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masses of Ca", K4', and Sc~ given in Table I may be somewhat
too high.

III. DISCUSSION OF RESULTS

Figures 1 and 2 show that although there is consider-
able deviation of the measured masses from the Bohr-
%heeler formula, all deviations with the exception of
the value for Ca" lie on relatively smooth curves. The
deviations from the curves are not generally larger than
0.5 Mev. There seems to be no abrupt change of mass
or of slope of the curves of mass Mrses neutron number
near S", CP', A", or K", all of which are atoms with
20 neutrons. Similarly, there is no evidence of shell
structure at 20 protons from the curves of mass versus

proton number, except in the case of Ca' which shows

a striking deviation from the smooth curves of about

3.5 Mev. This deviation is far greater than the probable
error of mass determinations or than the deviation of
any other nucleus plotted.

The absence of any change in slope at 20 nucleons
makes it rather questionable whether 20 nucleons should
be regarded as the closing point of a major shell. The
well-known stability of Ca" seems not to be simply
connected with the completion of a shell at 20 nucleons.
This case indicates that some large deviations from the
stability curve may be encountered for other nuclei
which are not attributable to neutron or proton shells
alone but depend on the combination of neutron and
proton numbers. Perhaps the large mass spread of stable
Ca isotopes is due to this exceptional stability of Ca'"
and to a shell at 28 neutrons which makes Ca" stable
rather than to a general stability of 20 protons.
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The recent results of Snyder and Bhabha-Chakrabarty for the cascade theory of cosmic-ray showers

are shown to be derivable from a general approach involving the use of the Laplace and Mellin transforms,
and a general and powerful method, due to Snyder, for solving the resulting difkrence equations. Boundary
conditions are introduced in a natural and automatic way, and the accuracy of the solution is limited bi
the possible ways of evaluating the resulting triple complex integral.

I. INTRODUCTION

SNYDER' has recently obtained numerical results
for the cascade theory of electron-photon showers

which appear to be considerably more accurate than

those of Bhabha and Chakrabarty. ' It is the object of

this paper to present a general method of solving the
shower equations which yield both of the above-

mentioned solutions, and which should be applicable
to a number of other problems.

II. THEORY

Using Snyder's' notation, we write the diffusion

equation for P(E, t), the mean energy spectrum of

electrons at depth t, and y(E, t), the mean energy

spectrum of photons;

This work was started in 1940 (Ph.n. Thesis, University of
Michigan, 1941}.It was completed at the Brookhaven National
Laboratory, under the auspices of the AEC.

' H. S. Snyder, Phys. Rev. 76, 1563 (1949).
'H. J. Bhabha and S. K. Chakrabarty, Phys. Rev. 74, 1352

(1948).
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In these equations R(E', E) is a function which yields
the elementary probabilities per unit path length of the
pair-production and bremsstrahlung processes. In the
case of high energies, the asymptotic form of R is that
of a function homogeneous in E/E', this is the only
case dealt with in the present treatment.
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Here P is the ionization or collision loss per unit path
length, and is taken to be a constant. Its inclusion is
essentiaL Solutions of the equations for P=O are ob-
tained easily, but are fundamentally diBerent from
those for any finite value of P, since for P=O there is
no removal of particles from the showers dered by
Kqs. (1) and (2). In what follows, we shall measure
energy in units of P by introducing x=E/P; where an
initial energy Ep is used, we write xp=Ep/P. The
resulting equations differ from (1) and (2) only by the
replacement of E's by x's and the suppression of P.

The method here presented consists in applying both
a Laplace transformation in t and a Mellin transforma-
tion in E, and then solving the resulting diBerence
equation. Following the usual practice for Laplace
transforms, we shall denote by s the transformed
variable corresponding to t. The variables referred to
by various authors as (X, p), (X&, 'Ap) or (ti, v) will

appear later on after evaluation of the Laplace inversion
integral by the calculus of residues. The variable for
the Mellin transform we then call P.

Let us, therefore, set

g(p, s)= l e "dt ~l x"dxP(x, t),
0

(3)

8(p, s) =
~

e "dt -xvdxy(x, t).
0

Multiply Kqs. (1) and (2) by e "dtxvdx and integrate
over x and t. %'e 6nd

sg(p, s) qp(P) = —A(P)g—(p, s)
+P(P)8(P, s) Pg(P 1, s),—(4)—

s8(P, s) e.(P) =~(P—)g(P, s) »(P, s)—
The functions A(p), B(p), C(p) and the constant D are
given by Snyder' and by Rossi and Greisen. ' pv(p) is
the Mellin transform of the initial spectrum of particles,
and er„(p) is that for the photons:

OCI

~
oo

ppv(P) = P(x, 0)xvdx, e,(P)= ~ y(x, 0)xvdx.
~0

It is to be noticed, first, that the form of Eqs. (4)
depends on the homogeneity property of the asymptotic
cross-sections; second, that this method brings the
initial conditions in automatically and exactly; third,

that the term —pg(p —1, s) results from the collision
loss term PBP/8t and is the main source of difficulty
with this approach. 4

Equations (4) can be solved for g:

It(P)C(P)
Pg(P —1, s)+ ~+A(P)— g(P s)= p(P s) (3)

s+D
where

&(P)~ (P)
p(P, s)= +p v(P).

s+D
(6)

8(P, s) is given by

C(P)g(P, s)+e.(P)
8(P, s)=

s+D
(7)

In what follows, we shall deal only with g(P, s) inasmuch
as exactly similar results for 8(P, s) can be found by
using (7). We shall also suppress the letter s in q (P, s)
for brevity. Finally, we write for the square bracket
in (5)

J3(P)c(P) Ls—l (P)7[s—(P)7
G(p, s) =s+A(p)— , (g)

s+D s+D
where tp and v are functions given by Snyder' [his
Eq. (17)7, by Rossi and Greisen, ' who call them Xi and
X2, and by Bhabha and Chakrabarty, ' who call them
—X(P+1) and —ti(P+1). As ~p~~pp, G(P, s) ci lnP,
where c~ is a constant.

%'e thus have to solve the difkrence equation

Pg(P 1, s)+G(P, —s)g(P, s) =
p (P) (9)

The condition on g(P, s) which determines the particular
one of the infinite manifold of solutions of (9) that
yields the desired solutions of Eqs. (1) and (2) is that
g(P, s) must be a proper Mellin transform function in P.
From (3) we see that, if the initial spectrum of particles
contains none above xp=Ep/P, then g(P, s) increases
as P-+pp less rapidly than xp". That ls xp 'g(p, s)-+0
as P-++ pp. Consequently, we can solve (9) by iteration
for g(P, s), successively replacing p by P+1, P+2,
p+3, , and eliminating the intermediate values of
x,—v—"g(P+m, s). We obtain in this way an infinite
series, with a remainder which approaches zero. In the
6nal result, xo & can be factored out, and we have a
convergent series

q (P+1) y(P+.2)G(P+1, s) p(P+3)G(P+1, s)G(P+2, s)
g(P, s)= + ~ ~

P+1 (P+1)(P+2) (P+1)(P+2) (P+3)

rp(P+m+1)G(P+1, s)G(P+2, s) G(P+m, s)+(-1)"
(P+1)(P+2) ~ ~ (P+ +1)

This series yields an appropriate Mellin transform in P,
which can, in fact, be integrated termwise. But the
mth term as a function of s behaves like s, and cannot

~ B.Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (194I).

be used in the Laplace inversion integral, which requires
that the Laplace transform vanish as s ' as s~+ ~.

4 F.L. Friedman, Cosmic Ray Shower Theory, HIT Laboratory
for Nuclear Science and Engineering, Tech. Rpt. 31, pp. 43-45.
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r(P+m+2)
(p+1)(p+2) (p+m+1) = . (11)

r(p+1)
with Pr(P) = I'(P+1).

For the numerator, we shall take

L(p+m+1, s)
G(p+1, s)G(p+2, s) G(p+m, s) = (12)

L(p+1, s)

where L(p, s) must satisfy the recursion relation

G(p, s)L(p, s) =L(p+1, s). (13)

Snyder' has shown how to solve equations of type
(13) in a very general way for general values of p in
terms of in6nite products. His solution for this case
can be written as follows:

x G(a+j, s)
L(p, s)=G(b, s)~- lim gx~ao

& p G(p+j s)

G(b+j+1, s) ~-

G(b+j s)

~ G(a+j, s)= lim G(b+X+I, s)" 'g . (14)
X-+ g.=o G(P+j, s)

The infinite product is convergent for a wide class of-

functions G. Indeed, if G satisfies a relation of the form

G(pi+j, s) f 1i
=I+O~ —

~
a.- j (IS)

G(p2+j s) E j)
for any pi, p2 and s, the infinite product will be con-
vergent. ' Functions which behave like p+", lnp, p+"e"&,

etc., will thus yield convergent products.
To see that (14) satisfies (13), write

L(P+1, s) ~ G(P+j, s) G(b+j +1, s)
=G(b, s) lim gI.(p, s) ~ "i=a G(p+j+1, s) G(b+j, s)

G(p, s) G(b+A7+1, s)
=G(b, s) lim

"lG(p+8+1, s) G(b, s)

=G(p, s)
~ H. S. Snyder, Phys. Rev. 75, 906 (1949).
OH G=e"& where X is any function of s, the convergence is

trivial. If a factor e"& is included in G, (15}mill be altered by a
factor e"&»») but the convergence mill be unaffected.

Thus we must sum the series (10), or obtain another
representation for it. %e shall 6rst write the general
term in such a way that we can replace the integer m

by a complex variable a, so that we can in the well-
known way convert the series into a contour integral.

Now, the mth term of (10) contains m factors G in
the numerator. Just as the denominator can be written
as a ratio of two gamma-functions to suppress the
variable number of factors, so we shall use the ratio of
two new functions (definable as infinite products) to
rewrite the numerator.

For the denominator, we have

by Eq. (15). Here a is a constant which merely deter
mines that value of p for which L=1.When p —a is an
integer, (14) reduces to a finite product. Also, b is a
convergence-controlling number which does not acct
the value of L, since

G(bi+X+1, s) &-'
lim" " G(bs+X+1, s)

(excepting the case of reference 6). We may, in fact,
write the factor G(b+S+ I)" ' as a product of several
factors with diferent values of b and diferent expo-
nents, provided the sum of the exponents is p —a. These
values of b and the corresponding exponents can be so
chosen that the product in (14) yields exact vs, lues for
any F at specified values of p. Then for neighboring
values of p the convergence will be especially rapid,
and (14).will be useful for numerical work. r

For G(P, s) =P, L becomes I'(P); values calculated in
the manner aforementioned yield extremely rapid
convergence. '

A useful asymptotic expression for L(p, s) may be
obtained by writing lnG(p, s) =lnL(p+1, s) —lnL(p, s)

&/BpDnL(p, s)] and using G(p, s) c, lnp yielding
on integration

L(p, s)=(c, h p)~

as
We may now write the mth term of the series (10) in

a form which does not involve a variable number of
factors, and which allows m to be replaced by 0. To
make the writing simpler, we shall 6rst write

L(p+m+1, s)
=Q(p+1, m, s)

L(p+1, s)

G(P+j+1 s) G(b+j+i, s) "
=G(b, )-n

i=a G(p+j+m+1, s) G(b+j, s)

Q(p+ 1, m, s) obeys the recursion relations

G(p, s)Q(p+ 1, m, s) =Q(p, m+1, s)

G(p+m, s)Q(p, m, s) =Q(p, m+1, s). (18b)

Ke also have

Q(p, 0, s) = 1.

The series (10) for g(p, s) now becomes

oo r(p+i)
g(p s)= Q (—I)"q(p+m+ I)

tn-0 r(P+m+2)

XQ(P+1, m, s), (20)
7 See Eq. (25) of reference 1, and the discussion following.' H. S. Snyder (private communication).
I wish to thank Mr. I. Bernstein for informing me of this

asymptotic expression.
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g(p, s) = do
2m'~ g, sing

~(p+ +1)r(p+1)

r(P+ o+2)

XQ(p+1, o, .). (»)

where C, is a contour from + pp around the origin in
the positive sense, and back to +~. It is readily shown
that the contour can be shifted to C,', a contour parallel
to the imaginary axis, cutting the real axis between —1

and 0. The negative of the integral must be taken if
C,' is described in the usual positive sense.

Since Q(p+1 o, s) behaves like s for large ~s~, we
see that the integral over o will in general behave like
s' where —1&8 &0. We can now write the inverse
Laplace and Mellin transforms, since we have the
correct behavior in s and p:

P(&, t)= e"ds, x-" 'dp
~

do
(2~i)'~ c. & cv ~ c. sinno

r(p+1)
Q(p+» o s)v(p+o+1) (22)

r(P+o+2)

and we can write g(p, s) as a contour integral as follows

P(x, 0) = b(x pt', p);—p($, 0) =0, (23)

or $(p, s)=xp"
The 6rst step is to evaluate the s integral, inter-

changing the order of integration. Let us write es=o.
in (17), set b=0 and use (8).

[s—n(X+1))'[s—v(X+1))'
Q(p+1, o, s) = lim

N -+oo [s+D]

[s—n(p+ j+1)][s—(p+j+1))xn (24)
t=p [s—n(p+ o+j+1)][s—v(p+o+ j+1))

Poles occur for

reduce a second by restricting our attention to 6nding
an integral spectrum for the total number of particles
(or for low energies, expanding by residues again in

powers of x) and calculate the last integral by the
method of steepest descents. It is also possible to use
a double saddle-point method for two integrals simul-.

taneously. '
We shall 6rst show how Snyder's result can be

obtained. We shall restrict ourselves to electron-
initiated showers, with

where C, and C„are contours parallel to the imaginary
axis in the s-plane and p-plane, respectively, each taken
to the right of all singularities. A similar formula can
easily be obtained for y(E, t).

We thus have achieved a solution of our problem,
Eqs. (1) and (2), in the form of triple complex integrals.
The evaluation of these integrals is naturally not simple.
One can evaluate one integral as a series of residues,

and
s=n(p+n+o+1)

i n=o 1 2
s= v(p+n+o+1) I

(25)

As p—&pp, n(p)~ —D, v(p) —+—pp so the point s= D—
is the limit point of one series of poles, and need not
be treated itself. The residue of Q at s=n(p+n+o+1)
is then

[t (P+n+o+1) n(&+ 1))'+"—+'[t (P+n+o+ 1) v(&+1)] +"—+'
llm

[n(p+n+o+1) +D]'

[n(p+n+o+1) p(p+j +1))[n(p+n+o+1) v(P+j+1))—
t-p [t (p+n+ o+ 1) t (p+o+n—+j +2)][t (p+n+ o+1) v(p+o+n—+j +2)7

a

II [n(p+n+o+1) n(p+X+o+—It+2)][@(p+n+o+1) v(p+A'+o+—0+2)]

[p(P+n+o +1) v(iV+1)]—"+'[v(P+n+o +1) v(X+1))—"+'

(2~)
n(p+n+o+1) —v(p+n+o+1) ~=p [n(p+n+o+1) —p(p+t+o+1))[n(p+n+o+1) —v(p+t+o+1))

where the third brace I } contains factors that cancel symmetry. The factors dividing this third product are
with those added in the second brace to maintain also inserted in the first numerator; they allow the
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expression in the third brace to approach 1 as iV +—~. Thus we may write, using (24) to shorten the writing,
—1 t l!t'xo) ~+ %do' xo 1

p(~, t) =
l

—
l r(p+1)dp

(2~i)'&c„l x i 4 c, sinn. o F(p+o+2) ti(p+n+o+1) —v(p+n+o+1). . ev&v+.+ +»'[&(p+n+o+1)+D]"+'Q(p+1, o+n+1, t (p+n+o+1))
n —1

g [p(p+nyo+1) ti(p—+t+a+1)].[p(p+n+o+1) v(p—+t+o+1)]
, l=o

e"&"+"+'+»'[v(p+n+o+1)+D]"+'Q(p+1, o+n+1, v(p+o+n+1))
(27)

n —1

g [v(p+n+o+1) —p(p+t+o+1)])v(p+n+o+1) v(—p+t+o+1)]
I,=O

Equation (27) is identical with Snyders Eq. (38) as Using (18a) and (19) repeatedly, we see that
can be seen if we write

@+0+1=—s (Snyder's s, not ours!)
p+o+n+1=y; dp=dy. (28)

%e then set

Q(P+1, o+n+1, ti(P+n+o+1))
E„(y, s)

=Q(y+s —1, —s, t (y))=, (29)
r(s+ 1)'

Q(p+1, o+n+1, v(p+n+o+1)) =It„(y, s)/1'(s+1).
We use the formula, s for Snyder's A„(y) and B„(y)
given in the note at the end of his paper. Finally, we
can use Snyder's arguments to justify displacing the
contour for the y integration n places to the left, to
bring it from having a real part n+e to having a real
part ~, 1&e&0.

To arrive at the Bhabha-Chakrabarty result, ' we
shall write in (22), p+ o+2 = X, dp= dX (X is identical
with Bhabha-Chakrabarty's s), and keep the ) -integra-
tion path fixed by shifting the p contour Cv to the
right as C,' is shifted to the left. %e evaluate the cr

integral 6rst, at the poles 0.= —m —1, no=0, 1, 2,
The resulting series is divergent, but if we take only a
finite number of poles, leaving a remainder, and then
carry out the inverse Laplace transform on each term,
the resulting series of p integrals is convergent. Thus
we write, after taking residues in 0.,

t*,~ r(~+m)
P(* t)= Q . d*l l (—1)™.-o 2~ix,d & x) r(X) 2Ãj

X]f e" ds(QX +,m—m —1, s). (30)

m 1
Q(X+m, —m —i, s)= g (31)

~=o G(X+0—1, s)

and that the functions

1
f (X, t)= f e"d sQ(X+ m,

—m —1, s) (32)
2~i~ t.-,

may be found by the theorem of convolution integrals
(faltungs-integrals) from

1 s+D
iso(X, t) = e"ds (33)

2si& Ls —ti(X—1)]Ls—v(X —1)]

Equation (33) readily yields 8 C's formula (8),'—
and their convolution integrals (11)and (13) are readily
deduced from Eqs. (31), (32) and (33). We thus arrive
at their expression (14) for the electron spectrum, and
may treat it as they did.

The methods of this paper are clearly applicable to
a rather general class of di6erential-integral equations,
and in particular should be useful for further work in
cascade theory. In fact, Bernstein has shown' that
corrections to Snyder's results can be made by methods
related to those of this paper, using more accurate but
inhomogeneous cross sections for the elementary
processes.

10 I. Bernstein, Ph. D. Thesis, New York University (1950).


