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Therefore we obtain 6nally
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J(t) = (eh/ Vote *) sin(eEeut/tt).

For t«h/eEna we have

J(t) = (ne'/Vm*)Et, 8J(t)/Bt = (me'/Vm*)E (1.5)

The quantity multiplying E in (15) is however exactly
the quantity 1/A defmed by Tisza so as to give Eq. (1).

8(AJ)/Bt =E. (16)

This is Eq. (2). The fact that the same A occurs in
both equations speaks to a certain extent for the
internal consistency of the theory.

In conclusion I would like to thank Professor Tisza
for allowing me to see his manuscript prior to publica-
tion, and for several valuable discussions.
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The special features of the quantum theory of the longitudinal electromagnetic 6eld originated from the
supplementary condition are discussed in connection with the vacuum expectation value of the bilinear form
in the electromagnetic potentials. The present investigation con6rms the view that the uni6ed treatment of
the electromagnetic 6eld is valid for gauge-invariant integrals.

I. INTRODUCTION
' /RIOR to the recent developments in quantum elec-

trodynamics it was customary to eliminate the
longitudinal electromagnetic Geld and its supplemen-
tary cond. ition by a canonical transformation, and to
deal with the interaction of the electron waves with the
transverse photons, together with the Coulomb inter-
action of the electron waves that arises from the elimi-

nation of the longitudinal 6eld. ' In order to simplify
the calculations, a uni6ed treatment of the longitudinal
and transverse components of the electromagnetic
6eld has been generally adopted in recent works on
quantum electrodynamics in dealing with the virtual
processes. ' Since the longitudinal 6eld is no longer
eliminated from the theory, it has become necessary
to make a closer study of its properties.

In the following discussion we shall use the notation
of Schwinger's papers with the constants c and k put
equal to unity. In this notation the state vector repre-
senting the vacuum state of the free electromagnetic
Geld satisfies the supplementary condition:

(A „(x)A.(x'))0
——ib„.D&+& (x—x'), (5)

which forms the basis of the unihed treatment of the
electromagnetic Geld. Belinfante' has pointed out that
Eq. (4) is incompatible with the supplementary condi-
tion. As a result of this incompatibility the vacuum
expectation value

A„x A„x'

for the transverse 6eld. In Schwinger's formulation of
quantum electrodynamics the elimination of virtual
photons is achieved by evaluating vacuum expectation
values of the form:

(n)o= +otM'0

In order to do this in a covariant way, Eq. (2) is gen-
eralized into:

A „t+~(x)+o=0.

This generalized vacuuIn condition leads to the result:

6,„&+&(x)%'0=0 (2)

'%. Heisenberg and W. Pauli, Zeits. f. Physik 59, 168 (1930};
E. Fermi, Rev. Mod. Phys. 4, 125 (1932).'T. Tati and S. Tomonaga, Prog. Theor. Phys. 3, 391 (1948);
J. Schwinger, Phys. Rev. 74, 1439 (1948};75, 651 (1949}„76„7'90
(1949);R.P. Feynman, Phys. Rev. 74, 1430 (1948};D. Rivier and
E. C. G. Stuecklberg, Phys. Rev. 74, 218 (1948); F. J. Dyson,
Phys. Rev. 75, 486, 173{i (1949}.

A„(x)%'p =0
t9XIs

for the longitudinal 6eld and the condition of vacuum:

derived from formula (5) does not vanish as it should.
Nevertheless, it has been shown by Schwinger that
direct calculations of the self-energy of the electron
based on the rigorous method and the unihed treatment
give results which become identical after a gauge
transformation. It has also been shown by Hu4 that the
two methods give the same result for the iterated form
of the 5-matrix. It is not clear from these investigations

' F. J. Belinfante, Phys. Rev. 76, 226 {1949).' N. Hu, Phys. Rev. 76, 391 (1949); 77, 150 (1950).
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A„&+~(x)+o=0,
Bx~

(6)

which is the positive-frequency part of the supple-
mentary condition. The result thus obtained is of the
form:

why two apparently incompatible mathematical schemes
should lead to equivalent results.

The situation has been clarified by recent investiga-
tions of Dyson, ' Coester and Jauch. ' These authors have
shown that it is possible to justify the unified treatment
with no reference to either the traditional separate
treatment of the electromagnetic field or the generalized
vacuum condition, as long as we are dealing with gauge-
invariant integrals. In Coester and Jauch's evaluation
of the 5-matrix the virtual photons are eliminated by
using the commutation relations alone without any
special consideration of the vacuum expectation value

(A„(x)A,(x'))o. The vacuum expectation value of the
bilinear form has been investigated by Dyson. Dyson
shows that (A o (x)A „(x ))o can be determined, except
for an unknown function, from Eq. (2) and the equa-
tion:

note that Gupta' has recently proposed a modified
formulation of quantum electrodynamics which con-
sists in taking Eq. (6) instead of Eq. (1) as the supple-
mentary condition. In the present note we shall be
concerned with only the original formulation of the
theory based on the supplementary condition (1). A
systematic formulation of Gupta's idea is a problem for
further investigation.

II. VACUUM EXPECTATION VALUE IN THE QUANTUM
THEORY OF THE ELECTROMAGNETIC FIELD

Quantum-mechanical representations for the longi-
tudinal electromagnetic field have been given by Fock
and Podolsky, Dirac, ' and Wentzel. " In all of these
representations the state vector satisfying Eq. (1) is
infinite in magnitude. Since the state vector is not
normalized in the conventional sense, the usual concept
of expectation value does not exist. If we formally
take the state vector to be normalized and apply the
conventional rules for evaluating expectation values,
contradictions of the following kind will arise. " From
Eq. (1) and its Hermitian conjugate:

8'
(A„(x)A„(x'))o=oh„„D&+&(x x')+—— C (x—x'), (7)

2 Bxp, &xy

4 being a function left undetermined by the theory.
From the special form in which 4 appears in Eq. (7) it
can be seen that it contributes nothing to integrals of
the form:

we obtain

or

+ot A„(x)=0,
Bx~

8
Tot A„(x), A„(x') 4'o ——0

'8$fs

(10)

)t ) E„„(x,x')(A„(x)A„(x'))od'xd'x',

if the tensor E„, satisfies the conditions of gauge in-
variance:

E„„=O, E„„=O,
&v

which obviously cannot be true.
These features of the theory of the longitudinal elec-

tromagnetic field are typical of the theory of continuous
spectrum. Consider for example a pair of canonically
conjugate variables q, p satisfying the commutation
relation:

and the integrals extend over the whole space. Since
Eq. (7) differs from Eq. (5) only by the term involving
the function 4, it is justified to use formula (5) for the
evaluation of gauge-invariant integrals.

It is interesting to find out whether it is possible to
take into account the complete supplementary condi-
tion, Eq. (1), in the evaluation of the vacuum expecta-
tion value in question. It will be seen in the next section
that this requires a slight modification in the way the
vacuum expectation value is taken, but the result that
follows from this modification bears out the view that
the unified treatment of the electromagnetic field is
valid for gauge-invariant integrals.

In connection with the exclusive use of the positive-
frequency part of the supplementary condition, we

~ F. J. Dyson, Phys. Rev. 77, 420 (1950}.' F. Coester and J. M. Jauch, Phys. Rev. 78, 149 (Section V},
827 (1950).

Let f(q') be an eigenvector of q belonging to the eigen-
value q'. Then the normalization condition in the theory
of discrete spectrum is replaced by the formula:

and the matrix elements of P are of the form:

(13)

~ S. N. Gupta, Proc. Phys. Soc. London 63, 681 (1950); K.
Bleuler (to be published}.

8 V. A. Fock and B.Podolsky, Physik. Zeits. Sowjetunion 1, 801
(1931);L. Rosenfeld, Zeits. f. Physik 76, 729 (1932); S. T. Ma,
Phys. Rev. 75, 535 (1949); F. J. Selinfante (reference 3).' P. A. M. Dirac, Ann. Inst. M. Poincarb, 9, 13 (1939).

Io G. Wentzel, QNanfum Theory of Finds, Interscience Publishers,
New York (1949). The writer is grateful to Professor Wentzel
for a discussion of this representation.

u This was pointed out to me by C. N. Yang several years ago.
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It follows from Eqs. (12) and (13) that:

~t(q') pq~(0) =o,

4t(q')qp4(o) =i&(q'),

(14)

(15)

components according to the general formula:

A„(x)= e„&pi [A(x)—L(x)]— I.(x)+ e„(x), (24)
OX' BXp

4 t(o)pq4 (q') = iB(—q'), (16)

&Pt(0) qP&P(q') =0.

where we write L instead of Schwinger's A', we have:

C pt.4„(x)A„(x')Cp

These equations are mathematically consistent as long
as q' is treated as a variable of integration. On the other
hand, expectation values —diagonal matrix elements—
calculated from these equations are usually divergent
and ambiguous. In the 6rst place, it follows from
Eq. (12) that

&pt(0)&p(0) = B(0),

with:

=i B„,D&+& ix x')+—P„„(x x')+—Q„„(x x')—
g2

+R„„(x—x')+ L(x)L(x'), (25)
BX l9X„

which shows that
~ &P(0)

~

'- is infinite. As can be expected
from this divergence, Eqs. (14) to (17) lead to contra-
dictory results if q' is put equal to zero. For example,
from Eqs. (14), (17) with q'=0 we have

Q„„(x—x') =n„n), [L(x), L(x')]
X)t BXv

= —np„ni X)(x—x'), (26)
BXy BX„

or
4t(0)[q, p]4(0) =0

4t(o)4'(0) =o.
I9

R„„(x—x') = n„mi [A(x) —L(x)]
BXy

In view of these special features of the longitudinal
electromagnetic 6eld, and of the fact that only the
transverse photons are of physical interest, it seems
more consistent to take the vacuum expectation value
only for the transverse degrees of freedom. Let xo and
40 be the two factors of 4'0 referring, respectively, to
the longitudinal and transverse degrees of freedom.
These state vectors satisfy the equations:

L(x) n„ I„[&t( x) —L(x')]
BXp, BX„

8
L(x')&p„n), [B/Bx),][A(xl —L(x)]. (27)

&tIIXv

The supplementary condition (18) can be written in
the form:

-A, (*)xp =0,
Xp,

(18)
Hence:

[A (x) —L(x) ]xp ——0. (28)

&t„&+&(x)C,=0,

C pt 8,„&-&(x)=0. (20)

C ptA„(x)A„(x')C'p&&p

Instead of the quantities defined by Eq. (3) we consider
the quantities CptMp. The latter quantities are opera-
tors when 0 involves the longitudinal variables, and
operate on yo.

It follows from Eqs. (19) and (20) that:

C pt8„(x)Cp ——0,

C pt Q„(x)C,(x')C p
——iB„„D&+&(x—x')+P„„(x—x'),

where

(21)

(22)

82

P„„(x)= i ——
~Xy~Xv

( B B ) B
+ ( „pp+n„~ ppi 5)'+'(x). (23)

Bx„Bxp) Bxi I

Resolving A„(x) into the longitudinal and transverse

if&„,D&+& (x x')+ P„„(x x')+—Q„„(x x')— —

+ L(x)L(x') xp. (29)
BXpBXy

The right-hand side of Eq. (29) may be replaced by:

iB„„D&+&(x—x') &&p (3o)

in the integrand of a gauge-invariant integral, which
shows that the state vector xo is transformed into
the same state vector multiplied by the factor
iB„„D&+&(x—x'). Thus, formula (29), like formula (7),
provides a justification for applying formula (5) to
gauge-invariant integrals.

The integral (8) is gauge-invariant if (i) the tensor
K„„satisfies the conditions of gauge invariance (9),
and (ii) the integral extends over the whole space.
Expressed or implied, the conditions of gauge invari-
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ance have been used in all the recent investigations on
the equivalence of the tmo methods of treating the
longitudinal electromagnetic 6eld. As the investiga-
tions of Kentzel and others show, " the evaluation of
the induction tensor in the theory of vacuum polariza-
tion involves a great deal of ambiguity, so that gauge
invariance of quantum electrodynamics is by no means
a mell-established fact at the present stage of the theory.
However, gauge invariance is a basic requirement of a
satisfactory formulation of quantum electrodynamics,
and it is reasonable to take Eqs. (9) as an assumption or

~ G. Wentzel, Phys. Rev. 74, 1070 {1948);K. Pauli and F.
Villars, Rev. Mod. Phys. 21, 434 (1949).

to ensure their validity by means of the regularization
of Pauli and Villars.

For integrals which do not satisfy the requirement
(ii), further investigation is necessary before the
validity and limitation of the uni6ed treatment can be
established. For example, in Schwinger's calculations of
the self-energy of the electron, the results obtained by
the two methods of treating the longitudinal electro-
magnetic field become identical only after a gauge
transformation. On the other hand, the requirement (ii)
is satis6ed by the iterated form of the S-matrix, so that
the equivalence of the two methods of evaluating the
S-matrix follows immediately from the above con-
siderations.

P H YS I CAL R EVI EW VOLUME 80, NUMBER 4 NOVEM B E R 15, 1950

Hall CoefEcient and Resistivity of Thin Fihrts of Antimony Preyared by Distillation*

W. F. LEVERTONt AND A. J. DEKKER
Department of I'hysics, University of British Columbia, Vancouver, Canada

(Received June 30, 1950)

An a.c. method is described for measuring the Hall coeScient. An apparatus for the preparation of very
pure evaporated metal 61ms is also described. This apparatus eliminates such sources of contamination as
hot filaments.

The effect of annealing on both Hall coeScient and resistivity of evaporated Glms of antimony is examined.
A tentative explanation is presented for the observed increase in the Hall coef5cient and decrease in the
resistivity. It is based on the assumption of partial recombination of electrons and holes.

The Hall coefBcient of unannealed evaporated 6lms is 0.215s c.g.s.m. , and of annealed Glms is 0.2414
c.g.s.m. edith an accuracy of one percent.

The resistivity of our annealed films is 1.28 times that of bulk antimony.

I. INTRODUCTION

'F a conductor carrying a current is placed in a mag-
- netic field at right angles to the current, a potential

difference develops across the conductor in a direction
perpendicular to both magnetic field and current flow.
This potential difference is known as the Hall voltage

V= (XIII/t) X 10 ',

where I is the current in amperes, H is the magnetic
6eld in gauss, t is the thickness of the conductor in cm
in the direction of H, and E is the Hall coe%cient of the
conducting material in c.g.s. magnetic units.

Examination of the literature reveals that most ob-
servers have used direct current in their determinations
of the Hall coefFicient. Since such a determination
measures the sum of the Hall and Kttingshausen volt-
ages, the results must be corrected by measuring the
latter separately. Since the voltages are very small, the
Hall voltage determined in this manner may be in
serious error where the Ettingshausen voltage is large
compared with the Hall voltage. The Kttingshausen
voltage may be eliminated by using Hall contacts of the

*Assisted by the Defence Research Board of Canada.
f Holder of National Research Council of Canada Studentship,

1948-49, 1949-50.

same material as the sample; however, this is prac-
ticable only in a limited number of cases.

In the measurements described in this paper an alter-
nating current was used in the determination of Hall
coe%cients. Since the temperature gradient which leads
to the Ettingshausen eBect requires a time of the order
of seconds to become established, ' use of alternating
current completely eliminates this eGect from the ob-
served transverse voltage. A further advantage of the
a.c. method is that it is much easier to amplify very
small alternating voltages than to amplify direct volt-
ages of the same magnitude.

Despite these advantages, few observers' ' have used
a.c. methods. Smith' found the Hall coefaicient of bis-
muth to be constant within experimental error for fre-
quencies up to 120,000 cycles per second. %ood' found
similar results for tellurium up to 10,000 cycles per
second. Busch and I.abhart' worked only at line fre-
quency (SO cycles). Some early observers' ' used a.c. of
the same frequency in both the Hall. sample and in the

' A. Smith, Phys. Rev. 35, 81 (1912).' L. A. %food, Phys. Rev. 41, 231 (1932).' G. Busch and H. Labhart, Helv. Phys. Acta 19, 463 (1946).
4 T. Des Coudres, Physik. Zeits. 2, 586 (1901).' Von Traubenberg, Ann. d. Physik 17, 78 (1905).
'H. Zahn, Ann. d. Physik 36, 553 (1911).


