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bringing the calculated!® yields into line with experi-
ment.

The transmission coefficient of the surface barrier is
an important factor in the description of photoelectric
emission, and experiments such as that described,
which could provide definite information on the barrier
transmission coefficient, would be of great value, par-
ticularly as the special barriers assumed by certain

© R. E. B. Makinson, Proc. Roy. Soc. A910, 367 (1937).
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authors to explain the normal and total energy distri-
butions are very different, both from each other and
from the theoretical barrier for an “ideal” metal.

The writer wishes to record his indebtedness to Dr.
R. E. B. Makinson, who suggested this investigation,
for many helpful discussions during its progress.

This work was carried out during the tenure of a
Commonwealth Research Studentship at the Univer-
sity of Sydney.
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On the basis of calculations of the activation energies of various ring, vacancy, and interstitial mechanisms
in alkali metals, the most probable mechanism of self-diffusion is found to be the rapid transmission of short
linear regions of compression (referred to as “crowdions”) along body-diagonals in the body-centered cubic
lattice. The creation of crowdions, which can be regarded as interstitial atoms diluted over a region of about
eight interatomic distances in a vernier-like fashion, occurs at the surface rather than in the interior of a
perfect lattice. The calculation of the corresponding energy of formation depends on the empirical values
for the work function, heat of sublimation, and ionization energy; for sodium, the total heat of activation
for diffusion by crowdions is probably less than one-tenth of one electron volt.

I. INTRODUCTION

IFFUSION in a periodic structure, such as a crys-
tal lattice without macroscopic faults, is presum-
ably the result of a large number of elementary steps
from one stable configuration to the next equivalent one.
While any elementary mechanism will in general involve
the displacement of many atoms in the saddle point
configuration (relaxation of neighboring atoms), we
may distinguish between elementary steps resulting in
the net displacement of one or of several atoms. The
former type is only possible if we have either an inter-
stitial atom or a vacancy in the lattice, while an example
of the latter process is the cyclic interchange of two or
more atoms, which would be the mechanism of self-
diffusion in a perfect lattice. The exchange of two neigh-
boring atoms in a metallic lattice is energetically un-
likely because of their mutual repulsion. However,
Zener! suggested that cyclic interchange of more than
two atoms in a ring would reduce the activation energy
required (due to mutual repulsion). Such steps involving
the net displacement of many atoms are not ener-
getically unlikely when the displacements of the indi-
vidual atoms produce forces aiding the over-all motion.
Huntingdon and Seitz*?® showed that in the case of
copper a vacancy mechanism is probably dominant in
accounting for the measured activation energy for self-
diffusion.
1 C. Zener, Acta Crys. 3, 346 (1950).

2 H. B. Huntingdon and F. Seitz, Phys. Rev. 61, 315 (1949).
3 F. Seitz, Acta Crys. 3, 355 (1950).

The alkali metals present a structure which can be
approximated by a particularly simple model of positive
point charges embedded in a uniform negative charge
density. Calculation of the activation energy of various
elementary mechanisms in this model can be carried out
rigorously involving essentially long-range Coulomb
forces. It is found that insertion of an interstitial atom
requires much less energy than in the case of copper,?
where we have neighboring-shell-repulsion to contend
with. The energetically favorable interstitial position is
not, however, the geometrically obvious face center of
the body-centered cubic structure, but between nearest
neighbors, the insertion being accompanied by very
considerable relaxation displacement along that line of
nearest neighbors (forming the stable “crowdion” con-
figuration). The elementary step in the diffusion process
involves, then, the net displacement of about eight
atoms forming the crowdion,* and requires very little
activation energy of migration, due to the cooperative
action of the several dipoles corresponding to the indi-
vidual displacements of the ions. Vacancy and ring
mechanisms are found to require much higher energies
of formation and migration respectively.

The model adopted is a body-centered cubic lattice
of positive point charges (each of one electronic charge
in magnitude) embedded in a homogeneous negative
charge density of constant value balancing the positive

4 The term “crowdion” has been coined as a descriptive designa-
tion for a short linear region of compression.
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charges. We are thus neglecting the finite size of the
sodium ion core, and the increase in “free electron”
density in the immediate neighborhood of the nucleus.
Fuchs® has shown that this approximation introduces an
error of about ten percent in the elastic constants for
sodium. Allowing for relaxation of the electron distri-
bution in the course of motion of the ions would always
lower the activation energy, which is here calculated
assuming a rigid uniform negative charge distribution
throughout.

We designate by 2a the side of a cubic unit cell; for
sodium, ¢=2.12X107% cm, and €*/a=6.80 ev (where e
is the electronic charge).

In the perfect lattice the least energy required for the
simultaneous creation of a vacancy and an independent
interstitial atom in the interior (allowing for relaxation
in position of surrounding ions) was found to be about
0.6 ¢/a corresponding to an activation energy of
0.3 e*/a for production of one vacancy. To avoid the
necessity for creation of such vacancies and interstitial
atoms, we might consider the alternate mechanism for
diffusion, the cyclic interchange of atoms.

II. RING MECHANISMS

The most favorable ring mechanism involved the
cyclic exchange of four nearest neighbors in a plane,
and requires an activation energy of 0.24 ¢?/a. The de-
tailed results, involving the calculation of potentials by
the Ewald method,® are as follows:

(a) self-potential at lattice point: —1.820 ¢/a,

(b) hence, the energy required to remove 4 nearest
neighbors to points of zero potential infinitely far
apart: +10.44 ¢%/a,

(c) potential at point midway between nearest neighbor
lattice points: —0.200 ¢%a.

(d) energy of repulsion for four ring atoms at mid-
points, per atom: +1.142 ¢¥/a,

(e) energy of attraction by holes created at lattice
points (“hole effect”) per atom at mid point:
—3.371 &/a,

(f) hence, energy of activation for plane undistorted
4-atom ring: 0.70 ¢*/a.

We now allow the ring to be distorted as it passes the
half-way position; it is found that buckling of the ring
out of the plane, or symmetric distortion in the plane
along the equilibrium direction of the sides of the ring
does not result in an appreciable lowering of the activa-
tion energy. On the other hand, we do gain by allowing
relaxation in the position of the ions outwards from the
mid-point positions. This is due to the fact that the
repulsion energy term has a finite slope (when plotted
against the distance from mid-point) already at the
mid-point of the straight side, and therefore decreases
faster at first, as we go out, than the attractive term due

® K. Fuchs, Proc. Roy. Soc. A153, 636 (1936); A157, 444 (1936).

8 M. Born and M. Goeppert-Mayer, Handbuch der Physik,
XXIV/2, 710.
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TaBLE L. Energies of various ring mechanisms.

Repulsion
Activation energy Hole effect
Ring configuration energy per atom per atom
Undistorted plane nearest neigh- ¢ [ 1 e
bor 4-ring without dipole re- 0.70 a +1.142 a 3.37 a
laxation
Optimally distorted plane near- 0.29 +0.875 —3.166
est neighbor 4-ring without
dipole relaxation
with dipole relaxation 0.24
Undistorted folded nearest neigh- 1.122  +1.353 —3.516
bor 4-ring without dipole re-
laxation
Optimally distorted folded near- 0.504 +0.902 —3.155
est neighbor 4-ring (dipole re-
laxation negligible)
Undistorted cube-face r-ring 0.85 +0.957 —2.898
without dipole relaxation
Undistorted plane 6-ring (two 1.06 +1.747 —3.585
sides 2a, four sides 3a long)
without dipole relaxation
Undistorted buckled 6-ring (6 0.51 +1.294 —3.906
equal obtuse angles) without
dipole relaxation (effect of
distortion 0.20 e2/a)
Undistorted plane 8-ring (with 0.88
2 acute angles) without dipole
relaxation
Undistorted buckled 8-ring (ob- 0.48

tuse angles only) without di-
pole relaxation

to the holes increases, the latter having a minimum for
the undistorted position. The saddle point is found at
an approximate distance of ¢/4 from the mid-point of
the undistorted ring. Here we have a repulsion term of
0.875, and an attraction term of —3.166 ¢%/a per atom.
Strict calculation of the Ewald potentials then gives
us an activation energy of 0.29 ¢*/a.

Finally, we allow a group of eight and a group of four
neighbors to relax simultaneously (relaxation of other
ions is found to be negligible). Maximizing the energy
gain, calculated in the dipole approximation for con-
stant curvature in potential about the lattice point, we
obtain a set of simultaneous linear equations for the
values of the dipole displacements, and the relaxation
energy is found to be 0.05 ¢*/a, giving us a final activa-
tion energy of 0.24 ¢*/a for the ring motion.

These energies and those of some alternate ring
mechanisms considered are listed in Table I.

It will be seen that the term corresponding to mutual
repulsion of the ions in the saddle point configuration is,
and hence the activation energy tends to be, reduced by
avoiding acute angles in the ring.

III. LONG CHAIN MECHANISMS

This remark leads us to consider the limiting case of
translation in a straight line. The energy per atom re-
quired for rigid translation of an infinite straight chain



710 HEINZ R.
] o X o X o X ° X e Xe Xe | ]
€--\3q--> == €« -
P P2 Ps

Fic. 1. Diagram of crowdion. X denotes lattice positions;
@ denotes ions.

of nearest neighbors (e.g., along the 1:1:1 direction)
through the mid-points saddle position was calculated
as follows:

(a) Self-potential at equilibrium position: —1.8199
+0.0004 ¢/a,
(b) potential at saddle point position: —0.2004

+0.001 ¢/a,
(c) interaction (hole and repulsion effect):

4 o (—1)r e 4(1 2)82
= — " (log2)—
V3 g a

V3t n a
é

= —1.6008— per atom,
a

(d) hence, activation energy of chain shift without
dipole relaxation: 0.0187 ¢2/a per atom,

(e) energy gain due to dipole relaxation of six neighbor-
ing chains (allowing for all three types of mutual
interaction of the six claims): 0.0132 ¢?/a per atom.

The dipole relaxation in these neighboring chains is
appreciable in spite of the small net electrostatic field
acting, because of the shallow potential curvature along
a chain corresponding to parallel dipole displacements.

We thus get an activation energy for rigid transla-
tion of a nearest-neighbor-chain of 0.0187—0.0132
=0.0055 ¢*/a per atom.

This result, showing the ease of translation of straight
chains of nearest neighbors (if it were not for the end
effects resulting in an interstitial atom and a vacancy)
owing to the cooperation of the parallel dipoles, sug-
gested, first, consideration of rings formed by such
chains. However, the repulsive effect (about +0.02 €?/a)
at each corner, of which there must be at least 6 to
avoid acute angles, did not allow this to be a favorable
mechanism. The distortion relaxation was small, owing
to the high potential curvature in that direction, corre-
sponding to the shallow potential variation along the
chain (the Laplacian of the potential being we/3a?
everywhere in the uniform negative charge distribu-
tion); similarly, it is a general result that the “better”
the ring from the point of view of angles, the smaller the
dipole relaxation of the surrounding atoms.

IV. THE CROWDION

However, the low energy per atom required to shift a
straight chain (which only applies to nearest-neighbor-
chains) suggests a large relaxation on placing an inter-
stitial atom half-way between nearest neighbors, and
indeed it is found that less energy is required to place
an interstitial atom in such a position than in the more
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obvious face-centered position, though the latter is a
position of lower potential when we ignore relaxation.

The Ewald potential at the center of a cube face is
about —0.34 ¢/a. By allowing the two nearest ions to
move after having dropped a positive ion in the face
center, we gain an additional relaxation energy of
0.381 ¢%/a. On the other hand, the potential at the half-
way point between nearest neighbors is calculated by
the Ewald method to be only —0.200 ¢/a, but allowing
two atoms on either side along the 1:1:1 axis to relax
we gain 0.535 ¢*/a in relaxation energy.

By allowing more atoms along the chain to relax
simultaneously, we approach a relaxation energy which
is nearly maximal for a “crowdion” of the form shown
in Fig. 1. Each of the pair of ions nearest to the inter-
stitial ion is displaced by an amount p; =%4V3a along the
line, p5=0.30a, p3=0.2a, ps=7ps- - - =0. The relaxation
energy associated with this formation was calculated to
be —0.69 ¢*/a using the exact Ewald potential rather
than the constant curvature approximation for p; (the
latter giving too low a potential rise). The highest
relaxation calculated by an approximate method (for a
slightly different formation) was — 0.71 ¢*/a.

However, the corresponding energy required for the
formation of a vacancy is +1.820—0.310=1.510 ¢?/a,
the relaxation being approximately the same (0.310 ¢2/¢)
whether we allow chain, or symmetric nearest neighbor,
relaxation of 8 atoms.

Instead of creating the vacancy in the interior, we
can, however, remove the positive ion from the surface
of the crystal. In order to work out, then, the energy
required to transfer a positive ion from the surface to an
interstitial position half-way between nearest neighbors
we shall make use of the empirical data relating to work
function, ionization, and sublimation, giving us the
work required to remove a positive ion from the surface
to infinity.

The heat of sublimation of sodium at 20° was taken
to be? 25.7 kcal./g-atom =1.12 ev/g-atom. The ioniza-
tion energy is 5.12 ev, and the empirical value taken for
the work function® is 2.25 ev. We thus arrive at the
value 7 for the energy required to remove a positive ion
from the surface to infinity outside the crystal: 7=1.12
+5.12—2.25=3.99 ev. Allowing for errors in the experi-
mental values, we take® I =4.04-0.2 ev.

In order to calculate the work required to bring a
positive ion from infinity outside the crystal across the
surface to an interstitial position in the interior of our
lattice (thus standardizing our Ewald potentials to zero
at infinity outside the crystal), we shall use an approxi-
mation!® to our model of the crystal by considering it to

1;2\2/ Edmondson and A. Egerton, Proc. Roy. Soc. A113, 520
“ R?'J. Maurer, Phys. Rev. 57, 653 (1940).

¢ This shows that removal of one of the surface ions involved
demands almost exactly half the energy required for removal of
an interior lattice ion.

10 The quality of this approximation is shown by F. Seitz, The

Modern Theory of Solids (McGraw-Hill Book Company, Inc.,
New York, 1950), p. 364.
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be made up of spheres of uniform negative charge den-
sity surrounding the positive lattice points, the volume
of each sphere being equal to the volume of the polygon
corresponding to each lattice point, the total charge of
the sphere being of course normalized to unit electronic
charge. We shall also use the Bardeen! correction to
allow for electron redistribution at the surface of
sodium.

The volume of the unit (polygonal) cell in a b.c.c.
lattice is 4a®. The radius of a sphere of equal volume is
given by R=(3/7)%. The potential at the center of
such a sphere of uniform charge density normalized to
—eis —1.5(3/m)"Y/a=—1.524 ¢/a. On the other hand,
we had calculated this self-potential by the Ewald
method to be —1.820¢/a. Thus, to standardize all
Ewald potentials to zero at infinity outside the crystal,
one must add +0.30 ¢/a to their values. In particular,
the potential at the point midway between nearest
neighbors is therefore —0.20+0.30 = 4-0.10 ¢/a, and the
energy gained in bringing the positive ion from infinity
to that position is —0.104-0.70 (relaxation) =0.60 ¢*/a.

Allowing for a redistribution of electronic charge at
the surface of the crystal (compared to the interior)
resulting in an average dipole of 0.15 ev, as calculated
by Bardeen, the net energy required to remove a positive
ion from the surface to form a crowdion in the interior
is given by

4.15 ev—0.60 ¢2/a=0.61 ¢*/a—0.60 ¢*/a
=0.0120.03 ¢*/a.

Thus the activation energy of formation for crowdions
in sodium is less than 0.3 ev.

For the higher alkali metals the work function is
practically the same, and the decreases in ionization and
sublimation energy more than compensate the effect of
the increase in interatomic distance on the relaxation
and potential terms, so that we would expect a still
lower activation energy of formation for crowdions (not
taking into account the Bardeen correction).? In the
case of lithium, the increase in ionization energy is
small, the change in cell constant is more important,
and we again expect a lower energy of formation for
crowdions.

The activation energy associated with migration of
such crowdions is small. Even for crowdions extending

11 J, Bardeen, Phys. Rev. 49, 653 (1936).
2 However, our electrostatic model of the crystal becomes in-
creasingly unreliable for the higher alkali metals.
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over only 4-3%s, the difference in energy between the
symmetric position considered above, and the configura-
tion obtained by shifting the crowdion (whose ampli-
tude of displacement is taken to vary linearly over its
length) rigidly through half a spacing (viz. 3a/n), is
found to be only 0.05 ¢2/a (=0.3 ev for sodium).’® The
energy of creation calculated above, referring as it does
to the position of the crowdion on the potential hump,
is the total energy of activation (the unit jump for an
atom being 3%a/7 in length, where na is the length of
the crowdion).

The picture we arrive at is then as follows: Crowdions
extending over about eight spacings are formed by the
motion of ions situated initially at surface ledges and
subject to Brownian collisions from one side. These
crowdions travel rapidly along nearest-neighbor axes
throughout the crystal. As the crowdion flies in a
straight line and cannot turn corners without consider-
able additional activation energy, we might expect
anisotropy under suitable conditions. For very large
single crystals we might expect time effects such as
freezing in of equilibrium concentrations on rapid cool-
ing. Moreover, it might be possible to inhibit the forma-
tion of crowdions at the surface by non mobile layers of
foreign atoms. Foreign atoms in the interior of the lat-
tice would not benefit preferentially by such a diffusion
mechanism. Finally, as in the case of interstitial atoms,
vacancies, and any other configurations assumed to
exist under conditions where equilibrium concentrations
are maintained, there is the possibility of detectable
material flow under stationary temperature gradient
conditions, though in this case a concentration gradient
of crowdions is expected to be limited by an accompany-
ing potential gradient.

For sufficiently low activation energy of migration,
crowdions (which can be assigned definite mass) can be
considered as particles with one degree of freedom of
motion, and hence contribute to the specific heat and
heat-conductivity.!*

I wish to express my gratitude to Professor C. Zener
for his helpful advice at all times.

13 Compare the similarly low energy of activation of migration
(0.5 ev) calculated by Huntingdon and Seitz (reference 2) for an
ordinary interstitialcy in copper.

4 The kinematics of non-stationary “slip-waves” have been
worked out for a different model (involving nearest-neighbor
elastic interactions along the chain) by J. Frenkel and T. Kon-
torova, J. Phys. (USSR) 1, 137 (1939).



