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obtained after exritation by high intensity and for a
long time, at least for ZnS: [Zn j:Cu phosphors, are not
aGected by retrapping.

The existence of a series of discrete trap depths, at
least 12 in number between —100' and 200'C, appears
plausible. De6nite evidence, however, was not obtained
that a continuous distribution of trap depths, followed

by one or two discrete depths, could not give an alter-
native description of the observed results.

A study of the crystal structure of ZnS indicates that
interstitial positions are all diGerent in cubic and
hexagonal ZnS, whereas substitutional positions are the
same out to third nearest neighbors. A new analytical
approach was indicated, therefore, which states that, if
formation of simple defects does not alter symmetry
relations, luminescence phenomena caused by impurities
in interstitial positions should be diGerent when ob-
served in cubic and hexagonal ZnS phosphors, but that
luminescence phenomena caused by impurities in sub-
stitutional positions should be the same or practically
the same when observed in cubic and hexagonal ZnS
phosphors.

The similarity in trap depths found for cubic and
hexagonal phosphors leads to the hypothesis that
trapping centers are located in substitutional sites,
primarily omission defects. This hypothesis and the
previously mentioned analytical approach may be used
to interpret many observations of luminescence emission
and glow curves.
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Feymman's formulation of quantum electrodynamics is shown to be equivalent to the Schwinger-
Tomonaga theory also for spinless charged particles (mesons) as developed by Kanesawa and Tomonaga.
The divergencies of the scattering matrix are analyzed to all orders in the fine-structure constant and it is
found that mass and charge renormalizations do not remove all divergencies, unlike the electron case. The
remaining divergence is associated with the meson-meson interaction and occurs in all orders of radiative
corrections except the lowest (second) order in which the process can exist. In order to make the scattering
matrix completely finite a direct interaction term Xtgrs~(x)p*(x)tt(x)p(x) in the Hamiltonian must be pos-
tulated. The infinite coupling constant X is to be reiiormalizcd by a~ infinite renormalim t ion. One obtains a
finite amount of direct interation which must he determined from experiment. The identical cancellation of
certain divergencies to all orders of the fine-structure constant and valid for spin 0, $, and 1 is proven in the
Appendix.

L INTRODUCTION

HE theory of the interaction of elementary par-
ticles has been formulated in two equivalent

ways by Schwinger and Tomonaga, and by Feynman.
So far the equivalence has been proven explicitly only
for the interaction of electrons with the electromagnetic
field, ' but there seems to be little doubt that it holds
also for the interaction of the electromagnetic field with
particles of other spin and for nuclear interactions as
described by meson theories. Also, a consistent separa-
tion and removal of divergencies to all orders in the
coupling constant has so far been shown possible only

I F. J. Dyson, Phys. Rev. 75, 486 (1949). In the following
quoted as I.

for the quantum electrodynamics of the electron.
Dyson'- showed that this could be achieved by a con-
sistent procedure of mass and charge renormalization.
The resultant finite eGects as far as they have been
calculated seem to agree well with experiments. This
theory is therefore outstanding as the only one both as
to finiteness to all orders and correctness. '

This success of the theory of the interaction of elec-
trons, positrons, and photons warrants a similar inves-
tigation for other elementary particles. As a first step

~ F. J. Dvson, Phys. Rev. 75, 1736 (1949). In the following
quoted as II.

I For an extension of these results to the interaction of skinless
mesons with nucleons see P. T. Matthews, Phil. Nag. 41, 1SS
(1950) and Phys. Rev. (to be published).
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in this direction the interaction of positively and nega-
tively charged spinless mesons with the electromagnetic
6eld is considered in this paper.

%e first show the equivalence of the Schwinger-
Tomonaga theory4 and the Feynman theory' for this
case. In Section III a sufficient condition for the 6nite-
ness of the number of primitive divergencies of the
scattering matrix is derived. These divergencies are
enumerated and the unexpected divergence of meso@-
meson interaction is found. All divergencies are then
separated from the finite observable parts of the 5
matrix and are removed by renormalization (Section
IV). For this purpose a direct meson-meson interaction
must be introduced whose coupling constant must be
renormalized together with the mass and charge of the
mesons. A 6nite and unambiguous S matrix is obtained.
Section V deals with the explicit calculation of the
in6nite parts of some primitive divergent processes to
lowest order. In Section VI the results are summarized
and the determination of the coupling constant of
direct interaction from experiment is discussed. The
two appendices prove the cancellation of spurious charge
and wave function renormalization and show the asymp-
totic behavior of the 6nite parts of primitive divergent
processes.

II. EQUIVALENCE OF THE THEORIES OF FEYNMAN
AND KANESAVfA-TOMONAGA

Let p(x) and A„(x) denote the meson field and the
electromagnetic held. The interaction of the two fields
will be given by the Tomonaga-Schwinger equation'

ibm[a]/ba(x) =X[x]e[o],

fiat surface to one for a space-like surface, Eq. (3)
leads to the introduction of normal-dependent terms
only for derivative coupling. These terms therefore
occur for bosons but not for electrons.

The formal solution of (1) is

@[a]=5[a, ap]O[ap],

which expresses the state of the system on the space-
like surface o. in terms of the given state on ro. The
"propagation matrix"

S[o, o p] =1+(—i) X[x']d4x'
~)rp

plf{$ )

+(—p)
' dx' X[x']X[x']d,x'+

can be symmetrized in the time coordinates of the
intermediate states to give (see Dyson I)

5[ o]= 1+~«-')" /"') ' Pln~[ "]d*" l. (5)
a i slap (p 1 )

I' denotes the ordering operator in time: The factors
X[x'], .X[x"] are to be arranged in increasing
(decreasing) order of the parameter labeling the family
of space-like surfaces between 00 and 0 when read from
right to left and the integration extends from op to the
later (earlier) surface o. 5[o, op] is symmetrical in past
and future and is unitary. It follows from the Hermitian
property of K[x] that

5 '[o, ap]= Si[a, ap]

X[x]= iaA„(qua„y (a„y'—)y)

+o'y*y(A„A„+(rp„A„)') (2)

is the Hamiltonian in the interaction representation.
This Hamiltonian is obtained from the Heisenberg
representation by a unitary transformation and fulllls
the integrability condition

b'e[o7/bo (x)ba (x') = b'4'[a ]/bo (x') bo (*)

b3.[x'] WC[x]
[X[x],3'.[x']]= i

bo (x) bo (x')

As can be seen by generalizing the Hamiltonian for a

'The Schwinger-Tomonaga theory was first applieR to the
electromagnetic interaction of spinless mesnns by S. Kanesawa
an3 S. Tomonaga, Pro@. Theor. Phys. 3, 1 (1948). For a treatment
with Kemmer-Du%n matrices see M. Neuman and W. H. Furry,
Phys. Rev. 76, 1677 {1949);R. G. Moorhouse, Phys. Rev. 76, 1691
(1949~.

5 R. P. Feynman, Phys. Rev. 76, 749, ?69 (l949'j.
Throughout this paver we use the units h=e= l. a„=a/Br„.

Otherwise we use the same notation as Sch winger with
(+1p +gp +gp +g &n) and d4x =dx&dx'idx&deaf|. In par ticular a

square bracket surrounding an argument indicates a functional,
and we use Heaviside-Lorene units.

00 p&0 ss

=1+p((-i)./~!) i Pl gx[xp]d, xp
l

n i J~ kk i )
=S[o.p, o].

I' ' denotes the ordering operator which arranges the
factors in opposite order to P Equation (6.) is con-
sistent with the propagation property of S[o, op],

5[o, op7=5[o, oi]$[oi, ap],

S[ap, op]= 1.

The propagation matrix satisfies the equations

ibS[a, o p]/ba(x) =X[x]S[o,ap] (8a)

ibS[a, o p]/ba(x') = —5[a, ap]X[xP] (8b)

These equations are equivalent to (5), (6), and (7). As
a special case of the propagation matrix we obtain the
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as given in I.
The non-linearity in the electromagnetic field of the

interaction Hamiltonian for spinless mesons as com-
pared to the interaction Hamiltonian for electrons is of
great importance; the Compton effect to lowest order
will be partially due to a direct interaction. If an un-
quantized external electromagnetic field is acting on
the system, its potential A „'(x)will superimpose linearly
on the radiation Geld potential A„(x). The resulting
interaction Hamiltonian

aC'[ ]x=ie(A„+A„)(y*a„@ (a„—y') y)

+e'IP@[(A„+A„')(A„+A„')y[s„(A„+A„')]'] (9)

cannot be written as the sum of the interaction Hamil-
tonians with the radiation field and with the external
field, but it will contain a cross term K'[x]

sc*[x]=3.[x]+3.[x]+ac [*],
gC [x]=2e'y*y(A„A„+n„A„n„A,').

(9')

(10)

3'.[x]describes the interaction of the mesons with their
own radiation field and with photons in the absence of
an external Geld, as given by Eq. (2). 3C'[x] is defined
as (2) with A„replaced by A„'. It is the interaction of
the mesons with the external field in the absence of a
quantized electromagnetic Geld (no radiative corrections
and no photons present). The cross term, X'[x],permits
the mesons to emit or absorb a photon under the simul-
taneous action of an external field. The fundamental
Eq. (1) now becomes

i'd% [o]/ho (x) =X*[x]@[o]
and yields as before the scattering matrix

t' "
s=1+2((—)"/ ') ~~ II5c'[ "]d "

I (11)
e=l (a=i )

of which (5') is a special case.
If one restricts himself to the problem of a single

charged particle interacting with an external electro-
magnetic field taking account of radiative corrections,
it is possible to obtain an effective interaction Hamil-
tonian to lowest order in the external field by a unitary
transformation which eliminates the explicit appearance
of the virtual radiation field. In the electron case, the
effective Hamiltonian of this special problem lends
itself to a simple physical interpretation which gives a
link between the physical pictures underlying the
Tomonaga-Schwinger and the Feynman theory. A
similar transformation can be carried out in the case of

scattering matrix

S=S[ao, —ao]

co (~ (a
=1++((—i)"/e!) P~ II sc[x']d,x"

~
(5')

n=l ]

integral spin, but due to the non-linearity in the electro-
magnetic Geld as manifested in the cross term (10), this
transformation will depend on the external field. ~ The
effective Hamiltonian thus constructed is not any simple
physically meaningful quantity even in the special case
considered. On the other hand, the S matrix (11) is
perfectly general and does constitute the main link
between the two theories, both in its physical meaning
and in its mathematical character.

In evaluating the S matrix one takes the expectation
value in occupation number space of the operator (11),
corresponding to the number of mesons and photons
emitted and absorbed, and inserts the external field of
the particular problem under consideration. S(o, ira)

then expresses the probability amplitude for a system
of mesons and photons as given on 0.0 to arrive on cr

in a specified way after interaction with the given
external field. This includes in general all radiative
corrections.

The physical idea underlying the Feynman theory is
to follow one possible world line of each participating
particle from the initial to the final space-time point
during which time the particles interact with each other
and with the external field. One constructs the prob-
ability amplitude for this case by a specified procedure
from the "propagation functions" for the individual
particles, and then sums over all possible world lines
between the two space-time points. The propagation
functions are related to the particles in a similar way as
the propagation matrix S(o, ea) is related to the whole
system. They are the probability amplitudes for arrival
at a specified space-time point for a particle that started
out at an other given space-time point; their propaga-
tion property is manifested by an equation similar to
Eq. (7) (cf. Feynman'). It follows that the resultant
integral has the same physical interpretation as does the
Smatrix. In the remainder of this section we shall show
that it is also mathematically identical with the scat-
tering matrix (11).This will be done by deriving from
(11) the Feynman procedure for the construction of the
S matrix.

We assume first that no external field is acting
(A„'=0). The S matrix is given by (5'). The general
problem to be solved will be to find the radiative cor-
rections of order n' (an even number) for a system

7It would seem at first that the use of the Kemmer-DufBn
matrices, P„, may not lead to a cross term since the equations of
motion in the Heisenberg representation are linear in the electro-
magnetic field. However, in the interaction representation the
Hamiltonian contains the quadratic terms

{+!m)Qv„e„&+4'„{~,e,)V„c)~A„
{seeNewmann and Furry, and Moorhouse, reference 4), of which
only the second, normal-dependent term can be ignored, since it
cancels out in the S matrix. Therefore, the interaction with an
external field leads to a cross term also here. Note, however, that
the Kemmer-Dufhn matrices do permit one to write the S matrix
formally as if the interaction were linear in the field, such that
only single-corner diagrams need to be considered. Notwithstand-
ing this advantage we have preferred not to use the Kemmer-
Dufhn matrices in this paper, because their singular character
partially overestimates the divergencies of the S matrix.
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P(A (x*), B(x'))=-,' I A (x'), B(x') }

+sze(x' xz)[A(x*) B(x&')]

(the brackets I } and [ ] denote the anticommutator
and the commutator, and z(x', x )=1 or —1 for {r(x')
later or earlier than 0 (x )), of the commutation relations

(p+n')/2, p even
p+n, '& n, &

(p+n'+1)/2, p odd

will contribute. n'+ p is the power to which the electric
charge e occurs; n is the number of Hamiltonians in the
integrand and is equal to the number of four-vectors
x„~ (k= 1, 2, n) over which the integration is carried
out. For each value of e the integrand will contain
terms of all orders between e" and e'". Only the term
of order e"'+& will contribute in our problem. This term
will be a sum of P brackets, each being a product of
2n n' —p —factors A„, n'+p n —factors A„A„+(n„A„)',
n+P factors {f)*,and n+P factors P; the latter two will
sometimes be preceded by a difFerentiation operator.
From each product we now select p operators A„cor-
responding to the emission and/or absorption of p
photons, m operators f, each for either a positive
ingoing or a negative outgoing meson, and m operators
g*, each for either a negative ingoing or a positive
outgoing meson. The remaining operators p and p*,
possibly preceded by a difFerentiation operator, will
combine in pairs 4 (x')&P(x") to give vacuum expecta-
tion values; similarly, the remaining factors A„have
to combine in pairs to give vacuum expectation values.
In order to make this possible n' has to be even as
mentioned previously. Since each pair of operators
refers to a different particle, the P bracket will break up
into P brackets of pairs, and one obtains the following
vacuum expectation values of P brackets:

[A„(x'), A„(x")]=i8„„D(x* x"—),

[@*(x"'),P(x")]=zA(x' —x"),

(16)

(I&)

and of the vacuum expectation values

(}A„(x*'),A„(x') })0——l)„,D()&(x'—x"),

((4*(*'),4(")}).=A")(*'- ").
(18)

(19)

The functions D, D&'&, 5, and 6&'& are defj}.ned as in
Schwinger's papers, the functions D~ and hp as in I.
The relation between them is

DI ——D&')+seD, (20a)

(20b)

One now observes that,

A(x' —x")8 &*'&z(x*, x')

= —2A(x' —x') n„)I(n), (xg' —x),') ) =0

and that,

(8 (*'A(x' x"))(I—,("'z(x' x")

= n„{I(x),'—xg" +ngn. (x.'—x,"))2n„b((x), '—x)~)n) )

= 2n„n {I(x'—x")(P(A„(x'), A„(x~))),=-,'h„„D,(x'—x~),

(P(@(x*),y*(x"))),= —,'A, (x'—x"),

(12)

(13)
The first expression vanishes because the 8-function of
the time-like vector n), (x),'—xq~) restricts the argument
of the 6-function to space-like vectors. As can be seen
from Eq. (17), the 5-function of space-like argument
vanishes, since two operators of space-like separation
commute. Therefore, the second term on the right side
of Eqs. (14a) and (14b) vanishes, and (15) becomes

(P(& "'4(x") ~*(x")))

'(I ("A(-"(x'—x')+-', ze(x' x')8 &')h(x' —x")

I "-',){A„(x' x')— iA—(—',x' x')—8 ")z„(x'x"),, (14a)

(P(~(x'), &,")~*(x"))).

', (I„"A) (x—' x') ', A—(x' x—')-8„"'z—(x', x"), (14b)

(P(g (()(t)(xi){I (k)y4(xk)))

—1(I {og (k)g(1)(x( xk)

=-'8 &'&8 &"&AF(x' x") in—„n„b(x—' x') (—l5').
Consider erst only the P brackets arising from the

meson 6eld, such that for a particular value of n we will
have 2n n' p fact—ors —A „and n'+ p —n factors
A„A„+(n„A„)', as mentioned above. Let one of the
latter factors have the argument x'. Clearly, this argu-
ment can be chosen in e difFerent ways, since there are
n dummy variables. There will therefore be a normal-
dependent term in the integrand containing the factor

+-', iz(x', x")(I„('&{I„('&A(x' x")—
=-,'8„('&B.('&Dp(x' —x")

——,'z(8„"z(x' x'))(8 ('&A(x' —x"))

—-,'z8 ('&(A(x' —x~) 8„(z&z(x', x")). (15)

These equations are a direct consequence of the defi- ((—)"/n!)ne'(t *(x*)4 (x') (n,A (x'))'. (21)

involving the interaction of nz mesons' and p photons. nition of P
All terms in (5') with

8 Any annihilated or &reated meson pair is counted here as one
meson,

' J. S. Schwinger, Phys. Rev. 74, 1439 (194S); 75, 651 (1949);
76, 790 (1949).
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cellation of all normal-dependent terms is therefore
generally valid. In the following we shall drop these
terms in the scattering matrix.

One can write the Hamiltonian

X'[x]=kg'(x) (A„+A„)(a„a—„*)4 (x)

+e'y*(x) (A„+A„)(A„+A„)y(x).

FIG. 1. Examples of double corners.

X A (x')A (x")(—y*(x')y(x')

X (P(&,"'4 ( '), &&,'"'4&'(*')))

—4&(x*)y'(x") (P(a„&'&@"(x'),a„&'&y(x'))),)&f,x'

= [( i)"/n!]—in/2 e)I A„(x.')A„(x~)in„n„

X (&f&*(x')&!&(x')+ /(x') y*(x"))b(x' x")&I x—
[( i) "/n—!]ne—'@*(x)y(x*) (n„A„(x'))' (22')

This term, therefore, exactly cancels the term (21). It
follows that for the case A„'=0 all normal-dependent
terms cancel identically. "

The 5 matrix for A„'/0 can be obtained from the 5
matrix for A„'=0 by the replacement A„~A„+A„'.
However, the above argument [following Eq. (15')] is
independent of such a replacement. The identical can-

~o A similar proof for a differen case eras sketched by P. T.
Matthews, Phys. Rev. 76, 684 (j.949).

Such a term would not arise for n=n'+p; for
n&n'+p there exists a contribution of the same order
n' from the (n+1)st term in (11).This term will contain
(2n+2 —n' —p) factors A„and (n'+p —n —1) factors
AQ„+(n„A„)" It.. will therefore differ from the nth
term by an additional factor (—i)/(n+1) in front, by
one additional integration over the one additional
variable, and by two factors linear in A„ instead of one
factor quadratic in A„. These two linear factors may be
given the arguments x' and x" in (n+1)!/2!(n—1)!
ways. Thus the (n+1)st term yields instead of (21)

[(—i)"+'/(n+1)!][(n+1)!/2!(n 1)!]i—eA „(x')

X (&!'(x') a„&'&4 (x')- (~„&'&4*(x'))4 (x'))

X I ieA, (x")(P*(x')8„&"&&t (x')

—(a„&»y*(x'))&t (x"))d,x". (22)

Since (22) contains one pair 4&*4& more than does (21), it
will give rise to one P bracket more. From (13), (14),
and (15') it is seen that only the terms in (22) involving
two derivatives lead to normal-dependent terms; these
are with the help of (15')

L(—i)""/(n+1) ][(n+1)!/2'(n —1) '](—e')

il„and 8„*are defined to act only on p(x) and &!&*(x),re-
spectively. All P brackets of pairs @(x')p*(x ) will be
given by (13) and the differentiations are properly taken
into account by inserting for each linear factor A„(x)
+A „'(x)a factor 8„—8„*between the pair of P brackets
containing x, e.g. , Ap(x' —x)(8„—8„")5&(x—x"). S„and
8„~ will therefore act, respectively, on the first and the
second variable in the argument of b,~.

For the general case A„'WO we may look for the
radiative corrections of order n' for a system of m
mesons and p photons interacting with each other and
with an external field to order f' in this field. The terms
of (11) contributing in this case will be given by

(p+f'+n')/2, p+f' even
n =p+f'+n'&~ n & (23)

(p+f'+n'+1)/2, p+f' odd

where n and n' are defined as before. The term with the
largest contributing n will involve only those parts of
X[x]which are linear in A„and/or only those parts of
X'[x] which are linear in A„'. It will not involve
X'[x]. We now associate a definite set of integration
variables with the operators referring to the real par-
ticles and external fields, and determine a de6nite
division of the remaining operators into I' brackets of
pairs as described before. It is easily seen that for each
such choice the integral can be brought into a one-to-one
correspondence with a Feynman diagram, in complete
analogy with the electron case as given in I. Each of the

=p+f'+n' variables x" will be represented by a
world point in a space-time diagram. Each operator
A„(x') annihilating an incoming (creating an outgoing)
real photon will be represented by a photon world line
drawn from the point x' to —~ (+~) with an arrow in
its positive time direction of propagation. Each external
field A„'(x&') will be represented by a cross at the point
x&'. Ea,ch operator @(x') annhihilating a positive meson
(or creating a negative meson), and each operator
p*(x') creating a positive meson (or annihilating a
negative meson) will be represented by a meson world
line from x' to —0&& (or +0&&) and +ao (or —ao), re-
spectively, with arrows in the positive (or negative)
time direction of propagation. The world lines of real
mesons and photons will be called "external lines. "Each
function D&(x' x) resulting from the va—cuum expec-
tation value of the P bracket of a pair A„(x')A, (x')
according to (12) will be represented by an "internal
photon line" from the point x' to the point x without
an arrow. Each function 6&;(x'—x") resulting from the
vacuum expectation value of a I' bracket of a pair
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y*(x')g(xp) according to (13), (14), or (15') will be
represented by an "internal meson line" from x' to x'
with an arrow pointing from x' to x. The resulting
diagram will contain meson lines which, following the
arrows, will lead from —pp (or +pa) through the
diagram to + pp (or —po) for positive (or negative)
mesons without ever meeting each other. It will also
contain, in general, )ines which are composed of internal
meson lines only, and which form "closed loops" with
all arrows pointing in the same sense. The meson lines
will be interconnected by internal photon lines such
tha, t each point of the diagram has exactly one (internal
or external) meson line incident and one (internal or
external) meson line outgoing in the sense of the arrows.
It will also be either one end of an internal or external
photon line or it will contain a cross indicatin' the
action of the external field.

A typical integral may lead to a diagram where all
lines are interconnected, or to one which consists of two
or more unconnected parts. Assume that such a part is
not associated with external meson or photon lines, or
with the external field. In this case it will correspond
to a part of the integrand which can be integrated
independently of the rest, yielding a constant nu-
merical factor. %'hen all radiative corrections were
taken into account one wouJd find that each diagram
is associated with all possible unconnected diagrams of
this kind. These unconnected diagrams and their cor-
responding integrals evidently occur when one calculates
the 5 matrix for a vacuum remaining a vacuum when
no mesons, photons, or external fields are present.
Since this process has unit probability these numerical
factors wiH add up to a phase factor which we may
choose to be unity. It follows that all disconnected
diagrams without external lines or crosses can be dis-
regarded and their corresponding integrals put equal
to zero.

We have seen above that for n=n . each point or
"corner" of a diagram has exactly three lines —two
meson lines and one photon line —connecting it with the
remainder of the diagram. (The photon line may be
replaced by a cross indicating the action of A„'.) In the
quantum electrodynamics of the electron these are the
only diagrams possible. We shall call them "single-
corner diagrams, " because there is only a single A„or
A„' associated with each corner.

For n&n the integrals will not correspond to
single-corner diagrams. Consider the case n=n, „—i.
The diagram corresponding to this integral will again
have n corners, since n is the number of integration
variables (in terms of four-vectors). It will therefore
have one corner less than the diagram discussed pre-
viously. The integral will also dier from the previous
one in that two factors containing a single operator
A„(x ) or A„'(x") each will be replaced by one factor con-
taining A„(x')A„(x'), A„'(x")A„'(x') or A„(x")A„'(xP).
These factors arise from the terms of X and X' quad-
ratic in the electromagnetic Geld, or from K'. The point

FIG. 2. Diagram a can be obtained by shrinkage of internal
meson lines from any one of the diagrams b, c, d, and e. It has
therefore weight 4.

A„(x")(P(A„(x')A „(x')))p,

A p'(x') (P(A p(x")A „(x')))p,

(24b)

(P(A ( ')A.(*")))o(P(A.( ")A.(**)))o,
(24c)

(P(A„(x")A„(x")))p.

The first line refers to "external double corners" with
two external photon lines, one external photon line and
one cross, or two crosses at the point x', respectively
(see Fig. 1). The second line gives "mixed double
corners. " These are corners with one internal photon
line and either one external photon line or one cross.
Finally, there can be "internal double corners" where
two internal photon lines meet, or where the two ends
of one internal photon line meet, as sometimes happens.
The diagram with n=n —j. will also lack one pair
@@*as compared to the one with n=n . Since the
same number of real mesons are involved this means
that there will be one (P(@(x")nP(x'))g less, corre-
sponding to one missing internal meson line. I.et x' and
x be two adjacent corners connected by one internal
meson line in a single-corner diagram from n=n
There will be one of the diagrams arising from n=n
—1 which diA'ers from this one only with respect to the
corners x' and x; i.e., it wiH have one double corner x',
say, instead of the two single corners. The photon lines
(or crosses) associated with x' and x" will now meet at
this double corner. Therefore to every diagram with a
double corner there corresponds a single-corner diagram
from which it can be obtained by "shrinkage" of one
internal meson line to zero. It is clear that the next
smaller value of n will lead to diagrams with two double
corners which can again be obtained from diagrams
with one double corner by shrinkage of one internal
meson line, or from single-corner diagrams of shrinkage
of two meson lines. This process can be continued until
all (or all but one) corner of the single-corner diagrams
have been shrunk into double corners, corresponding
to the integral with n=n /2 [or (n +1)/27 as seen
from (23). Since there occur in K' never more than two
operators A„and/or A„' with the same argument, no

x" will therefore be associated with two electromagnetic
field operators. We will refer to such a point as a
"double corner. " A double corner at x can arise from
any of the following combinations:

A„(xP)A„(xP), A„(x")A„'(x"), A„'(xP)A„'(x"), (24a)
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diagram can have a triple (or higher) corner, and,
therefore, a meson line can be shrunk only when it
connects two single corners.

It is an immediate consequence of the structure of
the integrals (11) that, on shrinking all single-corner
diagrams in all possible ways one obtains all diagrams
with one or more double corners ("double-corner dia-
grams") which correspond to the integrals with n(n
However, it can occur that shrinkage of two different
single-corner diagrams may lead to the same double-
corner diagram. The number of times a particular
double-corner diagram arises from shrinkage will be
called its "weight. " As an example the diagram a of
Fig. 2 can be obtained by shrinkage from each of the
single-corner diagrams b, c, d, or e. It has therefore
weight 4.

We shall first calculate the weight directly from the
integrals. One observes that

(P(A g(x') A„(x')A„(x')A „(x*)))0

= 8~(P(Ai(x')A„(x")A, (x~)A, (x')))0

= 2(P(Ag(x')A„(x')))p(P(A„(x')A„(x')))0

+ (P(Ag(x6)A„(x')))p(P(A„(x')A„(x')))0.

Each internal double corner [6rst term of (24c)] will
therefore contribute a factor 2 to the weight of the
diagram, except when it stems from a single internal
photon line Lsecond term of (24c) and Fig. 3a]. How-
ever,

(P(A„(x~)A„(x~)A.(x')A.(x')))0

= 2(P(A„(x")A.(x')))0(P(A„(x~)A„(x'))0

+ (P(A„(x~)A„(x")))p(P(A„(x')A„(x')))0,

such that, when two internal double corners are con-
nected to each other by two photon lines, their com-
bined contribution to the weight of the diagram will be
2 rather than 4 (Fig. 3b). Each mixed double corner
also contributes a factor 2: the second combination
(24b), because of the factor 2 in 3." of Eq. (10), and
the first one, because each A„(x ) may occur inside the
I' bracket.

b~ (P(A„(x')A.(x')A „(x')))&

= 8~A„(x') (P(A.(x')A.(x')))0

+b„.A.(x")(P(A„(x')A „(x')))s

=2A„(x') (P(A„(x')A, (x') ))p.

There will also be a factor 2 from 3." in the external
double corner arising from AQ„' in (24a). In the 6rst
term of (24a) each of the operators A„(x') may be
associated with either of the two real photons emitted
or absorbed. One is thus lead to two integrals which
eventually are identical. It is convenient, therefore to
write only one integral for each factor A+„and to give

FIG. 3. Examples for the discussion of the weight factor.

it weight 2, thereby permitting only one choice of
association.

We summarize these considerations in the simple
weight formula

R'=2
q g=d —df —8—b,

where d is the number of double corners, dy is the
number of double corners with two crosses, u is the
number of closed photon lines (Fig. Ba), and b is the
number of pairs of double corners connected by two
photon lines (Fig. 3b).

It remains to show that w of (25) is exactly the
number of diferent single-corner diagrams which by
shrinkage give the same double-corner diagram. Clearly,
when two (internal or external) photon lines end at
neighboring single corners, they can come in "parallel"
or "crossed, "as is shown for the corners 1 and 2 of Figs.
3c, d and Figs. 3f, g. The two corresponding single-
corner diagrams will both shrink to the same double-
corner diagram (Figs. 3e, h). Furthermore, an external
photon line (or cross) can be incident on either side of
an internal single corner. The two diagrams will again
shrink to the same mixed double corner. On the other
hand, there is obviously only one way to obtain a
double corner with 2 crosses or with a closed photon
line. Finally, it is seen that the double-connected
double corners of Fig. 3b can be obtained in only 2 ways
rather than 4 ways, i.e., from either of the two diagrams
Figs. 12u and b.

The above analysis shows that all single-corner
diagrams from the integral n=n together with all
diferent double-corner diagrams obtained from them
by shrinkage and weighted according to Eq. (25) give
exactly all diagrams resulting from the S matrix (11)
for I satisfying (23).

W'e can now formulate a recipe for the calculation of
the S matrix (11). Gives m mesons and p photons in
interaction with each other and with an external 6eld,
we can Gnd the radiative corrections of order n' which
are of order f' in the external field, by the following
procedure:

(1) Draw all possible connected single-corner dia-
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grams with e=n =I'+p+f' corners, m external
meson lines, p external photon lines, and f' external field
interactions.

(2) Find all possible double-corner diagrams by
shrinkage of the single-corner diagrams.

(3) Write down an integral for each diagram as
follows:

(a) Label the corners with x' x' .x" and associate
with each single corner one, with each double corner
two polarizations p, v,

(b) At each corner x" with polarization p insert
A„'(x") for a cross, A„(x ) for an external line, and
p(x") or @~(x") for an external meson line according to
its arrow direction in or out of the diagram.

(c) For each two corners x' and x insert for each
connecting photon line a factor 2ib„.Di (x'—x'), and—for
each connecting mesons line a factor —',hi (x'—x ), if the
arrow points from x" to x'.

(d) For each single corner x" with polarization p insert
ie(il„'~& —8„*&"&) where S„*i"& differentiates one term
of the form hi;(x' —x") or p*(x ) and 8„&~& differentiates
one term of the form hi (x' —x') or @(x").

(e) For each double corner x with polarizations p
and v insert e'b„„.

(f) Integrate over all x (k=1, 2, m) and multiply
by (—i)"w, where ur is given for each diagram by (25).
(Note that the factor 1/ii! occurring for each such
diagram is canceled, since there are n! ways of labeling
the same diagram with x', -x" which all give the same
integral. )

(4) Sum these integrais and find that part of the 5
matrix (11) which satis6es (23) for the problem under
consideration.

For actual calculations it will be convenient to work
in momentum space. The Fourier transforms are"

A„(x)=(2x) ') A„(k)b(k') exp(ikixi)d4k,

A„'(x) = (2x) ' A„'(k) exp(ikgxi)d4k,

(26K)

(26b)

p(x) = (2x) ' I y(p)8(p'+vs') exp(ipixi, )d4p, (27a)

p*(x)= (2x) '~ p'(p)8(p'+m') exp( ipixi)d4—p, (27b)

p I
Dp(x) = (2x) ')~ —8+(k') exp(~kixi)d4k

+ /12i(2s)-' —
~

+. Ark(k')—~exp(ikixi)d4k, (28a)
)

"When the integrations in the S matrix are carried out in the
manner explained in EE, the 8-functions in Eqs. (28a} and (28b}
can be dropped.

E=2m+ p+f'. (31)

~ It is clear that, if at one end of an internal photon line the
8-function is (arbitrarily} written with +k, the 5-function at the
other end of the same internal photon line must be written with—k.

p j.
Lb(x) = (2x)-')! b—+(p'+m') exp(ip), xi)d4p

1
= —2i(2n.)-')

(
+orb(p'+m')

))! (p'+~')
Xexp(i pixy)d4p (.28b)

The functions 8~(x) are defined by

)iq !" 1
b~(x) =

~

—
~

' exp(&inx)du=-, '8(x) & . (29)
E2x) &0 (2mix)

%hen the transformation to momentum space is
carried out in this way, and when all the integrations
over x', .x" are performed, the resultant S matrix
will be very similar in form to the Smatrix in coordinate
space. In fact, it can be obtained from the latter by
simple replacements, such that we can restate the con-
struction recipe (3) for momentum space:

(3') Write down an integral in momentum space for
each diagram as follows:

(a') Label all meson lines with four-momenta p, p',
p", , all photon lines with momenta k, k', k",
and all crosses with q, q', q". Associate with each single
corner one, with each double corner two polarizations
P~ » ' ' '

~

(b') Insert A„'(q) for a cross, A„(k) for an external
photon line, and @(p)8(p'+eP) or p*(p)h(p'+m') for an
external meson line pointing into or our of the diagram,
respectively.

(c') Insert for each internal photon line a factor b„,
times the photon propagation function" 1/k', insert for
each internal meson line the meson propagation function
1/(p'+~2).

(d') Insert for each single corner with polarization p
a factor" (p„+p„')8(p —p'&k), where p„and p„' are the
momenta associated with the meson lines leading into
and out of the corner, and k is the momentum associated
with the internal or external photon line ending there.
If there is a cross instead of an external photon line k
is to be replaced by q.

(e') For each double corner insert a factor 8„„8(p p'— —
&k+k'). One or both of the photon momenta k, k' may
be replaced by external Geld momenta q, q'.

(f') Integrate over all momenta and multiply each
integral by its respective weight w as given in Eq. (25).
Multiply each integral by the same factor

(—j) (~msz —&)/ &(s/4x2) +max

This factor depends only on the number of participating
particles and on the order of approximation. E is the
total number of external lines and crosses,
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These rules follow from the rules (3) given above
in the following way. Let F and F„be the number of
internal photon lines and meson lines for a given
diagram. The structure of the diagrams tells us that

2P~=e', F =n —m (3'-)

and that the total number of internal lines

F=F„+F= n+ ,'(n -E)=—,'(3n -E)—d—(33)

where d= n —n is the total number of double corners.
The integral in coordinate space for a particular diagram
will be multiplied by its weight w and by (—i)" as
explained in rule (3f). The Fourier transforms (26) to
(29) yield an additional factor (2s.) 's and rule (3'b')
for the external lines and crosses, a factor ( i)F—(2x)-~
and rule (3'c') for the internal hnes, a factor (—e)'(2n)"'
and rule (3'd') for the single corners (s is the number of
single corners), and a factor (—e')~(2s) ~ and rule (3'e')
for the double corners. The factors (2s)4' and (2s)~
came from the x-integrations which each yield (2x)'
and a 6-function. Thus the total factor is

(—z) "+"'I'(e/

=f" ""(~/x)""(e/4x') + '(1/2s)"' (30')

which is the same as (30). In (30') we inserted the fine-
structure constant a= e'/4n —1/137. It should be noted
that the factor (30') is also valid for the electron case
where double-corner diagrams do not exist, and where
n=n„, always. Equation (30') shows that the natural
expansion parameter in perturbation theory is" a/s.

The rules (1), (2), (3'), and (4) are those of the
Feynmaa theory" for the construction of the scattering
matrix. We have thus shown that Feynman's 5 matrix
is identical with the S matrix (11) of the Schwinger-
Tomonaga theory.

III. ENUMERATION OF POSSIBLE PMMITIVE
DIVERGENCIES

A primitive divergent diagram is defined (as in I) as
a diagram whose integral diverges such that when any
of the internal lines is cut and thus replaced by two
external lines, the resulting integral is convergent.

It is easy to enumerate the possibly primitive diver-
gent processes for the interaction of any type of "source
particles" (charged particles of spin 0, -'„1, nucleons)
with any type of corresponding "interaction particles"
(photons, mesons) and external fields. For all these
cases it is sufhcient to restrict oneself to single-corner
diagrams, as will be proven in the next section for
charged spinless mesons interacting with photons and
an external Geld. Each single corner of these diagrams

'~ As will be shown in the next section, the number of non-trivial
integrations is F+1—e „=1-m+n'/2. Each of these con-
tribute a factor ix, such that there remains only one factor i and
the factor ~ "' is replaced by ~'~."They are given for spin)ess mesons in Feynman's second paper,
reference 5. Note, however, that Feynman uses Gaussian units
and a diGerent denlmtion of the metric tensor.

will either have one external Geld acting or none. In the
Grst case there will be a cross at that corner and but two
"source lines" or two "interaction lines" leading to it.
In the second case there will always be exactly two
source lines and one interaction line. A typical diagram
will have n corners, E; external lines corresponding to E;
ingoing and/or outgoing interaction particles, and E,
external source lines corresponding to E,/2 participating
source particles. There may a1so be externa] Gelds
interacting f, times with the source particles and f;
times with the interaction particles. The resulting
diagrams will therefore have

F;= ,'(n E;—I,—+f,—)
internal interaction lines and

F,= n f, E,—/2—

(34a)

(34b)

or
Dd, D„4(F n+1) ~&—1——

4n —2F—D„=e+E—D „~&5 (36)
by (34c).

Kith the above deGnitions

D „=D.F,+D,F;+D,n
=D,(l—j; E,/2)+-,'D, (n E; —f.+f,)+D,n. — —

internal source lines, yielding

F= ~~(3n f; f, —E;—E—,) = ~~—(3n E) —(34c)

internal lines. E=E,+E;+f,+f, is the total number of
external lines and crosses.

Quite generally, an internal line will correspond to
a propagation function which is a polynomial divided
by a quadratic in the momentum associated with it.
The propagation functions

1/k', 1/(p'+m'), (ip„p„m)/—(p'+m') (35)

are examples for a photon, a spinless meson, and a
Dirac particle (electron or nucleon), respectively. We
shall denote the degree of the polynomial in the nu-
merator of the propagation function of source and
interaction particles by D, and D;. Each corner will
contain a 6-function of the three associated momenta
and a polynomial of degree D,.

(P.+P.')f(P P'+I), v. f(-P P'+I)-
are examples for the interaction of spinless mesons with
photons, and of nucleons (or electrons) with mesons of
spin 1 {orphotons).

Consider a single-cnrner diagram which is at most
primitive divergent when integrated over the F internal
momentum four-vectors. The n 8-functions of the corners
permit to eliminate n —1 of them, since the last 8-func-
tion will contain the external momenta, only, expressing
energy-momentum conservation. The integral will be
convergent if the degree of the denominator exceeds the
degree of the numerator {including the differentials

d4p, d&p', d4k .) by at least one. Since the degree of
the denominator is 2F, as seen from (35), the conver-
gence condition is
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Equation (36) becomes

n(1—D,—D,—Di/2)+E+D, (f;+E,/2)
+~sD;(E E.—2f—~) ~& 5. (37)

This inequality is a sufBcient convergence condition for
a diagram which is not worse than primitively di-
vergent. "The condition is not necessary, because the
highest powers of the internal momenta may cancel
identically in the integrand. "Further cancellation may
occur between diBerent diagrams for the same process,
such that a process may be completely finite, although
(37) is not fulfilled for each individual diagram. Such
cancellation indeed occurs in the scattering of light by
light and associate phenomena (see items 4a and 4b
below) via particles of spin 0, „and 1, but it requires
the inc1usion of possible double-corner diagrams.

If a process involving E,/2 source particles and E;
interaction particles is to yield convergent results in
arbitrary high order, (37) requires that the coefficient
of n be positive. Therefore,

D,+D,+D;/2 & 1 (38)

must be satisfied for the elimination of primitive diver-
gencies.

All meson theories of nuclear forces have D,=1 [see
(35)j and therefore (38) would require D, =D;=0. This
implies mesons of spin 0 and no derivative coupling;"
i.e., scalar (or pseudoscalar) theory with scalar (or
pseudoscalar) coupling. For those two cases the con-
vergence condition (37) yields

E+,'E,+f;= s3E+-E+2f +f, &~5. (39)

This condition is the same for the electrodynamics of the
electron (see I) and the same possible primitive diver-
gencies arise. However, the scattering of mesons by
mesons (via nucleons) does not converge as does the
corresponding scattering of light by light in electro-
dynamics. As mentioned previously, the latter is
formally due to fortuitous cancellation, but has a deeper
reason in the condition of gauge invariance. The diver-
gence of meson-meson scattering cannot be removed

by mass or charge renormalization. An infinite direct
interaction must be introduced into the Hamiltonian
which cancels the divergence. "This procedure together
with mass and charge renormalization removes all the
infinities from the S matrix.

In quantum electrodynamics we have D;=0, and
(38) permits either D,= 1 and D,=O or D,=0 and D,= 1.
The former values arise for the electron (see I), the
latter for the spinless meson. Since f; cannot occur here,

"The use of Kemmer-Duffin matrices for spin 0 and 1 leads to
a suf5cicnt condition which is morc restrictive (sce reference 7).

"Such cancellation seems very fortuitous and indeed occurs
only if the combination of propagation function and coupling
exhibit a certain "redundancy" as in the case of vector mesons
interacting with photons.

"The propagation functions and couplings for various meson
theories are given in Feynman's second paper, reference 5.

"Very recently this program was carried through to all order
in the coupling constant by P. T. Matthews (see reference 3).

the convergence condition (37) is

E,+E;+f.=E&~S. (40)

"This result and the conclusions of Section V of this paper
were Grst presented by the author at the New York meeting of
the American Physical Society January 1950. Sec Phys. Rev. 78,
346 {1950).~ Note that according to our de6nition of n', the lowest order
to which the process occurs is the second-order radiative cor-
rection, e'= 2.

This condition, however, need only be applied to
diagrams with n~&E for the following reason. Clearly,
the integral will converge if the n —j available b-func-
tions eliminate all internal momenta, i.e., if F=n —1.
From (34c) we see that this means n= E 2, a—nd that
n —E is always an even number. Therefore only dia-
grams with n&~ E can diverge.

The possible primitive divergencies are therefore the
following 9

(1) The meson self-energy" (E,=2, E;=f,=0, quad-
ratic divergence).

(2a) The photon self-energy (E,= 2, E,=f,=0, quad-
ratic divergence).

(2b) The polarization of the vacuum (t', =2, E.=E;
=0, quadratic divergence).

(3) The "Lamb shift" and radiative corrections to the
scattering of a meson in an external field to first order
in this Geld (E,=2, F,=1, E,=O, linear divergence).

(4a) The scattering of light by light (E;=4,E,=f,=0,
logarithmic divergence).

(4b) The scattering of light by an external field to
second order in this field (E,= 2, F.= 2, E,=O, logarith-
mic divergence).

(Sa) The radiative corrections of the "Compton
effect" (E,=2, E;=2, f,=0, logarithmic divergence).

(Sb) The radiative corrections to "bremsstrahlung, "
i.e., emission or absorption of a photon by a meson in an
external field to Grst order in that Geld (E,=2, E;=1,
f,= 1, logarithmic divergence).

(Sc) The "Lamb shift" and radiative corrections to
meson scattering to second order in the external field

(E,=2, F,=2, E;=0, logarithmic divergence).
(6) The radiative corrections to meson-meson scat-

tering" (E,=4, E;=f,=0, logarithmic divergence).
There is actually one more possib]e divergent process,

i.e., the scattering of light by an external field to first
order in that Geld (E,=2, f,=1, E„=O, linear diver-
gence). However, this process involves a closed loop
with an odd number of corners and therefore vanishes
identically by Furry's theorem. This theorem is ob-
viously valid here as in the electron case, because @ and
the charge conjugate solution @*fulfill the same equa-
tion except for a change in the sign of the charge e.
Since two internal meson lines with opposite arrows
correspond to vacuum expectation values of operators
which are charge conjugate to each other, two closed
loops with n corners each and opposite arrow directions
will differ only in the respective factors o" and (—e)". If
n is odd two diagrams which diBer only in the arrow
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direction of their closed loop of e corners will cancel
identically. This result is unchanged by shrinkage of any
of the meson lines in the closed loop.

In the next section we shall show how the in6nities
can be separated and removed from the 5 matrix by
renormalizations, such that the resultant, renormalized
5 matrix leads to finite values for all the processes (1) to
(6).

IV. REMOVAL OF THE DIVERGEÃCIES
BY RENORMALIZATION

A. General Considerations

The divergence properties of single-corner diagrams
derived in the last section can easily be generalized to
double-corner diagrams. According to rule (3') of
Section II the shrinkage of two neighboring single
corners involves the replacement of a factor

a(p p" +&)-(p.+p")(p"'+ ') '(p" +p')
x a(p"—p'+k')

b —b„,h(p p'+It+ t—t')

and also requires a corresponding change in the weight
factor. We have, therefore, one b-function less, but also
one less integration over internal momenta, such that
the number of independent variables remains un-

changed. Since the difference Dd,„—D„„=O in both
factors, the resultant double-corner diagram will diverge
(or converge) exactly as the original diagram. It follows
that every primitive divergent single-corner diagram
yields by shrinkage a double-corner diagram of the same
order of divergence. The list of primitive divergents (1)
to (6) is therefore also valid for the corresponding
double-corner diagrams.

An unambiguous separation of a primitive divergent
integral into an in6nite and a finite part can be accom-
phshed as for the electron (see II) by a Maclaurin
expansion of the integrand in terms of the external
momenta p„

R(P, t) =R(0, t)+P„(alaP„)R(0, t)

+sP„P„(a laP„aP,)R(0, t)+ ~ . (41)

R(p, t) is the integrand after the integrations over the
5-function are carried out and the operators p~, p,
A„, and A„' are omitted. p„and t„are typical external
and internal momenta, respectively. Since each dif-
ferentiation increases Dd„—D„„by unity, a logarith-
mically, linearly, or quadratically divergent integral

/
0

Fxo. 4. The meson scattering diagrams to first order in the
external field.

will have an expansion of R in which only the first one,
two, or three terms give divergencies. The form of the
divergent terms follows from relativistic invariance.

For example, the 6rst term of (41) for the scattering
of light by light, and of light by an external held yields
a logarithmically divergent integral whose integrand is

~ (p')~ (p')~~(p')~ (p')2' »(p'+p'+p'+p')
and

~.(p')~ (p')~~(p')~. (p')Uu ~.a(p'+p'+p'+p'), (42)

respectively, after the integrations over the internal
momenta t&'& are carried out. The tensors T„„~, and
U„.&„are independent of the p~, such that the terms
(42) are gauge-variant. Since the theory is gauge-
invariant the sum of the terms (42) over all diagrams
of any given order n' must vanish;" i.e., ZT„,&,=0 and
ZU„„i.——0. This will be verified to lowest order (n'=0)
in the next section. Ke are therefore permitted to regard
the processes of type (4) in the list of primitive diver-
gencies as completely finite.

These arguments may not seem to be satisfactory,
since T„„~,and U„„).are divergent integrals. In view of
these and similar arguments further on, we assume,
therefore, that all integrations are carried out with
regulators. This implies the introduction in the La-
grangian of auxiliary 6elds with suitably chosen masses
and coupling constants. "The conditions on the auxiliary
masses and coupling constants are such that all in-
tegrals which diverge worse than logarithmic are put
equal to zero. Logarithmically divergent integrals
become finite, but regulator-dependent. The masses are
assumed to become infinite after the integration is com-
pleted, such that originaljy convergent integrals remain
unaltered and independent of the regulators. "The use
of regulators makes the arguments concerning diver-
gencies, like the one following (42), mathematically
mea, ningful. '4

~'A formal proof can be given in complete analogy with the
one for the electron case given by J. C. Ward, Phys. Rev. ?7, 293
(1950), since the relation (A4) (see Appendix I) which is needed
in this proof is obviously valid.

~The introduction of the auxiliary fields in the Lagrangian
rather than in the 5 matrix is required, because they change the
equations of motion and the momentum energy tensor, as is seen
in the calculation of the self-stress. For the problems considered
in this paper, however, it is irrelevant where the regulators are
introduced. See F. Rohrlich, Phys. Rev. 77, 357 (1950).

~ The notion of logarithmic divergence and cut-off dependence
are in this sense equivalent. Also, in the following, "finite" and
"convergent" will mean "finite and cut-off independent" unless
otherwise stated.

~ Note that the use of regulators does not imply a loss of
generality, since all one can study meaningfully is how the S
matrix would behave if the theory were finite (which here also
requires the assumption of the —unproven —existence of the ex-
pansion in the fine-structure constant). The finiteness of the
theory achieved in this way guarantees gauge-invariance. The
charge-renormalization procedure is not a requirement of gauge-
invariance. Mass, charge, and direct interaction renorrnalization
are required only in order to avoifj imposing conditions on the
regulators in addition to those which guarantee finiteness (e.g.,
Zc; lnm;=0 instead of the weaker condition Zc; Inn;=finite).
Whether or not such conditions are introduced is irrelevant for
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We now return to Eq. (41) for the purpose of general
arguments. Again, on the basis of relativistic invariance
the 6rst, linearly divergent term of a primitive divergent
meson scattering diagram (item 3 on the list of diver-
gencies) is seen to vanish identically, such that these
diagrams actually diverge only logarithmically. The
second term of (41) gives therefore the only infinite
term which is of the form

@*(p')&(P')(p'+P»')~. '(O' P')— (43)

after the integration over the internal momenta f has
been performed. A similar term containing (p„'—p„')
XA, '(P' —p-) must vanish identically, since it is not
gauge-invariant.

Similarly, the only divergent term of a primitive
divergent diagram of type (5) (Compton effect and
related phenomena) will be of the form

@'(P')&(P")~.(&)~P(P' P'+&) — (44)

Consider now the radiative corrections of order n'

to the scattering of a meson by an external field. The
diagrams for this process can be divided into four groups
as is indicated schematically in Fig. 4. The circle means

any complex diagram of n=e' —d corners. The cross
indicates that the external field acts before (case a),
after (case b), or during (cases c and d) the emission and
absorption of the virtual photons. In case c the external
6eld acts on the meson line which passes through the
diagram, in case d it acts on a closed loop. Assume that
in some way me eliminated all divergencies from the
meson self-energy diagrams resulting from Fig. 4 when

the external field is omitted. For Fig. 4d this diagram
is identically zero„because of the odd-cornered loop.
Figure 4d is therefore to be understood as containing
all meson self-energy diagrams to which a closed loop
is connected by one or more photon lines in such a way
that the order of the total diagram is the same as that
of the other diagrams of Fig. 4. The action of the ex-

ternal held will modify our integrals in such a way that
they mill all diverge; for example Fig. 4a will yield the
expression

~*(p') 1/((p')' +')(p.'+p.'-)~. (p' p')~(p') (45-)

which is singular, since p' satisfies (p')'+m'=O.
Equation (41) permits us to separate the infinite parts

of (45) unambiguously, as will be described later. These
infinite parts wiH be called "wave function renormaliza-
tion" (cases a and b), "spurious charge renormalization"
(case c), and "true charge renormalization" (case d) (see
Fig. 4). For reasons which will become clear in the fol-

lowing we shall refer to all in6nities arising from closed

the physical results of quantum electrodynamics, but not always
for meson theory. Since the introduction of such conditions is
quite arbitrary, physical results will remain unaffected only if
tke divergence is a mass or charge normalization. They can there-
fore safely be introduced in the case of spin $, but far the spin 0
case discussed here it would determine arbitrarily the amount of
direct meson-meson interaction which is exoerimentally observable
(see Section VT). An experimental check on this procedure is
therefore possible.

loops as "true charge renormalization. "As is shown in
Appendix I, the wave function renormalization and the
spurious charge renormalization cancel identically to
every order e'. In the next section this will be veri&ed
to lowest order (n'= 2) by direct calculation. —The only
remaining charge renormalizations of the processes of
type (3) are therefore the "true" charge renormaliza-
tions, i.e., those which arise from the action of external
fields on closed loops (Fig. 4d).

Consider next the radiative corrections of order n' of
the Compton effect and related phenomena [type (5)].
These diagrams can again be separated into several
groups as shown in Fig. 5 for the scattering of an elec-
tron by an external 6eld to second order in this leld.
Figures 5a and b are all the meson scattering diagrams
of Fig. 4 preceded and followed by a scattering. Figures
5c and d are all the meson self-energy diagrams of order
n' preceded and followed by a double scattering in a
double corner. Figures Se, f, and g are the diagrams in
which, respectively, both, one, or none of the two
external field actions occur on the through-going meson
line. (Figure Sf has to be understood in an analogous
way to Fig. 4d.) When they are not acting on the latter
they act necessarily on closed loops.

Let us assume that all in6nities have been removed
from the radiative corrections of order n' to the meson
self-energy and to the scattering of an electron by an
external field to first order in that field as was described
before. Those diagrams of Figs. 5a and b which are
derived from Figs. 4a, b, and c by an additional scat-
tering will not give divergencies, since they will result
in expressions of the form

y4(PI)(2P 1 if )g e(if)1/[(Pl q)2+~2]
(P'+P' ~» '(P' P' &), — —

which are not singular as (45), due to the equations of
motion. The other diagrams in the group Figs. 5a and b—derived from Fig. 4d—will give wave function re-
normalizations which exactly cancel the spurious charge
renormalizations of Fig. Sf, for these divergencies will

be of the same form as those of Fig. 4. On the other
hand, the double corners added to the meson self-

Fro. 5. The meson scattering diagrams to second order in the
external 6eld. If the crosses are replaced by photon lines these
diagrams represent the Compton eGect.
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energies in Figs. Sc and d again give rise to terms similar
to (45), i.e.,

4'(P')1)'h(P')'+m'j~. '(1)~.'(p' —p' —l)4(P') (45)

As before, this wave function renormalization will
exactly cancel the spurious charge renormalization of
Fig. Se. Again, the only remaining charge renormaliza-
tion will arise from the action of A„' on closed 1oops
(Fig. 5g). This will be verified by direct calculation to
lowest order (n'=2) in the next section, but is true to
all orders as proven in Appendix I. Corresponding argu-
ments hold for the other processes of type 5 in which one
or both A„' are replaced by A„.

We see, therefore, that all "true" charge renormaliza-
tions arise from closed loops only. But we have seen
before that all closed loops with an odd number of single
corners (or closed loops resulting from these by shrink-
age) contribute an identically vanishing factor to the
integrals. For all other closed loops (which may be part
of a diagram) the only terms which could give rise to
charge renormalization Lsee Eq. (41)j vanish identically
as was seen for the case of four corners. The only ex-
ceptions are: (1) the closed loops with two "external
lines, " i.e., with only two lines connecting to the other
part of the diagram, and (2) the closed loops with one
cross and one line connecting to the other part of the
diagram. These two diagram parts may be thought of
as the virtual occurrence of the processes of type 2 of
our list of primitive divergences, i.e., photon self-energy
parts and vacuum-polarization parts. It follows that
no Primitive di()ergen! diagram other than of iyPe (2) can
contain true charge renormalizati ons.

We summarize these considerations: When the
spurious infinities (spurious charge renormalization and
wave function renormalization) are separated properly
they will cancel identically, such that the only in-
finities which stil1 have to be removed from the S matrix
are those arising from diagrams (or diagram parts) of
type (1), (2), and (6). These are the infinities associated
with mass, charge, and direct interaction.

B. Separation of Divexgencies

Most diagrams do not satisfy the condition that their
integrals converge if any one of the internal momenta is
heM fixed. They will have more divergent terms in the
expansion (41) than the primitive divergents of the
same process. Such diagrams are called "reducible. "
They will contain primitive divergent parts of the
types (1) to (6). We further distinguish between
"proper" and "improper" diagrams, the latter being
diagrams which can be separated into two unconnected
diagrams by cutting only one internal line. Primitive
divergent diagrams are proper, but not mice versa.

Consider the integral

FIG. 6. The only primitive divergent self-energy diagrams.
u: Meson self-energy. b: Photon self-energy.

in (41) but does not necessarily refer to a primitive
divergent diagram. The integral (47) for the radiative
corrections of order n' of the processes of type (1) to (6)
Lexcept (4)] will be denoted, respectively, by
g(a') (P) 11(m') (k) )1 (n')

(pl p2)

Q. ("'(p', P', k), =-(.'(P, p, p) (4g)

They may occur as virtual or as real processes. Where
they refer to proper diagrams a star is added; the sum
over all n' is indicated by omission of the superscript
(n'), i.e., Z*(p) is the sum over all proper self-energy
diagrams. A left superscript p indicates that the proper
diagram is primitive divergent.

Let S(p)=(p'+m') ' and D(k)=(k') ' be the propa-
gation functions of the mesons and photons. If we insert
all possible radiative corrections into a meson line and
sum them, we replace S(p) in the integral by

S'(p) =S(p)+S(p)z(p)S(p)
=S(p)+S(p)~*(p)S'(P) (49a)

Similarly
D'(k) =D(k)+D(k)II*(k)D'(k). (49b)

In order to write similar equations for O„„and one
must limit the definition of "proper diagrams" as
follows. A proper "Compton eGect" diagram [generally:
diagram of type (5)j is one that is not only proper in
the above-mentioned sense but also cannot be split
into two Compton efFect diagrams by cutting one meson
line and one photon line. Similarly, a proper meson-
meson interaction diagram is not only proper in the
above sense but also cannot be split into two meson-
meson interaction diagrams by cutting two meson
lines. With these definitions of "proper" one finds

Q„.(P', P', k) =Q„.*(P', P', k) +) Q„g*(P', t, k)S(t)

XD(p'+t+k)Q. (t, p' p'+t+k)d4t (49c)
and

=-(p' p' p')==-*(p' p' p')+ =-*(p' p* t)S(t)

XS(p'+p'+t). (t, p'+p'+t, p')d4t. (49d)

When (48) refers to primitive divergents the separa-
tion (41) yields unambiguously:

J
R(p, t)dy (47) pg(a') (p) en'[g (a') +21(a')S—1(p)

over all internal momenta, where Z(p, t) is defined as +S-'(p)S,("')(p)], (50a)



QUANTUM ELECTRO D YNA M I CS

'll(" &(k) =e" LC("'D '(k)

+D '(k-)D &"'&(k)], (50b)

yA (n'&(pl p2) —en'p(n')(p 1+p 2)

%e are therefore effectively left with the primitive
divergents &Z, I'II, and & . It should be mentioned at
this point that the only primitive divergent &Z and &II

are those shown ln Fig. 6.
The convergent parts of (50) are defined as follows:

5,("'&(p) =0 for p2+m2=0, (52a)

D, '"'&(k) =0 for k'=0 (52b)

(p)' p')=0 for p'=p' and

(p') 2+m 2= 0 (52c)

0„.'"'(p' p' k)=0 for k=0 (gauge

invariance) (52d)

~ (n')(pl p2 p3) 0 for pl —p2 —p3 —0

For a discussion of (50e) and (52e) see Section VI.
All convergent functions thus de6ned increase at

most as a power of the logarithm for large values of the
arguments, except L„,which increases linearly (times a
power of the logarithm). Their effect is therefore to
"smear out" the propagation functions 5 and D, and
the corner functions p„+p„' and 8„„. Similarly M,
could be regarded as a smearing out of a direct (b-func-
tion) interaction between two mesons. (See also Ap-
pendix II.)

%e can now defLne an unambiguous method for the
separation of all ininities from any diagraxn. Ke 6rst
adopt as a "hierarchy" of divergencies the list of
Section III. Any primitive divergence higher on the list
has preference in separation from any lower one. How-

n „&-)(p p., k)=e-'(0(-'&b„,

+0,.'"'(p' p' k)j (50d)

n~(n') (pl p2 p3) —n'L+(n') +g(n')(pl p2 p3)

+M'.&"'&(p', p', p')]. (50e)

The term 2('.&"' in (50e) will be expla, ined in Section VI.
The constants A ("'), 8("'), C("'), I ("'), 0("', and X("'
are 6nite but cut-off dependent, and are "regulated"
logarithmically divergent integrals. All divergencies
higher than logarithmic are put equal to zero by the use
of regulators. "8("') is the "wave function renormaliza-
tion, " I ("' and 0("' are the "spurious charge renor-
malizations. " As was explained before, they cancel
identically (see Appendix I) such that

g(~') —1.(~') —0(~')

I'IG. 7. Diagrams a, b, and c are examples of ambiguity in
reduction. b and c are b-divergencies. Diagrams e and f illustrate
the successive steps in the reduction of diagram d.

ever, the succession of the divergencies of type (1) and
(2) may be interchanged.

Every reducible diagram of a given order contains
proper irreducible, and therefore at most primitively
divergent, parts. The divergencies of these primitive
divergent parts are to be separated according to (50).
The divergent parts are then to be dropped. This
separation is indicated in the diagram as follows: The
replacement of nr&"' (p) by e"'(p2+2&3')S, &"'(p) in the
integral is indicated by replacing the self-energy part
S(p)nZ("'&(p)S(p) in the diagram by an effective meson
line e"'S(p)S.'"'(p). (See also Appendix II.) Similarly
a photon self-energy part D(k) nil&"'&(k)D(k) is replaced
by an effective photon line e"'D(k)D, &"'(k). The re-
placement of the primitive divergent parts of type (3),
(5), and (6) by their finite parts is indicated in a
diagram by replacing these parts by effective corners:
type (3) will give an effective single corner, type (5)
an effective double corner, and type (6) a direct inter-
action corner, where four meson lines meet.

This procedure would carry through without dif-
ficulty were it not for the fact that some primitive
divergent parts may "overlap" as shown in Fig. 7; i.e.,
that they may have one or more lines in common. If
two primitives of different types overlap (Fig. 7(3), the
hierarchy decides in which part the divergencies are
to be separated out 6rst. If the two primitives are of
the same type (Figs. 7b and c) we are faced with the
so-called b-divergencies. Dyson has shown how to
proceed in this case (II, p. 1749); i.e., the divergencies
of each of the two parts are to be separated out. Any
ambiguities which may arise in this connection are
eliminated in our case by the use of regulators.

In this way one obtains diagrams which may again
contain primitive divergent parts. Some of these parts
may contain effective single and double corqers and
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ea'ective lines. These are to be treated as "ordinary"
single and double corners, and "ordinary" lines. Their
divergence properties will be the same as those of
"ordinary" primitive divergencies (see Appendix II);
they differ from them at most by the power of a
logarithm as mentioned before. Therefore, this reduc-
tion procedure can be continued until the diagram
becomes irreducible, i.e., it becomes either an improper
diagram whose proper parts are at most primitive
divergent, or it becomes a proper irreducible diagram
which is also at most primitive divergent. The last
separation if necessary, is then completed and a finite
result is obtained. An example of such a reduction is
indicated in Figs. 7d, e, f.

Suppose that all integrations over the internal photon
lines have been carried out and the reduced diagram
consists of proper parts which contain only internal
meson lines. Any such part which does not contain
corners coupling to photons or external fields involves
necessarily only "direct interaction corners. " Let us
investigate the possible primitive divergencies in such
a diagram. With the notation of Section III we find
with D,=O, E;=f,=0,

F=F,=2n E,/2, —
D =0, Dg =2',

E,~& 5.

Since E. is obviously even, the two primitive divergent
processes are those with E„=2 (quadratic) and E,=4
(logarithmic). They are shown in Figs. Sa and b. All

other divergent diagrams contain these as parts. For
example, the diagram Fig. Sc contains two primitive
divergencies of type Fig. Sb. Possible action of external
6elds or photons will clearly improve the order of
divergence by one each, such that in general

E,+E;+f;=E~&5,

which is identical with (40). We have thus shown that
the introduction of direct interaction corners by the
reduction procedure will yield "e6'ective" diagrams of
the same type and divergence properties as the original
diagrams. Thus, by counting the external lines Figs. Su
and b are identified as primitive self-energy and meson-
meson interaction which diverge exactly as the original
processes. Their divergencies are to be separated out as
in (50).

In this way we split the 5 matrix into a finite and an
infinite (i.e., cut-oif dependent) part in an unambiguous

way. The infinite part is to be dropped. We shall now

justify the omission of the infinite part by showing that
these parts are equivalent to infinite factors which can
be consistently incorporated into the finite parts in such
a way that they constitute renormalizations of the
constants originally entering the theory: The mass and
charge of the mesons and the constant of direct inter-
action. The latter which has not entered into the theory
as developed so far, has to be introduced in order to
justify the omission of the terms arising from X in (50e).

C. Removal of the Divergencies by
Renormaliz ation

The meson mass m entering the Klein-Gordon equa-
tion is the "mechanical" mass and can be written
m& —&n where m& is the observed and &n the electro-
magnetic mass. The term —bm will always appear
together with the self-energy term Z*, such that (49a)
becomes

S'(P) =S(P)+S(P)(~*(P)—b~)S'(P) (54a)

Khen the divergent parts of the effective meson 1ine
function S'(p) are dropped, one is left with the finite
function S&'. Following Dyson we set out to prove that

S'= Z Si'(ei),

where ei is the renormalized (observed) charge and Z2
is an infinite constant. Similarly it should be possible to
write the 6nite efkctive photon propagation function
D, '(e )oibtained by dropping the divergent terms in D'
of (49b) as

O'= Z~, '(e,). (53b)

Radiative corrections to a given diagram can be
obtained not only by inserting corrections into the
meson and photon lines S and D but also by inserting
single-corner parts, i.e. diagrams of type Figs. 4c and d
into single corners C„=p„+p„', and Compton effect
diagrams (Figs. Se, f, g) into double corners C„„=8„,.
Making such insertions to all orders will amount to a
replacement of C„by C„' and of C„„by C„„' where
according to (49c)

C„=C„+~„, (54b)

C„.'= C„,+0„,*+) (C„i+0„i*)S'D'Ci,. (54c)

It is important that 0„,* are the proper Compton
diagrams as defined preceding to Eq. (49c) and do not
contain diagrams followed (or preceded) by emission
(or absorption), i.e., Figs. 5a—d. These diagrams would
otherwise be counted twice.

When the divergent parts of these functions are
dropped one obtains C»' and C&.~'. Their relation to
the functions (54) should be

Cp' ——Zi 'Ci i'(ei),

C&.'=Z4—'Ci i'(ei).

(53c)

(53d)

C

Fro. 8. Typical diagrams resulting from direct meson-meson
interaction. a: primitive divergent meson self-energy. b: Primitive
divergent meson-meson scattering. c: Reducible meson-meson
scattering.
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When the divergent parts are dropped it gives Mi'(e&).
One should thus obtain the renormalization of 3f'
which for Xi=0 is of the form

M'= Z&; 'M'i'(ei).

The finite functions S~', DI', C~~', Cp.~', and ~].'
are well determined by the reduction procedure given
in (8). It is therefore only a question of the structure
of the diagrams whether or not Eqs. (53) can be fulfilled

by proper choice of bm, be=ei —e, and 8X. Since Eqs.
(53) are interdependent but should reproduce them-
selves upon insertion into each other, this procedure
mill prove the consistency of the renormalization
program-

Consider any single-corner diagram 6& ' of order n'.
Replace all lines and corners by the completely cor-
rected lines and corners (i.e., S by S', D by D', etc.) and
find 6'&"'. Consider now the first radiative correction
to the original diagram, 6&"'+'). It can be obtained by
inserting a photon line between two meson lines thereby
increasing the number of S functions by two, the
number of D functions by one and the number of C„
functions by two. It will also add a factor e' to the
integral. We now again make the replacement S—+S',
D-+D', C—+C„', etc. and find 6'&"+'& When Eqs. (53)
are applied to 6'("') and 6'&"'+') they should result
in the finite renormalized diagrams 6""'(ei) and
g'&"'+'&(e&). This is only possible consistently if the
additional factor in 6'&"'+", i.e.,

e'S'S'D'C„'~, '= e&'S&'Dj.'Cws'C. i')

or with (53)
e =Z ZSZ& e. (56)

It is clear that the photon line inserted into 6&"')

could have both ends in the same double corner. This
would add instead the factor e'S'O'C„, '= e~'S~'D~'C~. i'
by the same argument as before

eP =ZiZOZ4 (57)

Finally radiative corrections can be obtained by
replacing a direct interaction corner M by all meson-
meson interaction diagrams. For this purpose we assume
Grst that there exists a direct interaction term

&~*(*)e*(z)e(x)e(z) (55)

in the Lagrangian of our theory. Such a term would
then appear additive to the interaction Hamiltonian (2).
X is an infinite constant. It is completely within the
philosophy of the present theory to renormalize this
coupling constant X, since also the coupling constant e
is being renormalized; thus we put A= Xi—bX where Xi
is finite and is to be determined from experiment.

It follows from (49d) that each direct interaction
corner M which is replaced by all possible meson-meson
interactions to yield M' can be written

3f'= X,—S)&,+"-*+ I (I, ~7 +"-*)S'S'M' (54.d)

Equation (56) and (57) are compatible if and only if

Z4=Zj'Z2 ' (58)

One can now proceed just as in II. From Fig. 6a we
see that Z* consists of one S function, one D function,
two C„, and a factor e'. Replacement by the primed
functions and use of (53) and (56) gives Z*—Z2 &Z*(e&).

Therefore (54a) with the separation (50a) yields

S'=S+Z2 '(SA(ei)+B(ei)+S,(e,))S' &nS—S'

which should reduce to its finite part

Si'(ei) =S+S.(ei)Si'(ei)

due to the renormalization (53a). This is indeed the case
provided

bmZ2= A (ei)

Z, = 1+8(ei). (60)

In the same way, the structure of Fig. 6b leads to
II*=Z~ &11~(e&) and (49b) becomes with (50b)

D'= D+Z3 '(C(ei)+D, (ei))D'.

This reduces to

Di (el) =D+D.(ei)Di'(ei)

due to (53b) provided

Z3 ——1+C(e,). (61)

Zi = 1—L(ei). (62)

As is proved in Appendix I [Eq. (A11)j 8+L=O,
since it is true in each order. Therefore (60), (62), and
(58) give at once

and (56) simplies to

Zg —Z2 Z4p (63)

eP=Z3e =(I+C(e&2))e. (56')

Equation (63) is another statement of the cancella-
tion of spurious charge and wave function renormaliza-
tion. This cancellation occurs explicitly in Eq. (56) such
that the complete "true" charge renormalization is due
only to the renormalization of D' of (53b). Since any
insertions into the D lines always reduce to effective
diagrams of the form Fig. 6b, we Gnd again that only
closed loops with two single corners or one double
corner yield charge renormalization.

For the renormalization of C„we see from (56) and
Fig. 10 that A„=Zi 'A„(ei) such that (54b) with the
separation (50c) becomes

C„'=C„+Zi '(C„L(ei)+L„(ei)-)

which reduces to its finite part

C& i (ei) =C,+L& c(ei)

due to (53c) provided
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Ke also observe that Z4 the renormalization associ-
ated with the Compton eGect diagrams is already deter-
mined by Z» and Z2 which is actually a consequence of
gauge invariance (see the remark at the end of Ap-
pendix I).

The above analysis which resulted in the deter-
mination of the Z; in terms of the in6nite integrals can,
of course, in principle be continued for C„„'and M'. This
would result, of course, in the same equations as above.
From Fig. 11 and Eq. (56) one finds

Q„„*=Z2Zi 'Q„„*(ei).

The renormalization of 5' and D' in the integral (54c),
observing that there are two more factors of e to be
renormalized (one of the "external" charges of each
diagram connected by D') yields

C„.'= C„„+Z2Zi 'Q„„~(ei)

+Zi'Z2 (C„i+Z2Zi-'Q„x*(ei))S'(e,)D'(ei)C),„'. (64)
I'

This should reduce to C,.i'(ei) due to (53d). However,
the analysis cannot be carried further, because
C~.i'(ei) is not known in closed form. Although it is
uniquely determined by the reduction prescription, it
is not possible to write down its form. This is already
indicated by the fact that the integral in (64) diverges
even if the factors of the integrand are replaced by their
finite parts. The reason for this apparently unexpected
divergence is to be found in the b-divergences of the
type shown in Fig. 7c. Whenever these diagrams occur
the separation into proper diagrams of type (5) (Comp-
ton effect, etc.) becomes ambiguous. Of course, it is

irrelevant which separation is chosen, but it is due to
this ambiguity that the separation of the infinite parts
of the two diagrams of type (5) thus obtained does not
completely separate out all in6nite terms. Since the
integral in (64) is just based on this separation one
cannot expect it to be finite. On the other hand, only
some of the improper diagrams of type (5) will contain
b-divergencies; it will therefore not be possible to write
down a closed analytic expression correct for all cases.

One may argue that the renormalization procedure
has to be consistent even if one restricts C„„' to proper
diagrams omitting the integral in (64). One finds in this
case from (50d)

C„„'=C„„+Z,Z,—'(O(e, )C„„+O„„(e,))
which reduces to

Cp.i'(ei) =C„„+O„,(ei)

due to (53d) provided

Z4= 1—O(ei) (65)

and Eq. (58) holds. Equations (66) and (62) combined
with the result of Appendix I (A12) coii&rm Z2—-Z4
found previously LEq. (65)J.

and that
8X=Z2 'X(ei)

ZQ Z2o

(66)

(67)

We have so far restricted ourselves to Xi=0 in (54d).
For this case the discussion of this section shows the
consistency of the removal of all divergencies by renor-
malization. If X»/0 two additional types of diver-
gencies arise. First, the divergencies due to the direct
interaction term Xi itself which gives rise to divergent
diagrams like those of Fig. 8. They can be separated
into a finite part and an inlinite part analogous to (50e).
The latter must be canceled by a renormalization bX»

which is independent of e&.

Second, there are radiative corrections of diagrams
like Fig. 8. They diverge exactly like the effective
diagrams encountered previously where the direct
interaction corner was due to " rather than (55). Their
separation according to (50) of infinite and finite parts
will result in infinite parts which depend on e» and on X~.

These have to be canceled by a term 6X&,.
We thus find that if ) I/O, BX=8X»+B I,+Q,„where

8X, is independent of Xi and is determined by (66).
Since the reduction procedure uniquely separates the
in6nite parts which in turn define 8), this quantity is
well defined. The 6nite scattering matrix will then be a
well-defined function of X» and will be given as a power
selles lii XI.

Before we turn to a discussion of the physical meaning
and determination of Xi (Section VI), we shall give
some examples which illustrate some of the results
obtained so far.

V. THE PRIMITIVE DIVERGENT PROCESSES
TO LOWEST ORDER

The second-order meson self-energy and vacuum
polarization have been treated repeatedly by various
authors. There is no need to give these calculations here.

A. Scattering of Light by Light

There are three kinds of diagrams, corresponding to
the number of double corners (Fig. 9). From (30') we
see that they will all be of the form

(e/4n') 4A„(k')A. (k') A), (k')A.(k4)

XT„), (k' k' k', k')b(k'+k'+k'+k4)

Finally we turn to the meson-meson interaction and
observe that the same difhculty encountered in the
integral of (54c) is also present in (54d). The case is
completely analogous to the one discussed above. If we
restrict ourselves to X»=0 and to proper, one 6nds
from Fig. 12 that .*=Z2 ' ~(ei). Therefore, with (50e)

M'= —6X+Zi—'(X(e,)+M,(e,)+R(e,))
which reduces to

M, '(e,)=M, (e,)+R(ei)

due to (53e) provided that
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The diagram Fig. 9u gives with regulators

(2p„—k ')(2p, —2k, '—k 2)(2p"—2k'' —kg3)(2p, +k.4)d4p
T„,g, '&(1234)=Zc; I'J

[p2+233 2][(p kl) 2y223 2][(p kl k2) 2+433 2][(p+k4) 2+423 2]

We introduce auxiliary variables~ and combine the
denominator to give the fourth power of a quadratic
form. On shifting the origin of the p space the divergent
part of the integral is found to be [see Kq. (41)]

The three other ways of shrinkage of 1234 will give the
same result with b„,b),„replaced by b„„b~, b„~b„„and
bz, b„„, respectively. The sum of all diagrams Fig. 9b,
resulting from 1234 is therefore

—2m'i(h~b„&, +8„,81,)Zc, 1n(M, 2/m'2).f* f 16pup"p&pod4p
T „~ (~)=Zc&3f ~ dx d& ~~ d

(p2+233 ') 4 The results from shrinkage of 1324 are obtained from
this by replacing p, v, t, r by p, 3, u, 0, respectively,

The integral vanishes unless the p, v, X, 0 are equ 1
'

pairs. One finds that P„P„Pl,P, in the integral can be
replaced by

(1/24) (&,.&) +~,x~-+ &~~.x)P'P'

and the integration can be carried out over four-dimen-
sional spherical coordinates with volume element
2m'p3dp as explained in II. One finds

T„„l.~'~ = (16/24) 2~2i(b„.bg. +b„g8.,+b„,b,g)

&& Zc,—', 1n(M, 2/m'2) —= -23Q„„".,

where M, is an upper cut-oG mass. The relation Zc, =0
was used. There are 24 permutations of the four corners
in Fig. 9u which can be obtained from six of them by
cyclic permutations. Therefore there are six diagrams
of the type Fig. 9u which need to be taken into account.
These six are 1234, 1324, 1243, and their "charge —con-

jugates, " obtained by reversing the sense of all the
arrows, i.e., 4321, 4231, 3421. The latter three are
identical with the former three by Furry's theorem.
Since T„„~ &' is invariant under the concomitant per-
mutation of 1234 and p &0, we 6nd for the sum of
divergent parts of the three essentially diGerent dia-

and similarly from 1243, replacing p, v, X, cr instead by
p) p) 0') X)

2~2i—(b„18,.+8„„b2.)Zc;1 n(M, /2m )2

Therefore,
ZT,.)."'=—4Q„l,.

The same result could have been obtained by drawing
all diagrams of type Fig. 9b and multiplying by the
weight factor 2.

Each of the diagrams of the type Fig. 9b can be
shrunk once to yield a diagram of Fig. 9c. The one
drawn is

(—& )(—&')&4p
T 1, &'(1234)=Zc; ~r

[(p—k')2+233,2][p2+233;2]'

~4p

(p2+423 2) 2

= 8„,8,"in'Zc, 1n(3E,2/m'2).

grams of the form Fig. 9u The four diagrams b resulting from 1234 will on shrink-

ZT,.),."= 2Q,.~ age give two diagrams c as the one just calculated and
two diagrams with 8„,8„& replaced by b„„bz,. Summing

Fach of these three diagrams gives four diagrams of again over the permutations p, X, ~, 0 and pwX cor-
type Fig. 9b by shrinkage of the meson lines. The one responding to the diagrams resulting from 1324 and
actually drawn gives 1243 we find

T„,) &'&(1234)=Zc; ( 8~)—
(2p.—2k.'—k" )(2p"—24' —2kl '—k), ')d4p

X
(p2+~ 2)[(p kl)2y~ 2][(p kl k2)2+~,2]

As before one finds, since P„P~ can be replaced by x8,2P',

4p pd4p

J g (p2+223.2) 3

i+28 8„1Zc, ln—(M /cd, ')
~~ See R. P. Feynman, reference 5, p. 785.

Q Tp"xr 2Qpyke.

The sum of all diagrams Fig. 9 is therefore

2 T,.l."+Z T,.x '"+Z T..l "=o

as required by gauge invariance.

FIG. 9. The scattering of light by light in lowest order.
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The remaining diagrams of Fig. 10 will give wave
function renormalizations.

(2p —k)'d4k
p (4++ (~)-&p

[(p—k) '+m')k'(p2+m')

Fio. 10. Meson scattering to first order in the external field and
in lowest order of correction. Note that the diagrams describing
the effect of vacuum polarization were omitted here.

3. Lamb Shift and Associated Phenomena

In this process as well as in the Compton effect
dealt with subsequently, we want to show how the
spurious charge renormalizations and wave function
renormalizations cancel. For this purpose we will con-
tent ourselves to show the cancellation of the divergent
upper limit of the integrals, and we shaH ignore "infra-
red divergencies" and finite renormalizations. In this
way we shall greatly simplify the discussion, and we do
not need to introduce regulators.

The diagrams are shown in Fig. 10. Apart from unin-

teresting constants Fig. 10u gives

(2p' —k) 'd4k+- , (70a)
[(p'—k)'+m']k'(p" ym')

P (f)+P (17) ~P
(p'+m') k' (p"+m') k'

(70b)

From these integrals first the mass renormalization has
to be subtracted, i.e., we have to subtract

(2p —k)'

(k' —2p k)k'-(p'+m')

(2p' —k)'
+ d4k

(k' —2p' —k)k'(p" +m')
& (2'—k„)(2g'—k&)(P„+2k„)d4k

~.('&(p p') = (68)
k'-(k'+2p k)(k'+2p' k) J (p2+m2)k2 (p&2+,mR)k2

d,k (71).
where k is the momentum of the virtual photon,
P= p+p' and p'= p"= —m'. It is now convenient to
introduce the variable k'=k+ ,'P which wi-ll enable us
to eliminate the linearly divergent term correctly. One
6nds after putting p= p

& (p+ k')'2k„'d4k'
A & &(p p)=

~ (k'- p)'(k"- p')

For large k' we can put (O' —P) '= (1+2k P/k'-)/k".
The linearly divergent term now vanishes because of
symmetry and the remainder gives for large k

One observes that the diagrams Fig. 10f and g
exactly cancel out. They do not contribute to observable
effects. It can easily be seen that these double-corner
self-energy terms will always behave in this manner.

p„and p„' of (70) obey p'= p"= —m' only after (71)
has been subtracted. One therefore replaces them first
by (1+&)p„and (1+~)p„' and passes to the limit e—4
in the difference (70)-(71). The resultant linearly
divergent integral may be treated similarly to (68) and
yields after an easy calculation the wave function renor-
ma1ization

J3=2I, (72)
L,(~)p„=p„d4k/(k') '= p„I. —

In the same way Figs. 10b and c give together

~'"(p p')+~ "(p p')

t
b„„(2p, +k,) ——b„,(2p.'+k, )

k'-(k'+2p k) k'(k'+2P' k)

where the factor 2 is the weight factor. For large k we

can again put (k'+2p k) '=(1—2p k/k-')/k' and 6nd

L(s&+I (.& 3'I L L&o&+L&a&+L(.& 2I (69)

which exactly cancels the spurious charge renormaliza-
tion (69).

C. Comyton EEect and Associated Phenomena

We will here be concenied with the radiative cor-
rection to the scattering of an electron by an external
field to second order in that field. The diagrams are
those of the Lamb shift (Fig. 10) preceded or followed

by an additional scattering, those containing true
charge renormalizations (i.e., diagrams with parts of
the form Fig. 6b), and those shown in Fig. 11.The latter
are special cases of Figs. Sc, d, e. The calculation is
carried out as in Section B.One finds

& (2pg+k&)(2pg'+kg)(2p„+2k„+q„)(2p, '12k, +q„')
Q „(o)- d4k+(same with p, v and q, q' interchanged)

k~(P+2P k)((k+q)~ —2P (k+q) j(k'+2P' k)
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which for large k„yields

0&'&b„,=2 d4k 4k„k,/(k')'= 2b„,I.

Similarly, with weight factor 2

t (2P+k) (2P' —k)(—b")
d4k,

k'(k'+2p k)(k'+2p' k)

g(&)—

t (2p), +k))(—bg„)(2p„+2k„+q„)d4k
n, ()+n„,«) =2

~ e(k2+2p. k)L(k+q)2+2p (k+q)]

~ (2''+kg) (—bg„) (2p„'+2k„+q„)d4k
+2

k'(k'+2p' k)L(k+q)'+2P'. (k+q)]

+(same with p, v and q, q' interchanged),

g(c)+g(+ = —4I.

The last spurious charge renormalization diagram,
Fig. 11e, has weight 4

(—b~) (—bg„)d4k
g (e) 4

O'L(k+q)'+2p (k+q)]

+(same with p, v and q, q' interchanged),

g(e) —SI

Together they give

0 b C

FIG. 12. The Grst radiative correction to meson-meson scat-
tering. The circle in e stands for all single-corner parts in that
order of correction.

by a photon line. Therefore, the sum of all diagrams e
contains only true charge renormalizations. Qne finds,
observing the weight factors:

~ (2P' k) (2P—'+k)(P'+P' k). (P'—+P'+k)
~ (+)— d4k,

k'(k+p' —p')'(k' —2p'k) (k'+2p'k)

t' (2P' k) (2P'—k)(p'+—P' k) (P'+—P' k)—
(&)— d4k,

k'-(k+ p' p')'(k' —2p' k) (—k' 2p' k)—
(2p' k) (p'+—p' .k)—

~~(c) d4k
k'(k+ p' —p')'(k' —2p' k)

(2P'+k) (p+P'+k)—2 d4k,
k'(k+ p' p')'(k'+2—p k)

r (—b.)(—b. )

J P(k+P3 pi)2

Thus, with (50e)

g g(a) +g(b) +g(c) +g(4 +g{e) 4I (73)
X=X ' +X(a~+X(')+X(g I+I 4I+

VI. DISCUSSION OF THE RESULTS

First, the equivalence of the Kanesawa-Tomonaga
theory with the Feynman theory is established by
proving the identity of the scattering matrices of the
two theories. Second, the divergencies of the 5 matrix
are investigated and an unambiguous way for the
separation of the finite and infinite parts is given.
Finally, all divergencies are removed by renormalization.

Qne finds that the quantum electrodynamics of
spinless particles is in many ways similar to the one for
particles of spin 2. There are, however, these essential
di6'erences. The non-linear terms of the interaction
Hamiltonian give rise to double corners in the dia-
grams; this in turn is closely related to the fact that
both the Lamb shift diagrams and the Compton eGect
diagrams lead to divergencies. However. these diver-
gencies are shown to be entirely spurious. But the
divergent Compton eBect diagrams give rise to a
5-divergence problem which is much more complicated
than the b-divergence problem in the electron case. In
the latter these divergencies occur only in very special
cases since they are there only associated with electron

which again cancels (73).

D. Meson-Meson Scattering

The diagrams for this process to fourth order are
shown in Fig. 12. The circle in Fig. 12e stands for all the
Lamb shift diagrams with the external field replaced

Jf J

l,~

I

FIG. 11. Meson scattering to second order in the external 6eld
and in lowest order of correction. When the crosses are replaced
by photon lines these diagrams represent the 6rst radiative cor-
rections to Compton scattering. Note that these are not all of the
diagrams for these processes (see text).

From this and Eq. (66 one Qnds b)%,.
The sum of the wave function renormalization dia-
grams, Fig. 11fand g, obviously yield the same integrals
as Figs. 10d and e, except that I'„ in the latter is to be
replaced by —28„,. One therefore Gnds at once from
(70) and (72)
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and photon self-energy diagrams of which there exist
only two primitive divergent ones. In the spinless case
there is an infinite number of b-divergent diagrams.

Further complication arises from the meson-meson
interaction which is found to be divergent. This diver-
gence necessitates the introduction of a direct inter-
action term into the Hamiltonian. It is this point which
deserves further clarification.

As is well known, the long range of the Coulomb poten-
tial causes the scattering amplitude to become arbitrary
large for small enough energy-momentum transfer
6=p' —p'. Terms of the type 1/6 arising, for example,
in fourth order are physically undistinguishable from
similar terms arising in second order. It is therefore
satisfactory to see them arise only in connection with
charge renormalization, i.e., they come from those
fourth-order diagrams which are derived from Lamb
shift diagrams, but not from . There are, however,
corrections to the Coulomb potential at smaller dis-
tances from terms of the type 1nh occurring in & .
These terms have to be separated from & in the separa-
tion (50e) with the definition (52e) of M, .

Consider a primitive divergent meson-meson scat-
teringdiagram" (p' p' p', p') forinitialfour-momenta
p', p' and final four-momenta p', p' where p'+p'
=p'+ p' because of energy-momentum conservation.
Introduce regulators and photon masses, the latter to
properly take into account the infra-red divergencies.
The result of the various integrations will contain con-
stant, logarithmically cut-ofif dependent terms X which
are defined within an additive cut-oG independent
constant X'. One can now define a term R which is
logarithmically divergent for 6= P' —P'=0,

where
R= r In(h/m),

r = lim(& —X)/ln(h/rN).

(74)

(75)

m is the meson mass. The limit is taken with p'+p'
and p'+ p4 held fixed. r will be a function of these two
combinations only. The finite function

M, =& —X—E

is now defined within the constant X'.
This constant can be defined by defining R [e.g. , as

in (74)] and M, Le.g. , by choosing the definition (52e)j.
The direct or contact interaction is then solely due to P ~

which has to be found from experiment. However, we
do not intend to imply that the interaction X+M, thus
defined is free from contact interaction. In fact, there
seems to be no simple unambiguous way of defining
such a contact-free interaction. '6 The separation into

'6 Two possible definitions of a contact-free meson-meson inter-
action seem to be of particular interest. First, there is the analogy
with the electron case in which the corresponding interaction is
well defined and may be considered as not containing a direct
interaction. Second, one might use regulators with the additional
condition Zc; lnm;=0 for a contact free interaction. One then
does not need a direct interaction term (55). The amount of

contact and contact-free interaction must therefore be
regarded as arbitrary. One might inde(1 equally well
choose X&=0, i.e., one may renormalize X to zero, and
leave M, undetermined within the additive constant X'
which is to be determined by experiment.

I would like to thank Professors R. P. Feynman and
N. M. Kroll for many helpful discussions throughout
this work. The author is also grateful to Professor H. A.
Bethe for his valuable criticism of the manuscript.

Note added 7e Proof: The integrals in equations (49c and d)
and therefore also in equations (54c, d) and (64) are oversimplified
and consequently incorrect. However, they have not been used
in the arguments so that the results and conclusions remain
unaffected. —This author believes that the existence proof by
construction of the finite S matrix as outlined in section VB
should be supplemented by a mathematical formulation of this
procedure. This would enable one to give a detailed proof of the
consistency of the renormalization program (section VC). But
it requires a detailed analysis of the treatment of t7-divergencies;
these have not been considered in this paper. Such analysis should
furnish the correct integrals of (49c and d).

APPENDIX I. CANCELLATION OF SPURIOUS CHARGE
RENORMALIZATION AND WAVE FUNCTION

RENORMALIZATION

The proof presented here will be given in complete generality,
valid for spin 0, $, and 1, and for the formulation with and
without Kemmer-Duff matrices in the cases of integer spin.

Let P be the source Geld and

s '(p)4=0 (Ai)
the equation of motion of the free field. S(p) is the propagation
function of the source particles. The coupling to the electromag-
netic field A„'(q) is given by the operator C„(p, p') where
p„—p„'=q„. This operator represents the single corner of a
diagram, e.g., it is y„ for spin @ and it is p„+p„ in our formulation
of spin 0.

As is obvious from an expansion" of S '(p —A),

c„(p, p) =as- (p)/'op„. (A2)

If (Ai) is quadratic in p there will also be a quadratic term in A„'
with coeKcient

18' '(p) 18C„(p, p)
2 ~pp~pv 2 ~pv

From (A2) the identity

—as(p)/a p„=s(p}e„(p,p)s(p) (A4}

is an immediate consequence. If p„satisfies (Ai) we find the
useful relation

iim S(p')(p '—p )C (p, p)4 =4 (As)
Pgl ~Is

A proper Lamb shift diagram A„ is obtained by inserting into
a proper source particle self-energy diagram Z* the action of
A„'(q). If this is done in a source line S(p ), it will replace it by
S(p') C„(p', p')S(p'} for q= 0. If it is done at a single corner it will
produce a double corner with coupling function 2C„„again for
q=0. In all cases considered here either C„(p, p) is a constant and
no double corner exists fs '(p) is linearj or C„, is a constant
fs '(p) is quadratic/. The factor 2 which enters here in a natural
way is the weight factor.

contact interaction is Zc; lnm;=0 (see also footnote 24). Further
investigation of these points may show that the two definitions
proposed here are actually identical.

I'The coupling of the electromagnetic Geld A„ to the bare
particles by replacing p„by p„—A„ is a requirement of gauge-
invariance. Since the whole proof is based on this fact, the can-
cellation of the renormalizations can therefore be thought of as
a consequence of gauge-invariance.



QUANTUM ELECTRODYNAMICS 687

Summing over all possible insertions of A„'(0) we find with (A3)
and {AS),

~ *(p p)= —~& (p)/p . (A6)

If Z* is of order e', A„*will be of the same order. We now assume
that all primitive divergent parts of lower order have been
properly replaced by their 6nite parts, such that Z~(n') and
A„~(n') are primitive divergent efkctive diagrams, i.e., they will
contain effective lines and corners. Therefore, a separation of the
form (50c) is possible and since L~*(p, p)/=0 by definition we
find

"'L("')C„(p,p) =—ax*(p)/ap„. {Ai)

It is to be noted here that we have not excluded the action of
the electromagnetic field in closed loops, but that these con-
tributions vanish by Furry's theorem, for the even number of
corners of the loops in Z* becomes odd by the action of A„'.
Therefore (A7) gives correctly the spurious charge renormalization
of the diagrams c of Fig. 4.

Repeating this insertion process we find from a separation of
the form {50d) of the primitive divergent diagram of type (5)
(Compton effect and related phenomena) 0„„*("')(p,p) since

OI.*("'(p, p) =0
2en'0("')C~„= —BAe*(n')(p p)/8 p =B~Z~(" )(p)/Bp~~ p» (A8)

From (A5), (A7), and (A8) it follows therefore that
O(n') —I (n') (A9}

Clearly, if C„„=O,0("') does not exist and the processes of type
(5) are convergent. 0("') is the spurious charge renormalization
arising from the diagrams of Fig. Se.

Let Z*(n')(p') be an effective, but primitive divergent diagram.
Then the separation (50a) is valid and the diagrams 4a and b give

C„(p', p')S(p')z* - )(p')
= "'C (p', p') {~'"')S(p}+&'"'+S'"'(p')) {Aio)

The 6rst term will be canceled by the mass renormalization which
can be written

e 'C„{p',p')S(p')x*(")(p),

where p„, in contradiction to p„', satisfies (A1). We subtract it
from (A10) and expand Z~(n')(p'} near p. Comparing the in6nite
terms on both sides we 6nd for the wave function renormalization
constant

- a(- ) =S(p) I
ax*(- )(p)/a p&j(p&' —p

This yields with (A7) and the identity (A5) as we pass to the
limit p„'-+p„

g(nr)+L(ns) 0 (A11)

Equation (Aii) expresses the identical cancellation of the
infinities arising from Figs. 4a, b, and c. It is to be noted that the

wave function renormalization constant for each of the diagrams
4a and b is only )B(n') since it is associated with the outgoing
source line which is shared by the next scattering process.

On calculating the wave function renormalization for the
diagrams of type (5) (Figs. 5c and d) we observe that one simply
has to replace C„{p',p') of (A10) by 2C„„and one finds from
(A11) and (A9)

g(n, ')+O(n') —0 (A12)

which expresses the identical cancellation of the divergencies of
Figs. 5c, d, and e.

It may be remarked that (A12) can be concluded from {A11)
alone since the requirement of gauge invariance connects the
fundamental single corner and double corner parts of the Hamil-
tonian (2), and a consistent charge renormalization procedure has
to yield (e+be}' in front of the latter if it yields e+Be in front of
the former. The above proof, however, is not based on the con-
sistency of the charge renormalization procedure. "
APPENDIX II. ON THE ASYMPTOTIC BEHAVIOR OF

PRIMITIVE DIVERGENT INTEGRALS

Consider a primitive divergent integral which involves an
integration over a single internal momentum t only. Assume that
auxiliary variables x, y, ~ ~ ~ are used to combine the denominators~
of a single-corner diagram. The integral will be of the form

f dxdy ~ d4lP„(t, p')/. Dt Za;p)—'+b'j~, (A13)

where F is the number of internal lines, e the number of corners,
and I'„(t, p') a polynomial of order n in t whose terms are of the
form (p')'+' with r+s~&e. The a; are polynomials in x, y
and b' is quadratic in all the p' with coefBcients which are poly-
nomials in x, y, ~ ~ -. If we use regulators we are permitted to
shift the variable t—+t+Za;p. The result of the t integration will,
for any of the p' large, behave as (p')n~~+'. From (34c) and the
fact that only diagrams with n ~&E can diverge e—2F+4 ~&4—E.
Comparison with (40} shows that {A13) diverges for large p' at
most as the t integration itself. The same result can be derived
for integrals with more than one t integration. Therefore the con-
vergent functions introduced in (SO) behave asymptotically as
follows: Sc O(1) Dc O{1} LI,c O(p& Op»~O(1} M~O(1)
where 0(i) may imply a logarithmic dependence. This justifies
the interpretation as smearing-out functions Las given following
Eq. (52}j and it proves that diagrams with eRective lines and
corners diverge in the same way as those with ordinary lines and
corners.

'8 For spin $ such a proof to second order was first given by
R. P. Feynman, reference 5, p. 778. Also for spin $ and based on
the charge renormalization procedure a proof was given by J. C.
Ward, Phys. Rev. 78, 182 (1950).


