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The method of effective mass, extended to apply to gradual shifts in energy bands resulting from deforma-
tions of the crystal lattice, is used to estimate the interaction between electrons of thermal energy and the
acoustical modes of vibration. The mobilities of electrons and holes are thus related to the shifts of the con-
duction and valence-bond (6lled) bands, respectively, associated with dilations of longitudinal waves. The
theory is checked by comparison of the sum of the shifts of the conduction and valence-bond bands, as
derived from the mobilities, with the shift of the energy gap with dilation. The latter is obtained inde-
pendently for silicon, germanium and tellurium from one or more of the following: (1}the change in intrinsic
conductivity with pressure, (2) the change in resistance of an n-p junction with pressure, and (3) the variation
of intrinsic concentration with temperature and the thermal expansion coefBcient. Higher mobilities of
electrons and holes in germanium as compared with silicon are correlated with a smaller shift of energy gap
with dilation.

I. INTRODUCTION

HE mobilities of electrons and holes in non-polar
semiconductors and insulators are determined by

interactions with the acoustical vibrations of the lattice
as well as by scattering by impurities or other lattice
defects. The former generally predominates in relatively
pure materials in which the concentration of carriers
is small. . Classical rather than quantum statistics may
then be applied to the conduction electrons and the
wave-length of an electron of thermal energy is large
compared with the lattice constant. Such electrons
interact only with acoustical vibrational modes of com-
parably long wave-length whose properties are deter-
mined by the bulk elastic constants. The purpose of
the present paper is to calculate the magnitude of this
interaction on the assumption that local. deformations
produced by the lattice waves are similar to those in
homogeneously deformed crystals. In particular, we
shall show that for the case of non-degenerate, spherical
energy surfaces in the Brillouin zone the lattice scat-
tering is determined by shifts in the energy bands
resulting from dilations associated with acoustical
waves. '

The discussion of the motion of electrons or holes in
semiconductors is usually based on the use of the
concept of effective mass. If a gradually varying electro-
static potential is superimposed on the periodic poten-
tial of a crystal lattice, it is often a good approximation
to neglect the periodic potential and to calculate the
motion of an electron of appropriate effective mass in
the gradually varying potential. Justifications for this
procedure have been given by Peckar, ' Slater, ' and
James. ' The criterion is essentially that the change in

the gradually varying potential in one period be small

compared with the periodic potential. One of our prin-

cipal aims is to show that this theory can be extended

' W. Shockley and J. Bardeen, Phys. Rev. ?7, 407 (1950).' S. Peckar, J. Phys. USSR 10, 431 (1946).' J. C. Slater, Phys. Rev. 76, 1592 (1949).Slater's proof is based
on a method of G. H. Wannier, Phys. Rev. 52, 191 (1937).' H. M. James, Phys. Rev. 76, 1602 (1949).

to cover effective potentials which correspond to the
position of the energy band boundary as aGected by a
gradually varying dilation. %e shall call effective
potentials of this sort, which can be produced by
acoustical waves of long wave-length, deformatiorr,
Potentials.

The velocity, v, of an electron with energy koT
(ko ——Boltzmann's constant) at room temperature is
about 10' cm/sec. The wave-length, X=h/mv, of elec-
tron with this velocity is about 7)&10 ~ cm, which is
large compared with the lattice constant. The energy of
a phonon of corresponding wave-length is

hv= kc/X= mvc= (c/v) mv',

where c is the velocity of the acoustical wave. Since
c 5&&10' cm/sec. as compared with w 10" cm/sec. ,
the energy of the phonon involved in scattering is small
compared with koT and with the energy of the con-
duction electrons. This implies that the pertinent
acoustical waves can be treated by classical methods,
even at fairly low temperatures. In this latter respect
the theory for non-polar crystals is simpler than for
metals or for polar compounds.

The theory of scattering by acoustical vibrational
modes has been discussed by Sommerfeld and Bethe, '
by wilson' and by Seitz. ' Making certain assumptions
concerning the interaction between electrons and lattice
waves, they show that (1) scattering is essentially
elastic, (2) scattering is isotropic, and (3) the mean free
path is independent of the velocity of the electron and
is inversely proportional. to the absolute temperature.
The mobility then varies as T—

&, as is observed in
relatively pure samples of Ge, Si, and Te.

Germanium and silicon have a diamond structure
with two atoms per unit cell, so that there are two
branches to the vibrational spectrum. Seitz has con-

'A. Sommerfeld and H. Bethe, Handbuch der Physik (1933),
Vol. XXIV.

6A. H. Wilson, The Theory of Metals (Cambridge University
Press, London, England, 1936).

~ F. Seitz, Phys. Rev. 73, 549 (1948).
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sidered the theory of scattering by the upper branch as
well as by the acoustical branch, There is no experi-
mental evidence that scattering by modes in the upper
branch plays a role in the conductivity of non-polar
semiconductors. Frohlich and Mott, on the other hand,
have shown that a major cause of scattering in polar
crystals is the interaction with optical modes of long
wave-length. We shall be concerned only with the
acoustical branch.

A calculation of the actual magnitude of the mean
free path or mobility requires an evaluation of a matrix
element of the interaction between electrons and lattice
vibrations and some assumption regarding the form and
magnitude of this interaction. While some calculations
of the matrix element have been given for metals, no
explicit calculations have been made previously for non-

polar semiconductors. Making use of the deformation
potentials, we evaluate the matrix element in terms of
certain general properties of the energy band picture in

a way which permits correlation with other experi-
mental data. The details of this calculation are given in
the Appendix.

The deformation potential is determined by shifts in
the energy bands with dilations of the crystal produced

by thermal vibrations, and is calculable from the varia-
tion in energy band boundaries with lattice constant.
The calculation of energy bands has not progressed to
the point where these variations can be obtained from
6rst principles. It'is possible to check the theory from
experimental data, however, because the theory predicts
that quantities deduced from the mobilities will be
dehnitely related to effects produced by pressure and

by thermal expansion.

II. ENERGY BANDS IN DEFORMED CRYSTALS

In Fig. j. we give a qualitative diagram showing hov

the band structure may be expected to vary with
lattice constant for a crystal like silicon or germanium. '
In these crystals a decrease in lattice constant increases
the separation between the valence-bond, or 6lled, band
and the conduction band. It should be noted that the
energies of the valence-bond and conduction bands, E,
and E„may shift in opposite directions as a result of
the varying dilation of a lattice wave, thus changing the
energy gap, Eg=E,—E,. In contrast, a varying elec-
trostatic potential, in the absence of distortion, moves
the bands up and down together (cf. Fig. 1 of reference
1).We shall shortly consider the e8ects of more general
deformations than pure compressions or dilations and
in Section III we shaB show how the resulting shifts can
be treated as effective potentials.

%'e shall next consider and dispose of a difliculty in

applying curves like those of Fig. 1 to obtain shifts in
the energy bands in different parts of a deformed

s The figure is based on calculations of the energy bands in
diamond by G. E. Kimball, J. Chem. Phys. 3, 560 (1935). The
band structure for silicon has been calculated by J. F. Mullaney,
Phys. Rev. 66, 326 (1944).

crystal. This difhculty has to do with the fact that
deformations may set up electrostatic potentials. When
curves like those of Fig. 1 are computed numerically,
some arbitrary choice of the zero of electrostatic poten-
tial must 4e made. For example, in calculating curves
for diamond, Kimball' used a potential which took on
the same numerical value near the interior of the atom
for all lattice constants; as he points out, this choice is
purely arbitrary.

Actually the potential in the interior of the atoms
varies with dilation. For example, in the case of semi-
conductors with large scale deformations the potential
is determined as follows: Start with an undeformed
crystal of lattice constant uo. Imagine a deformation
which leaves one portion of the crystal unaltered, but,
as a result of a continuously varying strain, produces
another large region in which the crystal is uniformly
dilated to a value c~. I et the height of the Fermi level
corresponding to electrical neutrality and measured
relative to the potential energy of an electron at a point
axed near the interior of an atom be U for the unde-
formed crystal and U' for the deformed crystal. . In
equilibrium, the potentials will adjust themselves to
bring the Fermi levels in different parts of the crystal
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FIG. 1. Energy bands for diamond versus lattice spacing
(see reference 8).

to the same height. This implies a difference of O' —6'
in potential energy resulting from the change in electro-
static potential near the interior of an atom. The elec-
trostatic potential diBerence is produced in part by the
space charge of the carriers and axed impurity ions and
in part by polarizations due to relative displacement of
the electrons and atomic nuclei in the region of varying
strain. As a specific example, in a n-type semiconductor,
the requirement of electrical neutrality mill lead to
approximately the same value of E, in both parts of the
crystal so as to produce the electron densities which
compensate the impurity ions.

For the short wave-length lattice waves which con-
tributed to scattering, however, the space charge of the
carriers and impurities in the semiconductor is insuf-
6cient to set up appreciable potential differences over
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the relatively short distances involved. In fact, for the
wave-length of a thermal electron in germanium of
resistivity of 5 ohm-cm, there will be about 10 ' elec-
trons on the average in each cube one wave-length on an
edge. Even for higher densities, the eBect is negligible.
Longitudinal lattice waves of wave vector k produce
electrostic potentials of the order Arch/k', where S is
the concentration of impurity ions and 6 is the dilation
of the wave. This eBect is negligible compared with the
effect of shifting of the bands, ' except for very small
values of k (very long wave-lengths). In addition to the
space charge of the carriers, there may be local polariza-
tions and electric fields resulting from relative displace-
ments of neighboring atoms; for non-polar crystals,
these will also be negligible. Accordingly, we assume
that electric field eGects which made the electrostatic
potential depend on the strain pattern are negligible
for deformation waves of interest for scattering and
consider the energies E, and E, of the conduction and
valence-bond bands each to be a unique function of the
local strain.

For a cubic crystal subject to a homogeneous strain
E g' the band energies E, or E, can be expressed in the
form,

E(e„)= Eo+Eih,

where 5 is the dilation

611+to2+ 633)

(2.1)

(2.2)

'For example, with E 10"/cm' and k 10' cm ' Ae/k' is
about 5&10 ' e.s.u. or 1.5&10 ~ volt. This potential contributes
a negligible amount compared to E& of Eq. (2.1)."%.Shockley, Phys. Rev. 78, 173 (1950).

since by symmetry any term containing e;, with ~/ j,
which changes sign by refIection in a symmetry plane,
must have a zero coefFicient. The parameter E~ has the
dimensions of an energy, and we shall see that it is
closely related to the interaction constant C used in
previous theories of scattering. ' ' If the energy band
is degenerate, then relative displacements of the dif-
ferent energy sheets may be produced by shearing
strains. It should be possible to extend the treatment of
(2.1) and (2.2) to such cases by methods similar to those
employed in determining the shape of the energy sur-
faces."It is probable that eGects associated with com-
plex shapes of the energy surfaces may account for
magnetoresistive e8ects in germanium and silicon. The
agreement presented in Table III between the pre-
dictions based on (2.1) and experiment suggests that the
contributions of scattering due to other terms is rela-
tively small compared to E~. In this paper we shall
neglect the possibility of degenerate energy bands and
shall proceed on the basis of spherical energy surfaces
in the Brillouin zone.

In a strained crystal a wave function with crystal
momentum P Li.e., having a factor exp(iP r/h)g will
have an energy

E(P, e;,) =Eo(P)+ „e„E;,(P). (2.3)

III. THE DEFORMATION POTENTIAL THEOREMS

In the Appendix an analytical treatment is presented
showing that the shift in the band edges, v hich can be
written as Ei,A for electrons in the conduction band,
and as EI,A for holes in the valence-bond band, may be
used as varying potentials in calculating the behaviors
of electrons and holes. We shall refer to these potentials
as deformation potentials and write

~U(r) =E,~(r), (3 1)

supplying the subscripts c and ~ as required. The first
theorem, referred to as the method of effective mass, is
analagous to the treatments of Kannier, Peckar,
James, and Slater. ' '. These earlier treatments show
that in an undistorted lattice when a perturbation bU,
(s for electrostatic) produced by an electrostatic held is
present, the wave function can be obtained by solving
the equation

L(h'/2m*) V +t U.(r)ga(r) =E~(r), (3.2)

where A(r) is an amplitude function. (If the crystal is
not cubic, (1/m~) P is replaced by Zn„, (8'/itx, itx, ) which
can be reduced to a principal axis form 8'/miBxi'-'

+8'/m2rtx2'+cP/miBxs'. We are not aware of a treat-
ment for the case of degenerate energy bands. ) The
wave function A(r) is a smoothly varying function
which does not vary appreciably over the unit cell; if
8U, (r) is so large that A(r) does not satisfy this con-
dition, the method of efI'ective mass becomes inadequate
without considerable refinement.

The complete wave function to a good approximation
ls

~ (r)A(r) (3.3)

where $0(r) is the wave function at the band edge and
is either periodic with the period of the lattice or simply
changes sign from cell to cell. This shows that, except
for fIuctuations within each unit cell, the probability
density is distributed as for a particle of effective mass
no* moving in a potential 8U, . In the Appendix it is
shown that if the crystal is deformed a similar theorem
applies if a deformation potential

5U= Eih(r) (3.4)

is added to 8U, in Eq. (3.2). The suitable modification
of (3.3) is introduced in the treatment.

For small I', E;; can be expanded in the series:

E;(P)=Eif,+~I iP,id'iPi+ -. (2 4)

Thus the energy for a state with I' small is of the form

E(P, e„)= Ep(P)+Ere+ terms in P' stra-ins. (2.5)

For electrons of thermal energy, the latter terms are
generally small compared to E&A and can be neglected.
This is equivalent to neglecting the change in effective
mass with strain.
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M = ' P'(r, P')41U(r)P(r, P)dxdyds, (3.6)

where b U(r) is E141(r) produced by a thermal vibration.
The transition from P to P' can occur with either ab-
sorption or emission of a phonon. Combining the emis-
sion and absorption processes gives an effective matrix
element for P~J"

I3f ~'= E1(2A)2A, =E1'&02"/Vc„, (3.&)

where V is the volume of the crystal and (A2)4„ is the
average dilation of a longitudinal wave with an elastic
constant c;;=pcP having total energy koT, i.e., potential
energy =c,;(62)A„V/2 = koT/2.

The value of the matrix element can be used in the
scattering formula (details in Appendix) to give a
mobility of

or
44= L(g2r) Vs4c;;/3E 2422*'~'$0&]2' & (3.8)

44T2"= (3.2 X 10-')c;;/E12 (3.9)

if 222* is taken to be the free electron mass. In (3.9), p
is expressed in cm'/volt sec. and E1 in ev.

In the next section we shall discuss experimental
values of c;, and in the following section the values of
tE1.

~
and ~E1„~ obtained by inserting values for 44„, y„,

and c;, into (3.9) and solving for
~
E1~. The results so

obtained are compared with the variation of the energy
gap Eg, given by

where
+6 EOG+E1A) (3.10)

(3.11)

If the efFect of dilation is to shift the energy bands in
opposite directions,

IE1CI = IE11+IE1.l (312)

There are several empirical ways of determining EI&,
and estimates of this quantity have been made for Ge,
Si, and Te. %e shall show in Section V that values of
~E1,j and ~E1„~ obtained from mobility data are in
reasonable agreement with values of ~E1o~ obtained
in other ways.

The second theorem shows that the deformation
potential (3.4) is also suitable for use in a calculation of
the matrix element for a transition from a state with
crystal momentum P and wave function

P(r, P) =exp(2P r/k) U(r, P), (3.5)

where U(r, P) has the periodicity of the undistorted
lattice, to a state with momentum P'. The matrix
element is

Since the waves of interest are long compared with the
lattice constant, their velocities can be determined from
the elastic constants. In an isotropic solid, the three
possible polarizations consist of one purely longitudinal
mode and two transverse modes; in a cubic crystal the
same situation is true for wave propagating in the
(100), (110), and (111)directions, which lie along sym-
metry axes. For other directions there is a slight mixing
of longitudinal and transverse polarizations.

The elastic constants for diamond, germanium, and
silicon are given in Table I. Values listed for germanium
are from some recent measurements made at the Bell
Telephone Laboratories. " The only value known for
silicon is the compressibility from Bridgman's data" on
the change of volume with pressure. Values of the com-
pressibilities" of diamond, Si, Ge, and Te are given in
Table II. Values of the elastic constants of silicon listed
in Table I were estimated by assuming that they difFer
from those of germanium by a constant factor which
was obtained from compressibility data. In an isotropic
solid,

C44 =
2 (C11 C12) ~ (4 1)

It can be seen from Table I that this relation is not well
satisfjed for these elements. Nevertheless, the velocities
of longitudinal waves in the various directions are not
very different.

Values of c,, for difFerent directions of propagation
can be expressed directly in terms of the cubic elastic
constants as shown below '.

(100) c;;=c11,
(110) c;;=-,'(c11+c12+2c44),
(111) cjj 3(c11+2c12+4c44).

(4.2)

For other directions of propagation, the velocities lie
between the extremes at (100) and (111),and the waves
are not to be strictly longitudinal. However, as can be
seen from Table I, difFerences in c;, in diGerent direc-
tions are not large, so that the approximation we have
made of treating the material as isotropic will introduce
relatively small errors.

V. CALCULATION OF iE1. )
AND iE1, i

FROM MOBILITY DATA

Data used for the calculation of
~
E1,

~

and
~
E1, t

from
Eq. (3.9) are listed in Table III which is reproduced
with some minor changes from reference 1. Although
tellurium is anisotropic, it has been included for pur-
poses of comparison, along with the elements of the
fourth group which have the diamond structure. The
anisotropy has been neglected. Somewhat arbitrarily
we have used the value of c,, in the (110) direction for
elements with the diamond structure in place of the

IV. DISCUSSION OF ELASTIC CONSTANTS

The important deformation waves are those which
produce dilation by having a large component of atomic
displacement parallel to the direction of propagation.

' Elastic constants of germanium have been measured by
McSkimin, Mason and Bond on a single crystal sample prepared
by K. M. Olson."P. %. Bridgman, Proc. Am. Acad. 76, 187 (1949).

"The value for diamond was computed from the elastic con-
stants; values for Si, Ge, and Te are from Bridgman, reference 11.



J. BARDEEN AN D K. SHOCKLEY

TABLE I. Elastic constants (units c.g.s.X10'2).

C11

C12

C44

c;;, (100)
c;;, (110)
c;;, (111)

Diamond

9.3
4.1
4.15
9.3

10.8
11.4

Silicon

(1.67)
(0.62)
(0.87}
(1.67)
(2 0)
(2.1)

Germanium

1.29
0.48
0.67
1.29
1.55
1.64

TABLE II. Compressibili ties.

Diamond
Si
Ge
Te

0.17X10 "c.g.s
0.98
1.26
4.0

appropriate average over all directions of propagation.
For tellurium, we have assumed simply that c;; is
inversely proportional to the compressibility, and have
estimated the value by comparison with diamond and
Ge. Values of the mobility in silicon are from the Hall
eGect measurements of Pearson and Bardeen, " in
germanium from the drift velocity measurements of
Haynes, "and in tellurium from Johnson. "The mobility
of electrons in diamond has been determined by Klick
and Maurer" but the mobility of holes is unknown.
From studies of bombardment induced conductivity,
McKay" has concluded that the mobility of holes must
be greater than 200 cm'/volt-sec. at room temperature.
Values of IE]g~ and ~E1,

~

as determined from Eq. (3.9)
are listed in the sixth and seventh rows of the table.

Equation (3.9) is based on the assumption that the
effective mass is equal to the ordinary electron mass.
As the mobility varies as rn, '", values of Ei, and El „
should be multiplied by (m/m, )"' if the effective mass,
m„divers from the ordinary mass. In the case of
silicon, there is evidence that m/m. is appropximately
equal to unity for holes and is greater than unity,
perhaps about 1.5, for electrons. "Use of the latter value
would increase

t Eq,
~

from 6.5 to 10.7, and
~
Eq,

~
+ ( Eq,

~

from 17.8 to 22. It also would increase the value of

~
E~oI estimated from concentration data (Section VI)

from 33 to 40 ev, in closer agreement with the value
deduced from optical data, Values of m/m, for the
other elements listed are uncertain, but are probably
not far from unity.

If the conduction and valence-bond bands move in

opposite directions with dilation, the magnitude of the
shift in energy gap with dilation,

~ Ecol, is given by the
sum of

~
E&,

~
and

~
E&.~, while if they move the same

way,
~
E&ol is equal to the difference. Estimates of Eqo

from other data (Section VI), given in the last row of

"' G. j, Pearson and J. Bardeen, Phys. Rev. 75, 865 {1949).
"Pearson, Haynes, and Shockley, Phys. Rev. 78, 295 (1950).
'~ V. A. Johnson, Phys. Rev. 74, 1255 (1948}.
'6 C. G. Klick and R. J, Maurer, Phys. Rev. 76, 179 (1949).
"Estimated by K. G. McKay from experiments on bombard-

ment induced conductivity in diamond.

TABLE III, Derivation of shift of energy bands with dilation
from mobility data and comparison with shift of energy gap with
dilation

Diamond Silicon Germanium Tellurium

(1) c;;X10 ~ c.g.s.,
(110)

(2) p, (electrons)

10.8 2.0 1.55 0.50

(295'K)

(3) p„(holes)
"(295'K)

(4) p„T&

(5) &,T»

(6) I~1.l(«)
(7) t~'. I(«)
(8) l&~.l+l~~. l(«l
(9) E g(ev)

900 300 3500 530

&200

45 X 10'

& 10X10~

8.8
&30
&39

?

15X10'
5X 10'

6.5
11.3
17.8

1700

180X10'
86X 10'

1.7
2.4
4.1

~—5

530

27 X 10o

27X10'
2.4

2.4

+4.0

the table, are approxims, tely equal to the sum of
~
E~,

'

and
~
E~.~, indicating that the former picture is correct.

The agreement between
~
E~o

~
and the sum of

) E~,
~

and ~E~.
~

is good in the cases of germanium and tel-
lurium, and is not as good for silicon. As is discussed in
the following section, the value of

~
E~ol for silicon is

obtained by an indirect method which may not be
reliable. fn any case, the high mobitities of etectrons and
holes in germanium as compared with silicon is correlated
with a smatter shift in energy gap with dilation

VI. SHIFT OF ENERGY GAP WITH DILATION

There are two general methods for obtaining informa-
tion about energy gaps in semiconductors. One is based
on the long wave limit of the fundamental absorption
band, and the other on the equilibrium concentrations
of electrons and holes, particularly in the intrinsic tem-
perature range.

Absorption of a light quantum in the fundamental
band raises an electron from a state in the valence-bond
band to a state in the conduction band. One may
measure either the absorption coefficient or the photo-
conductivity (or photo-voltaic effect) of the electrons
and holes created by the light as a function of wave-
length. At the long wave-length limit the quantum
energy is assumed to be equal to the energy gap.
Actually, because of thermal fluctuations and possibly
also because of local irregularities, the long wave limit
is not sharply defined and there is considerable uncer-
tainty in the estimation of the energy gap. If the transi-
tion corresponding to Eo is forbidden by selection rules,
the long wave limit will correspond to a larger energy
than Eg.

Goucher and Briggs" have observed the photo-current
produced by light absorbed in a p—n junction in silicon
as a function of wave-length at diferent temperatures.
They found a change in the long wave limit which cor-
responds to a shift in energy gap from 1.1 to 1.0 ev

"F.S. Goucher and H. B. Briggs (unpublished).
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between liquid N2 and room temperature, a diGerence
of about 220'C. This corresponds to a shift of about
4.5&(10 4 ev/'C. Becker and Fan" found a shift of
about the same rate from measurements of the absorp-
tion coeKcient between 77'K and 663'K.

If it is assumed that the temperature variation is
entirely due to thermal expansion, the shift of the
energy gap with dilation can be obtained by dividing
the temperature coefFicient by the volume coefficient
of expansion. The latter is about 9X10 '/'C for silicon,
so that

Ezg VdEg/d——V —50 ev/unit dilation. (6.1)

Similar measurements of Goucher and Sriggs" on the
spectral distribution of the photo-current from an n p-
junction in germanium and of Briggs" on the absorption
coefficient as a function of temperature indicate that the
temperature coeKcient of Eg is about the same for
germanium as for silicon. As the expansion coefficient
is about twice that for silicon, the optical data give a
value of about —25 ev for E~o for germanium.

As we shall see, methods based on the concentrations
of carriers give values of Eig which are smaller than
those deduced above from optical data, particularly for
the case of germanium; although the values obtained
for the energy gaps, Eoa, are in reasonable agreement.
The source of this discrepancy is not known. "' It is
believed that values based on concentration data are
more reliable because there is less uncertainty in the
theoretical interpretation.

In the following paragraphs we shall give the theory
of the relationship between concentrations and energy
gap and discuss the methods which can be used to
determine the energy gap and its variation with volume.

Statistical theory indicates that at any temperature
and regardless of impurity concentration as long as the
concentrations of carriers are so small that classical
statistics may be used, the product of the electron and
hole concentrations, np, is"

zzP =4(2zzmk T/h') '(m„m„/m') ' exp( Eg/k T)—
= 2.4X10"T'(m„m /m') & exp( —Eg/kT), (6.2)

where m„and m~ are the e6ective masses of the elec-
trons and holes, respectively, and the other symbols
have their usual meanings. This relation can be used
in several ways to estimate Eg and its change with
dilation. These are outlined below.

(A) The zarzation in intrinsic condzzctivzty with pres
sure. —In the intrinsic temperature range, the concen-

"M. Seeker and H. Y. Fan, Phys. Rev. 76, 1531 (1949).
'0 H. B. Briggs (unpublished).
'0a Xote added in proof: —T. Muto and S. Oyama (to appear in

Prog. Theor. Phys. ) and H. Y. Fan 1 Phys. Rev. 78, 808 (1950)j
have shown that a temperature shift of the energy gap can arise
from interaction of electrons xvith lattice vibrations.

2' See, for example, R. H. Fowler, Statistical, Mechanics {Cam-
bridge University Press, London, 1936), second edition, Chapter
11. Equation (6.2) follows from expressions for n and p in terms
of the Fermi level.

trations of electrons and holes are equal and

n;= P,=5&(10"T&(m„m /m')* exp( —Eg/2kT) . (6.3)

The intrinsic conductivity, being proportional to
n;p ~ n;T—

& varies as

a =zr„exp( Eg—/2kT). (6.4)

The energy gap can be estimated from two conduc-
tivity measurements r~ and 02, made at temperatures,
li and Tg:

Eg 2k 1n——(a z/o z) (T,-' —T,—'). (6 5)

where D„and D„are the diffusion constants for elec-
trons and holes, respectively, and I.~ and I.„are the
diffusion lengths (D„r„) and (D r )&, and r~ and r„
are the mean lifetimes for holes and electrons in the e
and p regions respectively.

The equilibrium concentrations of holes in the
p-region, p„, and of electrons in the n-region, n„, are
approximately constant, independent of temperature,
in germanium in the neighborhood of room temperature.
It follows from Eq. (6.2) that p„and n„each vary as

~ J. Bardeen, Phys. Rev. 75, 1777 (1949)."P. H. Miller and J. Taylor, Phys. Rev. 76, 179 (1949) and
personal communication from Dr. Miller.

24 K. Shockley, Bell. Sys. Tech. J. 28, 435 (1949&.

This equation has been applied to Bridgman's measure-
ments of the pressure change of resistance of tellurium
to estimate the energy gap at difI'erent pressures. "By
combining these results with data on the compressi-
bility of Te, the change in energy gap with dilation can
be determined. This gives the value E~g=4.0 ev listed
in the last row of Table III.

If it is assumed, as is approximately the case for Te,
that o is relatively independent of pressure and that
most of the change in o comes from the change in Eg,
Eq. (6.4) gives

dEgldP= —2kTd in(o/dP). (6.6)

The value obtained in this way can be combined with
compressibility data to estimate E&&.

A modihcation of this method has been used by
Miller and Taylor, '-' who And E&g —5.0 ev for ger-
manium.

(8) The change of resistance of an n pjun—ction with

pressure According .—to the theory developed by one
of the authors, z' the current flowing across an n—p
junction consists of a current of holes, I~, flowing from
the e-region to the p-region and a current of electrons,
I„, fiowing from the P-region to the n-region. These
currents are proportional, respectively, to the equi-
librium concentration of holes in the n-region, P, and
the concentration of electrons in the p-region, n~ The.
net current per unit area fIowing at an applied voltage
Vis:

D,p„D„n;-
I= I~+I„=e + [exp(eV/koT) 1], (6.7)—

I.„ I.„
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exp( —Eg/kT), and thus also

I exp( —Eg/kT) (6.8)

Eia =200kT = —5.0 ev. (6.10)

This value is about the same as that found by Miller and
Taylor. "

(C) The variation of concentration with temperature
The equilibrium concentrations of electrons and holes
can be determined from Hall and resistivity measure-
ments in the intrinsic range. It is found that the product
of the concentrations fits a law of the form of Eq. (6.2)
for both germanium and silicon, but the numerical
factors are larger than the theoretical values. Neglecting
differences in the efkctive mass from the ordinary elec-
tronic mass, the discrepancy is a factor of about 32.5
for silicon. "This has been explained as resulting from
a change in the energy gap with temperature. If a linear
variation is assumed,

Eo(T)=Eg(o) PT—(6.11)
A value of

P=k 1n32.5=3X10 ' ev/degree (6.12)

-" H. H. Hall (unpublished).
"G, L. Pearson (unpublished).'~ Note added in proof:—Hall has since made measurements on

a junction, prepared by Pearson, which follows the theoretical
relation. The relative change of resistance with pressure is in
agreement with the earlier measurements quoted above {1.3 per-
cent for 1000 p.s.i.).

provided that the effects of pressure on D„, I.„,D„, and
L„are negligible. In germanium, Eg increases with
decrease in volume, so that a decrease in I and a cor-
responding increase in resistance with increase in
pressure are to be expected.

Measurements have been made by HalP' at pressures
up to 10,000 p.s.i. on a germanium n—p junction formed

by e-particle bombardment and by Pearson" on a
junction similarly formed and also on one formed by
joining together samples of germanium of diferent
compositions. Pearson's measurements extend to about
2000 p.s.i. Both observers found the expected increase
in resistance with pressure. The interpretation of the
data are complicated by the fact the current does not
vary exactly with the applied voltage as is indicated by
the theoretical relation (6.7). Such departures from
simple theory are often found in rectifying junctions
and are usually explained by a non-uniform barrier. "'
Pearson's data give change of resistance of about 1.75
percent for 1000 p.s.i. for the deuteron junction and
1.25 percent for 1000 p.s.i. for the chemical junction.
Hall's data give a change of about 1.3 percent for 1000
p.s.i. at pressures up to 10,000 p.s.i.

In order to estimate E~g we have taken a resistance
change of 1.4 percent per 1000 p.s.i., the average of the
above measurements. The dilation corresponding to
1000 p.s.i. is about 7)&10 '. Thus

d(Eg/kT)/d lnV=0. 014/(7X10—') = —200 (6.9)

accounts for the factor 32.5. The shift in the energy gap
with dilation can be obtained if it is assumed that the
change with temperature is due entirely to thermal
expansion. The volume coeflicient of expansion of silicon
is about 9&10 ' in the intrinsic temperature range,

500'C. Thus

Eig=3X10 '/9X10 '=33 ev. (6.13)

The most recent data" on the intrinsic conductivity
of germanium give

nP=8 5X.10"T' exp( —8700/T), (6.14)

so that the discrepancy from the theoretical formula is
a factor of about 3.5. This gives

P=k ln3. 5=10 4 ev/degree. (6.15)

The volume coefficient of expansion of germanium" is
about 19&(10—' in the temperature range of interest
(20 to 200'C), so that

E,g=10 4/19X10 '=5.25 ev, (6.16)

in good agreement with the values obtained by the
more direct methods.

It is believed that the value for tellurium is most
reliable, that for germanium next, and the value for
silicon the least. The uncertainty in the case of silicon
is due to the fact that there are no direct measurements
involving a change of properties with pressure.

In conclusion it may be pointed out that magneto-
resistance experiments furnish strong evidence that the
energy bands and scattering are far from isotropic in
germanium. The anisotropy in scattering which arises
from the anistropy in the elastic constants is insufFicient
to account for these results. It is possible that the bands
are degenerate and so are not as simple as those assumed
here. However, it seems likely that refinements of this
sort will not alter the semiquantitative verification of
the consequences of the energy band theory presented
above.

APPENDIX: METHOD OF EFFECTIVE MASS AND
CALCULATION OF ELECTRON-LATTICE

INTERACTION

A. Method of Effective Mass

In this section we show that the effective mass concept may be
applied to gradual changes in band structure resulting from
lattice distortions, as well as to a gradually varying electrostatic
potential. We follow the method of Peckar. ' The more rigorous
theory of James, ' which is based on a one-dimensional model, can
be extended in a similar manner. We have not attempted to use
the methods of Wannier and Slater. '

An arbitrary distortion can be expressed in terms of a dis-
placement, bR(r), which is a function of the position vector, r. It
is assumed that BR is a smoothly varying function so chosen that
the displacement of the atom centered at the lattice position r„ is:

aR =&R(r„). (A. 1)

2' From measurements of the intrinsic conductivity of ger-
manium made at Purdue University and at the Bell Telephone
Laboratories combined with mobility values of J. R. Haynes
quoted.
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It is further assumed that the lattice potential in the distorted
crystal depends only on the local displacement and strain. Thus
if Uo(r) is the periodic potential in the undeformed crystal and Uz
is the potential in a crystal subject to the deformation bR, we take

Uq(r) = U0(r —bR)+ Ui(r, «'j), (A.2)

where Ui depends on the strain components

.;;=kP(~~j)/»;+B(~~, )/»jj (A.3)

and on position. For small strains, U& varies linearly with strain.
The wave equation for an electron in the deformed crystal may

be written:

[{AP/2m)P+E —Up(r —bR) —U&(r, p)]Pq{r) =0. (A.4)

Both BR and «are assumed to be slowly varying functions of
position. We shall obtain an approximate solution for Pq in terms
of exact wave functions for electrons in a crystal subject to a
homogeneous strain.

If the strain « is homogeneous so that bR is a linear function of
position, the wave equation for an electron with crystal momentum
Pis:
[(hP/2m) VP+Ep(P, p) —Up(r bR)—U'(—r, p)grP p(r, p, P) =0, (A.S}

where Ej, (h for homogeneous, not for hole) is of the form of Kq.
(2.3).

E.(P, .)=E-(.)+~;,; -;;( )P;P;, (A.6)

and where E~o depends only on the dilation 6,
E,(.) =E,+E,w. (A.7)

The coefFicients a;j depend on the effective mass in the deformed
crystal. The wave function PI, is of the form:

PI,(r, «, P) =exp(iP r/h)u~{r —bR, «, P). (A.S)

When P is small compared to the size of the Brillouin zone, up,

can be expanded in a series of which the first two terms are:

u~(r —bR, «, P) =ufo(r —bR, «)+iP @~i(r—bR, «)+ ~ ~ ~ . (A.9)

Following the line of argument used by Peckar, we show that
an approximate expression for 1)4 can be obtained by use of the
effective mass concept. The wave equation to be used in the
method of effective mass is:

LA' Z 01; B /(Bx;Bx;)+E-Ego(«) jA(r) =0. (A.10)

This equation applies to an electron with effective mass given by
the tensor 0.;j moving in an effective potential, Ego{«), called the
deformation potential, where «depends on position. Suppose that
a solution of this equation is expressed in the form of a Fourier
series or integral:

A(r) =Z a(P) exp(iP. r/k). (A.22}

Substitution in (A. 10) gives:

Za(P}[Z a;;PE;+E Epp{p) jexp(iP r/A)—=0. (A.12)

We shall show that
A=&p a(P)4(r, «, P), (A.13)

with «now considered to be a function of r, is an approximate
solution of (A,4} provided that «varies sufBciently slowly with r.

Substitution of {A.13) into (A.4} gives

Z~ a{P)LE—Eg{)—Z;, j n;;P;P, )QI,{r,«, P)
=(5'/2m) Zp a(P} exp{iP. r/h}

Buh, 21P B yi BR yg

B«w h»j BxP

B ug B«i,i Bug 2«yi+2 —+Z ——. (A.14)
B«liBxj Bxj g~ Bxi Bx

Terms quadratic in «have been omitted. Use has been made of
the fact that 1' g with «constant satisfied (A.5.) The terms on the
right-hand side arise from terms in the kinetic energy which
depend on a variation of «with position and are small if this
variation is suf5ciently gradual. The wave function on the left-

hand side may be expanded in a power series in P to give:

Zpa(P)[E Esp——Z'p a pP,P;jexp(iP r/h)
X[upp(r, p)+iP ppp(r, p) ~ j. (A.15)

The dominant term vanishes because of (A.12). Thus (A.13) is
an approximate solution of (A.4).

Peckar considers the limits of validity of the method as applied
to a space variation of potential. Similar considerations apply
when the shifts in the energy bands result from lattice deforma-
tions.

B. Calculation of the Matrix Element

A calculation of the probability that an electron be scattered
from momentum state P' to state P as a result of an interaction
with a lattice wave depends on an evaluation of the matrix
element.

M(P, A') =f d(P')*V„i(P)dr, (A.16)

where Vp represents the perturbation produced by the lattice
wave. The matrix element vanishes unless

P'= PahkwAK, (A.17)

where h(~k~ =2+/h) is the wave vector of the lattice wave and
K is a lattice vector of the reciprocal lattice space. Since we are
concerned with transitions for which both P and P' are relatively
small, we can set K=O.

We shall show that the matrix element may be calculated by
replacing Vp by the deformation potential, Ejh(r), so that

M(P, P') =J P(P'}*E&A(r)$(P)dr

=(Ei/V) f exp(+iP r/h)A(r)dr (A.1.8)

where V is the volume of the crystal. Although this result follows
from the method of efkctive mass, we shall give a direct proof of
(A. 28) which shows more directly the relation between the present
and previous interaction potentials. It is based on the assumption
that Vp is the difference between the potential in the deformed
lattice, Uz(r), as given by (A.2) and Uo(r), the periodic potential
in the undeformed lattice:

Vp Up(r) —Ua(r) = Uo(r- 8R) —Uo(r)+ U&(r, «&j). (A.19)

The first two terms on the right give the "deformable potential"
used by Bloch and Bethe. ~

We shall show that the error involved in using E~h(r) in place
of Vp is the order of (P'/2m) XsIra~ns, which is generally neg-
ligible.

The unperturbed wave functions P(P) satisfy the wave equa-
tion:

~o~(» = I -(~'/2 )~+U.( )j~(P)=E.(»~(P), (A.»)
where the energy,

E (P) =Eo(0)+&/2m, (A.21)

and m, is the effective mass. The Hamiltonian for the perturbed
wave function is Ho+ Vp.

The proof of the desired theorem is based on use of the wave
functions Pl,{r,«, P) for electrons in homogeneously strained
crystals as defined by Eq, (A.8) and the related functions obtained
by assuming that the strain « is a slowly varying function of r.
We shall neglect terms which are quadratic in «. We may write

1I~(r, «, P) =P(r, P)+5&(r, «, P), (A.22)

where 5P is of order «.
To prove (A.28), first consider the integral:

I=f d(r, P')[E4+V„)dp(r, p(r), P)dr (A.23).

The result of the operation on fI is

I=f rP{r, P')Ep(P, p(r)}d p(r, p, P)dr

+integrals involving BI,/B«' B«/BX.
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The latter terms, which are similar to those on the right-hand side
Of Eq. {A.14), are of the order of PP /2m jXsIruf'ns, and may be
neglected. To terms of the same order,

Ea(P, e) =Eo(P)+Ei~. (A.24)

Thus, omitting terms quadratic in the strain, the integral is
approximately:

I=f P(P')oE, AP(P)do+Eo(P}f of (P')oby(P)dr. (A.25)

Since

up(r, P) =up(r)+Z PpuI, (r)+ (A.32)

and Up(r) is normalized, the integral is unity to terms of the
order I, Thus for longitudinal waves,

iM(P, P') io=}V 'Erokoaso. (A.33)

The same result is obtained after summing over the three direc-
tions of motion in case the waves are not strictly longitudinal and
transverse. Inserting (A.29) for ug', we find:

~
M(P, P'} io= ErokoT/2XMcP = ErokoT/2pcoo, (A.34)

where p= }trM is the density. It shouid be noted that
~
M'(p, p')

~

'
is independent of P and P' if it is assumed that c~ is independent
of the direction of propagation of the acoustic wave.

We can replace pcP by the elastic constant c;; for longitudinal
strain in the direction of propagation of the wave,

&is =p&P. (A.35}

It should be noted that interaction constant C used by Sommerfeld
and Bethe~ and by Seitz' is equal to (3/2)EI, that used by Wilson'
is equal to E&.

The reciprocal of the relaxation time for an electron of mo-
mentum P is:

1/r = (m,P /ork' } ~
M(P, P'}

~

'(1 cs8—)osin8d8, (A.36)
0

where 8 is the angle between P and P'. Using (A.34), and assuming
c~ to be a constant, we find:

1/r =wePEI2kPT/7fk c' . (A,37}

The mean free path, given by

1//= 1/rv =ns. 'EI2ko T/x&4c;;, (A.38)

is independent of the velocity of the electron. The mobility is

4el 2(221-}&ek'c;;

3(2mm, kpT) & 3m, '/'(k pT)»EP

For comparison with experiment it is convenient to express p
in practical units, cm'/volt-sec. , and to express the energy con-
stant, E~, in electron volts. If the effective mass, m, is set equal
to the ordinary electron mass, and the constant factor is evaluated,
it is found that

We now evaluate I again by expanding the last two terms of Kq.
(A.23) and using the fact that f(P) and P(P') are orthogonal eigen-
functions of Hp. This gives

I=f P(P')'V, P(P)dr+ f P(P')'IIod(P)dr

(A.26)

=J P{P'}oVrtk{P)dr+Eo(P')f P(P'}i'm/(P}dr

The second step involves the Hermitian character of Hp. Solving
(A.25) and (A.26) for the desired integral gives

f 4{p')*Vrp(p)dr= f rp(p')oErdp(p}dr

+[Eo(P) Eo(P')jf—0(P') kdo{P)dr. (A.27)

The last term is the order W/2mXstfaies and can be neglected.
Thus we have shown that to terms of this order V~ can be replaced
by the deformation potential El,/Ak(r} in computing the matrix
element.

Kith use of E~//fk for V~, the evaluation of the matrix element is
relatively simple. The displacement of an atom at R resulting
from a lattice wave of wave vector k is

bR(R„)=X &lp(ar, exp(ik. R„)+up* exp( —ik. R„)}, (A.28}

~here l~ is a unit vector in the direction of the displacement and
E is the number of atoms in unit volume. At high temperatures,
when the lattice waves are fully excited, the amplitude of the
wave is given by

(A.40)Id, T»= (3.2X10 '}c;;/E32.

Solving for EI gives

E)2= (3.2X10 ')pcP/p, T». (A.41)

Equation (47) csn be used to determine )E&, )
and ~E»~ for the

conduction and valence-bond bands respectively from observed
values for the mobilities of conduction electrons and holes. The
values of e;; are obtained in terms of the cubic elastic constants in
Section IV.

l ao I
o= koT/2Mkocoo, (A.29)

where kp is Boltzmann's constant, M is the mass of an atom and c~

is the velocity of a longitudinal wave. The dilation resulting from
bR for a wave of long wave-length is

h(r) =divBR(r)
=iÃ &(k l&}I a& exp(ik r) —u&* exp( —ik r}j. (A.30)

Only the longitudinal component of the wave contributes to the
dilation and thus to the scattering of electrons.

When (A.30) is inserted into (A.18) it is found that the integral
vanishes unless the selection rule (A.11') is satisfied, in which case

M(P, P')=fS &(lt lo)asErf ooo(r, P'}*ooo(r, P}dr {A.31}.


