E1. These are:
35

du1 u1 ~ nZ
— —x—=i 1—R——iw1,
dr r ( r)

(Here Bethe's notation has been altered slightly and
units such that A=c= 111=1 have been chosen. ) x is the
angular momentum quantum number of Dirac such that

dW1 Wr ( nZt
+x—=i I+E,+ iu„

dr r E r) (45b)

x= —(j+p)
x=+(j+-,') for

j 1=+1
j=f—

p (36)
dN~ S2 ( nZ

1—Ep ——wp,
dr r

(46a)

The normalization is such that the scalar product of
two diBerent eigenfunctions

f u1$ t'up)
i
(W1) E Wp)

is de6ned by

(u1up+W1wp)dr.
0

(37)

Consider solutions of (35), in the neighborhood of the
origin, of the form:

u=r~[ep+G1r+ ' ' '],
w = r'[ho+ b1r+ .]. (38)

p =~[x'—(nZ)']',
bo/&o =«/(p+ x)

(40)
(41)

Since the smallest possible value of j is -', one sees
from (36) that

x2&1 (42)

Hence, if O,Z&1, at least for j=-,'the two possible solu-
tions (40) are equally good. In fact, from (37) one sees
that both solutions of (35) are quadratically integrable
in this case.

For convenience, limiting ourselves to real solutions
when («)'&x' one sees that the general solution of
(35) can be written as:

f u) f' cos(X lnr+B)
for r small (43)

Ew) Eu cos(X inr+B+y))
' H. A. Bethe, IIarldbuch der Physik XXIV, 1, p. 313 41933).

Inserting into (35) and equating to zero the coefficient
of the lowest power of r(r" ') gives as the indicial
equations:

~op —&~0= —~bo,
bop —xbo ——nZao,

or solving for bp/ao and p:

dwp wp ( nZ)
+x =

i
1+Ep+

dr r ( r) (46b)

Multiplying (45a) by wp, (46a) by W1, (45b) by (—up),

(46b) by (—u&), adding and integrating yields:

(Er Ep)JI (u—pu1+wpw1)dr= [upw1 —u1wp]p. (47)
a

Suppose the solutions 1 and 2 are adjusted to vanish
exponentially at infinity. Inserting the asymptotic be-
havior (43) into (47) yields:

where the B;, C; are the constants describing the respec-
tive solutions. From (48) one sees that if all

B'=B (49)

where B is a fixed constant all eigensolutions will be
orthogonal. It is also possible to prove completeness in
this case.

To solve this eigenvalue problem we make the substi-
tution given by Bethe

one finds:

where

u= (1 —E)~e-»'(p —y),
w=(1+E)&e ~I'(p+ y),

-
p=2(1 —E')&r,

dq/d p = [1—(Eb/p)]pp (x+ 8)P/p, —
4/dp=(Eb/p)k (x b) v/p, — —

b = nZ/(1 —E') &.

(50)

(51)

(52)

Elimination of po from (51) gives:

d'P (1 l 4 (Eb 'Z' —x')
+i —1i—+I —+

dp' (p )dp t. p p' )

(E,—E,) t (u,u, +w,w, )dr
J,

= aC,Cp sin(B& —Bp) sing, (48)
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Then:
y —[en/2p t—]re

d'u ( 1 k x' —m')
+I —-+-+

dp' E 4 p p' )

Let us consider this equation for small X. The right-hand
side as a function of E goes from —~ at E= —1 to 0
at E=O to —~ at 8=+1.

1 ( En—Z
is constant. —arg I'I +ix

I

X E(1—E')&

k=Eb+ ,'; m-=+A. (56)

(55) is just the canonical form of the confluent hyper-
geometric equation. ' Two linearly independent solu-
tions are: Ml, , ~„(p).For small r the corresponding p
and P are:

which gives

P~p+m
v-+L(m —Eb)/(b —x))p'"

m —Eb
n, (constant) ~ —1 p+ .

~—x

Then if
w=e' MI, , ~ (p)+e ' M~ (p).

iX—I:5
IIe"=

one finds for small r:
m=2 cosLX 1nr+ n+0+ 7 ln2(l —E'-) &].

Comparing with (43) we see:

n=B 0—) ln2(1——E')&.

(57)

(58)

(59)

(60)

(61)

(62)

With this solution:

P= p &e'"[e' Ml, (p)+e ' 7'�. (p)]
— (63)

The condition of exponential decrease at infinity yields:

Let

r(2m+1) r(—2m+1)
cia + —ja =0

F(-,'+m —k) I'(-,' —m —k)

I'(2m+1)
=be'

r(-,'+m —k)

(64)

Then condition (64) is:

or
b cos(a+o) =0,

a+ o = (I+-', )s,

(66)

(67)

(69)

where e is a positive or negative integer. Using (62) and
(60) one has with

B'=B—X ln2 —urgLI'(2iX+ 1)]—s/2, (68)

8' —nx 1——tan '
x—b(1+E)

suffers jumps of —vr/X at the poles of the I' function;
i.e., at

EetZ—/(1 E') &—= I', (70)

VI. SPIN ZERO AND ONE

For integral spin particles a certain amount of care
must be used in formulating the problems. An appropri-
ate "particle form" of the equations must be used. The
following equations for integral spin particles given by
several authorss are most convenient for our purposes
(again units of h, =c=m=1 are chosen):

i (8$/R) =X'.f, (72a)

X=eV+ r~I 1+-,'P —-', eS.H]
ir,P2& (S P)' ——-', eS H].—(72b)

where''=0 orapositive integer. tan 'P,/(x —b(1+E))]
is approximately constant if x= —

I x I. If x =+
I x I

this
quantity suGers a jump of +x if E passes from —0 to
+0. Hence, if X is small the discrete spectrum consists
of levels near —EnZ/(1 —E') & = n' where I' = 1, 2, 3,
if x=+

I x I
and n' =0, 1, 2, 3, if x= —

I x I.Compari-
sone with the conventional results for nZ&1 but oZ
near 1 shows that the levels found for o,Z(1 go over
into ones close by.

Of particular interest is the behavior of the lowest
energy level. As nZ —+1 from below the lowest Dirac
level tends to E=O. What happens for o,Z slightly
larger' For the case X is small it is possible to solve (69)
for the energy level near zero. One finds:

Eo= X/tanB'.

Thus, if B' is chosen between zero and ~/2 the energy
level is positive, while it is negative if —,~&8 (x. The
difhculties of interpretation would be so great if the
lowest level passed from positive to negative values as
cxZ passes through 1 that one is inclined to require that
8' lie in the 6rst-named range. Then we have the follow-

ing picture of the behavior of the levels as Z increases.
Approaching 137 all the ordinary levels go to well-
dehned limiting values, the lowest going to zero. In-
creasing Z further, all except the lowest of these levels
move to nearby positions. The lowest level starts up
again from zero. One interesting point to be gleaned from
(69) is that the famous degeneracy of the Dirac equa-
tion is removed for Z&137. Here the energies of levels
for x=

I x I
»d x= —

I x I
»e ~lightly different.

7 E. T. vfhittaker and G. N. %atson, 3fodern Analysis
Millan Company, 1943), American Edition, p. 337.

(Mac-
8 Sakata and Taketani, Proc. Math. Phys. Soc. Japan 22, 757

(1940); I. Tamm, Comptes Rendus U.S.S.R. 29, 551 (1940};W.
Heitler, Proc. Roy. Irish Academy 49, 1 (1943}.



802 K. M. CASE

(72) is the "Schrodinger equation" for integral spin.
Here V is the external electrostatic potential; H is any
external magnetic field; r~, v2, v3 are three Pauli spin
matrices; and Sj, S2, S3 are the matrices describing the
infinitesimal rotations in an irreducible representation
of the rotation group. Thus, for spin zero the S, are zero
and f has two components. For spin one the S, are
3&(3 matrices and P has six components. The energy of
a state described by a given P is:

W= )"P"raXPdr,

and the charge is:

gives for the indicial equation of (82)

y(y —1)+-,' —nF =0,
or

where
m = [(f+-,')' —a'Z')&. (86)

If a'Z') (l+—')' both solutions of (85) have essentially
the same behavior near the origin. In case O.Z& ~ this
certainly occurs at least for S states, Let us then assume

(87)

where X is real. Then the most general I for small r is:

Q=e ~g*rgHr (74)
u Cr& cos(X lnr+ J3). (88)

One notes that X is not hermitean and hence the
eigenvalues of (73) are not necessarily real. Of course
7' is hermitean, and so the energy is real. Mathe-
matically speaking, the eigenvalue problem is defined

by the non-hermitean operator X, and an indefinite
metric suggested by (74). This defines the scalar product
between two states f& and P2 as:

(6, 4i) = )"A*»&~I'. (75)

Specializing to the Coulomb field of a nucleus of charge
Z and no magnetic field gives for the "Hamil. tonian"

K= —(aZ/r)+ra(1+-, 'P') —i~,[-',P' —-'(S P)'j (76)

Consider the scalar theory. Let

rgb= v, r$2 ——w. (89)

aZ l(l+1)
Envy= — vy —2vy + vy

r
'

2~
1(l+1)

+vg+ 2wy — wy, (90a)
2r2

aZ l(i+1)
+1~1 1+ 21 ~1

r
L(l+1—~S—

q&S + )
vg, (90b)

2r2

Consider (78) for two different energies E~ and E2. The
equations for v and m are:

g
—i' t(,)

Inserting into (72) gives:

(E+aZ/r) 4 i= 4 i i~A+ 2~R, —
(E+aZ/&) 6= 6+i~A 2~—0i. —

aZ l(l+ 1)
E2v2 v2 2v2 + v2

(77)

i(l+ 1)
+vq+-', w2" — w~, (90c)

2r2

aZ l(i+1)
(78) E2wg= — w2+ ~w2 — wn

r 2r2

y = (i/v2) (pi —&2). (79)

v+ (E+«/r)'—v =o. (80)

t(i+ 1)—w.——,'v2 "+ v2. (90d)
2r2

Multiplying (90a) by v2, (90b) by w2, (90c) by (—v, ),
(90d) by (—wz), adding and integrating yields:

gives the radial wave equation:

This is just the IGein-Gordon equation, as was to be
expected.

Separating out the angular dependence and setting
f

q =u/r, (81) (Eg—Em) ) (v2v~ —w~w~)dr

d Q 2EaZ a'Z' 1(l+1)——+ —(1—E')+ +
df r r2

u= 0. (82)

Before solving (82) let us consider the behavior of u
for small r and the orthogonality relations. Setting zo —8=VAN) (92)

= —,'[(w2' —vp')(wg —vg) —(w2 v2)(wg' v—,') jo" —(91).
The integral on the left-hand side is just the scalar
product (75) after integration over angular coordinates.
Noting that

u=r'[1 jo~r+ (83) and requiring u& and u2 to vanish exponentially sim-
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u, C~rI cos(X Inr+B~),
u2 CgrI cos(X lnr+B2).

Inserting into (93):

(94)

Hence, again we see that orthogonality is obtained if
all eigenfunctions are required to be of the form (88)
for small r. Now 8 is to be considered as a fixed con-
stant, the same for all solutions, describing the Coulomb
potential.

With this condition (82) can be solved. Let

Then:
p=2(1 —E')Ir. (96)

plies (91) to:

(Eg—Eg) t (52'vy —romwy)dr= (wg ug —uy u2)o. (93)J,
From (88) one sees that:

of the Dirac equation for low-lying states. The lowest
Klein-Gordon level tends to mc'/V2 as aZ-+-', from be-
low. Therefore, no such paradoxical result as having an
energy level change sign can occur.

These considerations are slightly less academic for
spin zero than for spin ~, since nuclei with charge
greater than 137/2 do exist. Moreover, spin zero par-
ticles (m mesons?) may even be bound to such nuclei.
However, since x mesons are quite heavy the corre-
sponding orbits will be within or very close to the
nucleus. The approximation of regarding all protons as
lumped at the origin is then so crude as to make the
above considerations more than questionable.

For a unit spin particle in a central Coulomb field we
follow the treatment of Gunn' in separating out the
radial and angular portions of (72). For l= j and j=0,
one obtains the radial Klein-Gordon equation appro-
priate to the given angular momentum. Here notl ing
new arises and so we skip these cases. For l/ j/0 the
radial equations arising from (72) can be expressed in
terms of four functions (F&, F2, G~, G2). Then with

where

dQ 1 k 4
—m

Q=O, (97)
v=(E+~ir)/Li V+I)]', (»3)

the radial wave equations given by Gunn' are (with a
few minor changes in notation and units):

u=e' Mp„(p)+e ' Mg, „(p).
The condition for small r gives:

(99)

u=EaZ/(1 —E') I. (98)

Two linearly independent solutions are again 3fI, +~(p),
Let

F2 1 dG2 F2
eFg — =- +—,

j(j+1) r dr . r

d~G2 1 d 1
vGg —G2= — ————F2

dt' f .t&

(106a)

(106b)

Let
a=B—X ln2(1 —E')I.

o =arg[I'(2ru+ I)/I'(-,'+ ra —k)]. (101)

(100) Gj Gg 1 d 1
vG2- = + +

j(j+1) r' r dr r. (106c)

or
cos(a+o) =0,

a+o = (n+-,')n.

(102a)

(102b)

B'=B—X In2+argLI'(I+2iX) j——,'~, (103)

the eigenvalues of the energy are given by the equation
B' urr 1 t'1 —EaZ——arg p( ——

X &2 (1—&)I

The condition of exponential decrease at infinity yields:
/d' 2q 1t d 2~

sF,-F,=-
]
——~F,—(

—— ~G,. (106d)
t.dr' r' & r &dr r&

Solving for F2 and G~ one finds:

F2 (r2&~F& rG&')//[——I+r /j (j +1)]&— (107a)

G~ ——(r'rG2 (rFi'+Fi))/L&+r'/j —(j+1)j. (107b)

G= (G,+F,)/K2; F= (G,—F,)/V2. (108)

Then the resulting equations for F and G can be
written as:

This is seen to be quite similar to Eq. (69) for the eigen-
values of the Dirac equation. The same arguments
apply. Hence, for small X (i.e., aZ~l+-', ) the spectrum
consists of a set which occurs approximately at the
poles of the F-function. For O.Z&l+-,' these poles are
just the energy eigenvalues. Thus, considering 5 states
on1y, as 0.Z passes through —,

' the spectrum changes con-
tinuously. The situation is slightly di8erent from that ' J. C. Gunn, Proc. Roy. Soc. 193, 559 (2946).

+i(a2Z2 (1+~~)2)& =ln—(1—E')I. (104) d G 2 j(j+1) dG
+—

dr r j(j+1)+r dr

1
y j(jul)) a——

~

—1—

j(j+1)o' 2'(j+1) F
+ — G+ =0, (109)j (j+1)+~ j(j+I)+"-
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d'F 2 j(j+1) dG+-. .dr' r j(j+1)+r' dr

1
+ j(j+1)I ~—I-1-

r') j(j+1)+r'

Now:

$Fj*F2+
F2*Fr+Gal*G2+G2*G,

]dr. (116)
j (j+1)v' 2vj(j+1) G

+ F+. .r 2(2+1)'+r'

The forms (109) and (110) are particularly useful for
examining the behavior near the origin, since there the
two equations are efkctively decoupled, the coupling
term being regular. The behavior of the four linearly
independent solutions of (109) and (110) can then be
determined by first setting F=O in (109) and finding
the two solutions of (110).Then treat (110) with G= 0
similarly. As noted by earlier authors, these equations
have an essential singularity at the origin. This, of
course, prohibits a power series development. However,
it is possible, as in (25), to split off an exponential
factor" and then to hand a power series development.
Doing this the four linearly independent solutions are,
in the vicinity of the origin:

f
P*ragd V, r & cos'(Xr&+B)dr. (117)

This integral certainly exists and so the charge density
is integrable for these solutions. Contrary to previous
statements, this means that there are too macy rather
than too few solutions of (72) which are quadratically
integrable near the origin. Instead of one, there are
three physically acceptable solutions of (109) and (110).
The resulting set of eigenfunctions is then over complete.
The two solutions described by (114) are, of course, to
be narrowed to one by requiring orthogonality. Con-
sider equations (106) for two different energies E, and
E&. Multiplying these equations by various functions,
adding and integrating following the previous methods
and using (106), one finds on integrating out angular
coordinates:

G=r i exp(aX/r&);
F= (const. )r &r' exp(+X/r&), (111a,b)

F= r &exp(mid/r&);-
G = (const. )r &r' exp(&iX/r&), (112a, b)

= 0. (110)
Inserting (115) into (116) one finds for the contribution
near the origin:

where now
~=2(~)'LjU+1)3'. (113)

(E Eb)) f,—*rspvdV

{r(F 'G ' F;G~ )+r(GpF —'—G2'Fg') I 0". (118)Of these solutions (111a) is obviously inacceptable,
since it has a horrible infinity at the origin. (111b)
vanishes very strongly, and so is completely satisfac-
tory. For (112)further investigation is necessary. Again,
taking real solutions the general linear combination of
(112) may be written

Requiring an exponential decrease at in6nity and as-
suming

F' r icos(Xr &+B,),
F'~r 'cosPr &+Bq), (119)

gives:
(114)F (const. )r & cos(Xr &+B); G=O,

and then:

F~ r& c(o)sr &—+—B); Gm r & cos(Xr &+B),

(E, Eb)
' f—*ryPvdV csin(B,—Bq).—(120)

0!Z
F2~ —r &I —-+ r cos(Xr &+8)

4 j(j+1)

+ sin(Xr &+B)
2r&

3 AZ
G~—-r & -+ r cos(Xr&+B)

-4 (jU+1))'-

'0 J. H. Bartlett, Phys. Rev. 72, 219 (1947).

Once again one sees that requiring all solutions to
behave like (114) with a axed B gives orthogonality.
With this condition the eigenfunctions of the vector
meson in a Coulomb 6eld do form a complete set, in
contradiction to previous communications on the sub-
ject. Of course, the actual computation of these func-
tions, except possibly by machine, gives rise, as pointed
out by Bartlett, "to great diQiculties.

There is, however, one possible experimental veri&ca-
tion which would not rest on tedious calculations. The
m meson may have unit spin. Then even for hydrogen

y+B) I, (115) the introduction of a phase constant would be necessary.
I It can be shown then that resonances should occur in

scattering. Thus, if a beam of low energy mesons were
incident on a hydrogen target one would expect maxima
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and minima in the cross section as the energy of the
beam varies.

With the information now at hand, it is possible to
say something concerning the common conjecture that
as Z increases over 137 for the Dirac particles (or over
137/2 for Klein-Gordon particles) pairs will be pro-
duced. This is, properly speaking, a many-particle
process and so certainly not to be encompassed by the
present single particle theory results. However, since
it is found that nothing spectacular happens to the
energy levels at these transition points, it is dificult to
see why pairs should suddenly occur. Consider a state
with certain levels Glled, others empty. As Z is adia-
batically increased, one would expect the particles in a
given state to continue in this state as the state is
slowly altered. If this happens, one sees that nothing of
importance occurs at the transition points.

(5')' i5"-=f(x)

ls" l«s'p

one has approximately:

(~')'=f(*),
or

p SP

(124)

(125)

(126)

Let f(x) go to+ ~ uniformly for x sufficiently small.
Then for x small (121) approaches the equation:

d uo/dx'+P(x)5uo 0——. (122)

The asymptotic integration for x small is obtained by
what is essentially the WXB method.

Let

(123)
Then

YII. MATHEMATICAL BASIS (f(x))&dx, (127)

In the preceding work a number of examples of singu-
lar potentials have been considered. The structures of
the various problems have been rather different, and
yet the same method has always worked. At each step
the success seemed to be a minor miracle. Here the
underlying reason that the method. works and a general
proof of its applicability will be given.

Two characteristics have been true of all the above
problems. (1) The linearly independent solutions of the
differential equations are distinguishable by a phase
constant B. (2) By requiring all eigenfunctions to ap-
proach the origin with the same 8, orthogonality is
achieved.

In words, the general proof runs as follows: Let the
potential go to infinity sufficiently rapidly (defined more
precisely below) so that V is uniformly large for small r.
Then the behavior of the solutions of the differential
equations near the origin are determined by the poten-
tial alone; i.e., for r small all the equations approach
some standard equation, say that corresponding to
E=0. Under these conditions, Sturm's oscillation
theorem shows the behavior of solutions of the standard
equation to be oscillatory and hence describable by a
phase constant. Requiring all eigenfunctions to have
this same phase constant means that these functions are
all to approach the same solution of the standard equa-
tion. Two solutions of the standard equation have con-
stant Wronskian. In particular, for linearly dependent
solutions, this constant is zero. Since two different
eigenfunctions approach the same solution, the Wron-
skian of these eigenfunctions tends to zero for small r.
This last is just the orthogonality condition.

For purposes of simplicity we restrict ourselves to the
non-relativistic case in carrying out the proof. The
generalization will then be evident and so merely
sketched.

Consider the Schrodinger equation (2) in the slightly
altered form:

where xo is some constant. The condition of validity
(125) gives:

f( )»llf-'/'I,
or since f is negative, f(x) positive,

f(x)» f'/2f~-
On integration

(128)

(129)

po

S=W (f(x))&dx+ ,'i }nf(x). - (131)

Combining the two solutions for No into real solutions
one 6nds:

pXQ

uo=f(x) 1 cos —' (f(x))&dx+B (132)

where 8 is an arbitrary constant. Consider two solutions
of (122), up and upo, with constants B and Bp Then:.

W(up, up') =up up' —up'up" ——sin(B p
—B.). (133)

Let us integrate (121) by assuming:

u= po(x)uo, (134)

where up is a solution of (122). Then (121) becomes:

po = p(A' —
po )uo/uo (135)

Hence,

l
u, /u, '

l -1/(f(x)) ~«1 by (127).

f(x)»1/x', x small. (130)

Equation (130) is our definition of "sufficiently singu-
lar. " As a second approximation under the conditions
(130) one finds:

d'u/dx'+
lj(x) g'5u= 0— (121) (136)
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Improving the approximation by taking into account
the first term on the right-hand side of (135) we 6nd:

y=exp —
~

—dx .
2 ~p Np.

(137)

Consider solutions of (121) corresponding to two differ-
ent energies g, g'. Then:

(2l~ l'* uo
u - exp] — dx

[ uo,
o uo"

(gg p* uou'- exp~ —
) dx

~

uo'.
k2 ~p up' )

(138)

Familiar operations on the Eqs. (121) give:

L(g')2 —(q )'j uou. dx= W(u. , uo) jo (1.39)
~p

But from (138):

0o gp P Qp

IV(u. , uo)-exp —
~l dx+ — dx

. 2 ~o (uo)' 2 ~o (uo')'

Q() Qp

X W(uo', uo')+uo'uo'
.Sp Qp

~W(uo', uo') = sin(Bo —B.).

(140)

Hence, if N, and u~ are required to approach the same
solution of (122), orthogonality results.

The generalization to the more complicated relativis-
tic equations is evident. For small r, solutions will tend
to those of a standard equation whose behavior is com-
pletely determined by the singularity. In all such equa-
tions an identity exists between two solutions for difer-
ent energies of the form:

(E1 E2)(pl $2) dWGQ'2 f2)/d», (142)

where (p, , $2) is an appropriately defined scalar product

density, and 8'z is a function generalizing the ordinary
Wronskian which vanishes for P2

——$2. Now E& E——2
for two solutions of the standard equation. Hence,
IVo ——constant for this case. Integrating (142) shows the
integrated scalar product is proportional to Wg]o. Since
Wg, for small r, tends to that for solutions of the stand-
ard equation, it is constant sufFiciently near the origin.
In particular, if all eigenfunctions are required to tend
to a un~age solution of the standard equation, this con-
stant is zero. Hence, the eigenfunctions will form an
orthonormal set.

VIII. CONCLUSIONS

The above discussion gives a method for solving eigen-
value problems with a potential which tends to infinity
very strongly at one end of an interval. It can be shown
that the method is applicable to the 1/r' tensor force
problem, but with the attendant non-relativistic difFi-

culties. However, one can prove that the relativistic
equation from which the 1/r' arises as an approximation
gives no difhculties no matter how large the coupling
constants are.

On the mathematical side the following can be said.
In quantum mechanics we are interested in operators
having complete orthonormal sets of eigenfunctions.
Usually this requirement is taken to be hermiticity.
Von Neumann" has shown that the condition is really
that it be possible to construct a unitary operator gener-
ated by the hermitian operator. Here we have found
that by formally supplementing the definition of an
operator it is possible to obtain an hermitian operator
with a complete set of eigenfunctions. It would be useful
to have simple criteria for when this is necessary and
when it is possible.

In conclusion I should like to thank Professor %.
Pauli for several very instructive discussions, Professor

J. Von Neumann for permission to use his unpublished
results, and Professor J. R. Oppenheimer for suggestions
and the kind hospitality of the Institute.

"W. Pauli, Handbuch der Physik XXIV, 1, p. 142 (1933).


