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Scattering of Electrons in Crystals in the Presence of Large Electric Fields
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By the calculation of transitions between states appropriate to electrons moving in a large uniform
electric field superimposed on a periodic crystal field, it is shown the probabilities of scattering by lattice
vibrations or imperfections are independent of the uniform field and are given by the usual expressions
derived for zero field. This justifies the procedure of treating acceleration by the field and scattering as
independent processes.

E'(P') =E(P') &bur. (2)

The upper sign corresponds to absorption and the lower
to emission of the phonon. ' It is convenient to introduce
coordinates P'1', P2', P3', for P' such that dP2'dP3' lies
on the surface of constant energy, E'(P') =E(P), and
dP1' is normal to this surface. The over-all probability
of scattering into dP2'dP3' in time ht is then

pdP~'dI'3'ht f(P, P')ding'

= (2n/k) i
M'(P, P')

i
'pdP, 'dP, 'Dt/(BE'/BP, '), (3)

where p=h ' is the density of states in momentum
space. We shaH show that (3) still applies when an
electric Geld is present.

The wave equation for an electron influenced by a
periodic crystal Geld, Vo(r), an electric Geld which
produces a force, F, and an interaction operator, II~,

'See, for example, I'. Sietz, The Modern Theory of Solids
(McGraw-Hill Hook Co., Inc, , New York, ¹wYork, 1940), p. 521
and following.

~ If, as in impurity scattering, no phonon is involved, we may
set ku)=0.

" 'N calculations of electrical conduction in solids it is
~ - usual to treat acceleration of electrons by the ap-
plied field and by scattering as independent processes.
The probability of scattering is calculated for the case
in which no electric field, is present. A question may
arise as to the validity of this procedure, particularly
when the applied 6eld is so large that the state of the
electron changes considerably between collisions. %e
shall show that although the details of the transition
processes may be altered by the electric 6eld, the Anal

expressions for the scattering probabilities are inde-
pendent of the Geld.

According to the usual theory the probability per
unit time of a transition from a state with crystal
momentum P=kk to P'=Ah' is

f(P, P') = (2w/h) i M(P, P') i'8(E(P) —E'(P')), (1)

where M(P, P') is the matrix element for the transition
and E(P) and E'(P') are the energies of the initial and
hnal states, respectively. We shall suppose that E'(P')
includes the energy ken, of the phonon involved in the
collision as well as the energy of the electron:

which gives the scattering, can be written as

[—(k'/2m)A+ Vo(r) —F r+Hr]g=ikBQ/Bt (4.)
%'e shall solve this equation by the method of variation
of constants. The wave function is expanded in a series
of functions, fz(r, t), described in Eq. (6), which are
solutions of the equation for Hl ——0 and the coeScients
in the expansion are to be determined as functions of
time:

4 =2 op (&)4z (r, &)
pr

The treatment diBers from the usual one in that the
wave functions used in the expansion are appropriate
to an applied electric 6eld, F, rather than for zero 6eld.
Such wave functions have been used by Houston' to dis-
cuss the probabilities of transitions between bands
induced by the applied 6eld.

Houston showed that

Pp(r, t) = Vp+g, (r) exp[(i/k)(P+Ft) rj

Xexp —(i/h) )f E(P+ F&')dk' (6)

is an approximate solution for an electron in a periodic
6eld on which a uniform force, F, is superimposed. This
solution corresponds to a state with momentum
increasing uniformly in time as suggested by the motion
of a wave packet. The wave function and energy, E(P),
corresponding to F=O are those for zero applied field.
The fact that (6) is not an exact solution of (4) with
BI=0 corresponds to the possibility of the electron
making a transition from one Brillouin zone to another
when P+Ft is near a zone boundary. This is the
problem discussed by Houston. ' Such transitions are
important when the force F is so large that it produces
a potential energy diGerence across one unit cell of the
same order as the gap between energy bands. This cor-
responds to an electric Geld of the order of 10r volts/cm.
+e shall not be concerned with such large fields and
shall neglect the diiferences between (6) and the exact
solution of the time-dependent equation with II&=0.

%'e are concerned with the eBect of the interaction,
H~, which produces transitions between states with

' W. V. Houston, Phys. Rev. 57, 184 (1940).
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difIerent P. Initially the electron is in the state P, so
that at t=0,

ap(0) = 1, ap (0) =0, P' WP. (7)

The equation for ap (t), obtained by substituting (4)
into (3), multiplying by Pp (r, t) and integrating over
space is:

ih(da /dt)=a (t)M(P, P')

Xexp —(i/h) I (E(P+Ft') —E,'(P'+Ft'))dt',

With use of (12) and (14), Eq. (10) becomes:

ap (t) = —(i/h)M(P, P') exp(i Ptg/2k)

X)l expL —iP(t —to)'/2hjdt. (15)
0

The integral can be evaluated by the method of
stationary phases. Thus if we assume that pht2/h is a
large number and that 0&to(ht, we can replaced the
limits 0 and At by —~ and + ~ without appreciable
error. Since

M(P, P') =
l

"pp *Hrppdv (9)
we obtain finally

exp(ix') dx = (1+i)(m/2) &,

In the derivation of (8) we have treated the ap with
P'&P as small quantities and have neglected terms
which contain both a~ and IIy.

In integrating (8) we shall suppose that the time
interval involved is so short that ap(t) does not change
appreciably and may be set equal to unity. We also
suppose that the matrix element does not vary appre-
ciably with time during the interval so that it can be
treated as a constant. The range of validity of these
assumptions shall be discussed later. The integral of (8)
from t=0 to At is then

ap (t) = —(i/h)M(P, P')

(Dt - ~t
X i exp —(i/h) (E(P+Ft')

"o

lap'(t) I'=2~IM(P P') I'/I pl h for 0&t &at (17)

=0 otherwise.

We shall next show that the probability of scattering
into a certain group of end states given by (17) reduces
to the value given by (2). For this purpose we again use
coordinates Pi', P2', P3' for P', defined so that dP9'dP3'
lies on a surface of constant energy. For given P2', P3',
we suppose that P&o' is the value of P~' which satisfies
conservation of energy at 1=0:

E'(Pg OP2', P3') =E(P), (18)

and that P~&' =—(P&~,', P2', P3') is the value of P' which
satisfies the equation at t= Dt:

E'(P„'+F~t) =E(P+Fat). (19)

—E'(P'+ Ft') dt'dt (10).
Transitions are possible for those values of PI' which
lie between PM' and PI~&,'. The allowed range of values
for P&' for which (19) holds is denoted by

The exponential is a rapidly oscillating function
which integrates to zero except when the rate of change
of phase with respect to time vanishes. This latter con-
dition corresponds to the requirement of conservation
of energy:

E'(P'+ Ft) =E(P+ Ft) (11)

DPI' ——PIa, ,

' —PIo'. (20)

Since At is assumed small, APi' can be evaluated by
expanding both sides of (19) to terms linear in N Using.
(18) and (20) this gives

»~'(BE'/BP~')+DtF gradp E'=AtF gra. dpE (21).
The va, lue of ap (t) is negligibly small unless (11) is
satisfied at some time during the interval 0—+At.

To evaluate the integral when this condition is satis-
6ed, we expand the argument of the exponential as a
power series in t:

Solving for DP~', we find

I
hP&'I =At F gradp E' —F.gradpEI/(BE'/BP, ')

= At P I
/(BE'/BP') (22)

Since the probability of scattering is the same for
each of the states in the range IDP&'IdP2'dP3', the
total probability of scattering into the range dP. 'dP3'
in time b, t is:

[E(P+F.) E'(P'+F.)jd.=at—+ ,'pt2+ . (12)-I

at+ ', pt"-= ,'p(t t,)2 ,'pt .--———(14)

The coeKcients have the values:

a=E(P) —E'(P'), P= F gradp(E) —F gradp E'. (13)

If (11) is satisfied at t=to,

t Ia (t)I'I», 'IdP, 'dP, '

=2~t IM(» P') I'I» 'ldP 'dP '/I pl h

With use of (22) for
I
DP~'I this becomes

(2~/h) I M(P, P')
I
't dP, 'dP, 'Zt/(BE'/BP, '),
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which is identical with (2). Thus the scattering prob-
abilities are independent of the field.

It remains to discuss the limits of validity of the
approximation used in obtaining (2) and (24). Peierls'
has discussed the applications of (1) and (2) to the
theory of conductivity. These equations can be used
when the relaxation time, v, which is the average time
between collisions, is suKciently large so that

&aE&k, (23)

The constancy of the matrix element implies that the
state of the electron does not change very much during
At. Since the momentum changes by Fb, t, this implies
that

where AP is a momentum interval over which the
matrix element is substantially constant.

4 R. Peierls, Zeits. f'. Physik 88, 786 (1934);Helv. Phys. Acta, 7
24 (1934).

where AE is of the order of bc'. If (1) is to be integrated
over the distribution function of the electrons, one may
take the less stringent condition AE~koT. Thus (1) and
(2) may be used if

7kpT& h.

The approximations made in the derivation of (17)
and (24) are of a different nature since they depend on
the magnitude of the electric field. In the derivation of
(17) it was assumed that At is sufficiently large so that

P(a~)' &7i (27)

and at the same time small enough so that ai (/) and
M(P, 5') do not vary appreciably during the interval

Taking .ai (At) 1 implies that

The maximum allowed value of AI is the smaller of
the values determined by the limiting conditions (28)
and (29). Condition (29) applies if the electric field is
such that the momentum of the electron is changed by
a large amount between collisions. Equation (28) applies
if F7 represents a relatively small change in momentum.

Equation (27) can be written in a somewhat diGerent
form by use of the definition (13) for P. It follows from
(13) that

where AEz& is the change in energy of the electrons
during At Thus. (27) can be written as

~,,At& k.

If (28) applies, (31) may be written

(31)

(3-')

where AE, is now the energy change between collisions.
This expression is similar to Peierls' conditions (25) and
(26), but may be less stringent if the field, 8, is such
that AE, &koT. If (29) applies, (31) may be written

(BE/BP) (DP)'&
~

eF7i
~

.

This equation gives an upper limit for the electric field,
but the limiting field is ordinarily quite large. For ex-
ample, if we set BE/BP r 10" cm/sec. and hP mv,

the limit is:

8 & m'v'/eh 2X 10' e.s.v. 6X 10' volts/cm. (33)

These arguments show that the usual expressions for
scattering probabilities can be used ordinarily when an
electric field is present, and, in fact, the range of validity
of the expressions may be extended by the presence of
an electric field.


