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Asymptotic Expansion of the Irregular Coulomb Function
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It is shown that the irregular Coulomb Function GL, can be expanded as an asymptotic power series in
the energy, with coefficients which are expressible in terms of the modified Bessel function of the second kind.
The form of the coefficients is the same as obtained by Yost, Wheeler, and Breit in an expansion of the
regular function Pg with the modified Bessel function of the second kind replacing that of the first kind of
the same order.

T has been shown in a previous note' that the expan-
& - sion of the irregular Coulomb function for angular
momentum zero can be made employing a series in
powers of the energy, each term of the series being
obtainable by replacement of the Bessel function I„by
the Bessel function E„in a series occurring in the repre-
sentation of the regular function.

In the present note a similar relationship is shown to
hold for angular momenta greater than zero. Standard
notation, a list of which is given in the previous note,
will be used below. This notation is identical with that
of Yost, Vy'heeler, and Breit.' The proof, as carried out
in [I], depends on the possibility of rearranging the
power series in p which represents 00. The result of the
rearrarigement is a power series in 1/g, i e , ess.en. tially
in the energy. The coefFIcients are functions of the dis-
tance r and are expressed in terms of E„(x) the Bessel
function of the second kind of imaginary argument, in
the notation of Whittaker and Watson. ' It will 6rst be
shown that for LgQ a similar rearrangement of terms
can be made.

The series +L, can be rearranged in this manner, as
may be seen from the fact that any power of p, p' may
be expressed as (pg)'/s!' and that, when the whole solu-
tion is substituted into Eq. (27) of YWB, there can be
no connection when working in the (f', 1/g2) variables
between coefFicients connecting powers of g difkring by
odd numbers. The same may be seen from Eqs. (19),
(20) of YWB which give O'L, as

eg ——z I."a;p+~; u L,
——1, aL+i ——0,

a, = [2ga;,—a, 2
—pp(2j —1)A;]/

[(j+L)(j-L-1)], (1)

and here A; is the coeScient of p' ~ ' in the series for
4 L,. The latter starts with 1 for j=L+1 and, as has been
shown in YWB, it can be rearranged in terms of the
variable x with the aid of even powers of 1/g'. The result
of this reordering is the series on the right side of Eq.
(33).The rearrangement would give also odd powers of
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1/g unless the A; are even or odd functions of q for even
or odd values of j—L—1; this fact can be seen directly
from the recurrence formula between the A, which con-
nects A; with qA; ~ and A, 2 by a linear relation. It is
seen, on the other hand, that for j=—L the quantity
c, is by de6nition even in q and that j—L—1 is in this
case odd. Since pr, is odd in g the recurrence formula
for u; connects quantities of the same parity provided
a; is even or odd in p according as to whether j—L is
even or odd. A consideration of how u ~I follows from
al, shows that the construction of coeScients gives
coeScients having a parity in p in accordance with the
rule just mentioned. The value zero for a~& is consistent
with a~i being odd in g as is in agreement with
L+1 (—L) being o—dd. It has thus been shown that
only even powers 1/g occur in the result of rearranging
%1. in terms of x.

It will be seen next that the term in ln(2p) which
multiplies CL, in the formula for Ol, does not leave a
term in in' if Stirling's series for P'(iq)/1'(ir!) is em-
ployed. The disappearance of lnp occurs because the
combination

pr, ln2p+qL, ,

contains P'(iq)/P(fg) only in qr, as

pr, R.P.[I"(ig)/P(iq)],

so that ln (2p) and Stirling's series combine in the same
way independently of the value of L. The remaining
part of qq contributes to OL, the following amount

2r. ! 2 r2i —r—
(&&.

I.P.(-)
(2L)! 2L+1 1!(2L)

2~' '(iq L) -(s'g —L+s)—
+ + ~ ~ ~

(s+ 1)!(2L—s)

2~(sg L) (ig L—+1) —(ig+L 1)—
+ p2l+1@ (1 2)

(2L)!1

The factor p'~'= (x /8)2~'/g'~' is odd in g. The fac-
tor Cl, can be expressed as a power series in 1/q'. The
remaining factor is the imaginary part of a sum of
products containing g in the form ig only. It introduces
therefore odd powers of p only. Taking into account the
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factor r! ' ' arising from p' ' it is seen that only even

powers of q are brought in. The highest power of g in
the sum of products is q'~ and therefore the imaginary
part of the sum of products contributes only terms in
g'~' and lower. The contributions of this part of ql. are
seen to be con6ned to positive powers of 1/g'. The same
holds for terms coming from I"(iq)/I'(iq) because the
highest power of g in pL, is g'~' which is absorbed by
p'+' to form (x'/8)' +' and because Stirling's series
contributes terms in positive powers of 1/g' only. An
examination of the recurrence relation for the series for
%z, shows that here also there occur only positive powers
of 1/vP in the x, g representation. Thus 2gu, ~ can con-
tribute to u, at most g'+~ which is absorbed by p'+',

the term —u; 2 can contribute at most a power of g less

by two than that coming from 2qu; &. The quantity A;,
which is the coeKcient of p' ~' in C~, does not contain

g to a power higher than q& ~'. The powers of g

contained in p~; are, therefore, no higher than
g& ~'+&' +'&=g&+~ and this power of g is absorbed by
p&+~ which is multiplied by a; in +I.. It may be con-
cluded that all powers of 1/g' occurring in the x, q

representation with the introduction of the Stirling's
series for I"(ig)/I'(ig) are positive or zero and that odd

powers of 1/g are absent. The discussion so far is the
equivalent of part A of the proof as conducted in [I].

The integral representation

FI,=Fl,+HAGI.

ie 'I'

g
5'I+L ()+2~p) f~I e Id) (2)

(2L+1)!Carpi

& p

gives by the same deformation of the path as in [I]
Gi= (Oi'+Oi")I[(2L+1)ci~'7, (2 1)

with

o' '=[1/(2L)'7)" (~'+~')'
0

Xexp[—r —2q tan '(p/r)]d~, (2.2)

pl
o "=L "u '/( )!] ( —')'

part of the proof in [I]applies in the present case with-
out essential change. The form of Eq. (10) is changed
but this circumstance is immaterial since it is only
the possibility of obtaining the coefBcient of g

" as
(1/s!)[O'Oz/B(rl ')'] „that is essential. It is thus seen
that part C of the proof in [I]applies here also and that
the series for Ol, can be obtained by expanding

[O~z]sy~b= [1/(2L)!7(x/2)'z+' " [v'+(x/4g)'7
"o

PX x
Xexp ———2q tan ' —— dv (3)

2 4qv

in powers of 1/rP under the integral sign, with the em-

ployment of the Taylor expansion for tan '(x/4gv).
A transformation of the integral representation for

Cz, given by Eq. (2.4) by means of the variable 8 used
in Eq. (14) of [I] and a consideration of the result as
a sum of two parts arising from the presence of e & and
e & in Cl. ' by deformation of the path of integration
described in connection with Eq. (14') of [I]yield

@L (z/xx) (&0 /Cz )[x z/(2L+ 1)!] (x +16r!f 2)z

xf x
Xexp ——2g tan —' df (4)

2 4~|-.,

where C is a contour around |=0, taken counter-
clockwise and where it is understood that tan '(x/4gi)
should be expanded as a Taylor's series.

Comparison of Eq. (4) with Eq. (3) and employment
of integral representations for K„,I.listed as Eqs. (17),
(18) in [I] shows that

[OL]symb
= —(2L+1)(C '/C ')2~ 'x'~'n "L~'~]r-x (5)

where I—+K indicates the replacement of all the I„by
the E„. Since the recurrence formulas for the I, and
the E„are the same in form, the replacement may be
made in any form obtainable from Eq. (4) by expansion
in powers of vP and employment of Eq. (18) of [I].
The coeKcient,

1+I '

Xsin pu+g ln —du, (2.3)
1—s

@'i=Cd 'Le "/(2L+1)']

2/C 2

[1+q'/L'7[1+ vP/(L —1)'] [1+rP/1']
(5.1)

[1 3 (2L+1)7&

1 +I
X-

!
I (1 u) ~''t(1+ u) ~'"e—''"du. (2.4)

Its limiting value for g—+~ is

(2n)"/[(2L+1)!]' (5.2)

According to the reasoning presented in connection with
Eqs. (10), (11), (12), (13) of [I]the result of arranging
00 as a power series in 1/g' gives coefficients which can
be obtained from 0~0~ by a symbolic expansion. This

The limiting form of Eq. (5) for ~~ is, therefore,

I.un[Op/C r.]= —[2Egz+g(x)/I2z+g(x) ](x/2)' +'/
[(2L)!(2L+1).!],

in agreement with Eqs. (32), (36) of YWB.
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The right side of Eq. (5.1) can be obtained from the
expression on the right side of Eq. (5.2) by multiplying
the latter by the factor.

[1+~'/~*][1+(1-1)'/~'] "[1+1'/~'],
whose presence cannot be inferred from the considera-
tion of limiting forms for ~cc. This factor can be
checked, however, by collecting all terms in in@ which
are present in the E„(x).

The result of the consideration is that the employ-
ment of Stirling's asymptotic expansion for 1"(ig)/&(4g)
in the formula for Ol„ordering of all terms according to

powers of 1/g' with coeKcients expressed as functions
of x= (gpss)& gives a series which is identical with the
series obtainable by evaluating the right side of Eq. (5).
The series in the I„may be obtained either by means of
Eq. (4) and Eq. (18) of [I] or by means of Eq. (33)
of Yg/B.

The integral representation reproduced as Eq. (2) of
the present paper applies also to attractive fields. The
quantity 01,"may not be disregarded, however, in this
case when one evaluates the coef6cients of 1/vP' in Oz
because e & is infinite. The considerations do not apply,
therefore, to attractive Coulomb Fields.
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For an atom or monatomic ion in a magnetic field H there will be an induced shielding field H'(0) at the
the nucleus given by H'{0)= (eH/3mt, ')o(0) where v(0) is the electrostatic potential produced at the nucleus
by the atomic electrons. Using the Thomas-Fermi model, Lamb put this expression into a calculable form.
However, in modern nuclear induction and resonance absorption experiments it is important to have a more
precise knowledge of the magnitude of this shielding Geld. In this paper computed values of e(0) are given for
all atoms and singly charged ions which have been treated by the Hartree or Hartree-Fock approximations
to the self-consistent field method. By interpolation a list of H'(0)/H values for all neutral atoms is given.
Although it is impossible to check the accuracy of these values experimentally it is estimated from other
evidence that they can be trusted to within five percent. An exception must be made, however, for the
heaviest atoms where the relativity effect becomes appreciable, amounting to an estimated six percent
correction to H'(0)/H for Z=92. Finally, the usefulness of accurate values of the atomic shielding field in
analyzing the total shielding Geld in molecules is discussed.

I. INTRODUCTION

N the case of an atom or monatomic ion in an external
~ - magnetic field II, Larmor's theorem states that the
motion of the atomic electrons in the 6eld is the same
(neglecting terms in B') as the motion before the
existence of the 6eld, except for the superposition of the
Larmor precession. This creates a shielding 6eld at the
nucleus which, although always small compared with
the external Geld, constitutes an important correction
in the measurement of nuclear magnetic moments by
the resonance method. Lamb' derived an expression for
this shielding Geld, showing it to depend directly on the
electrostatic potential s(0) produced at the nucleus by
the atomic electrons. Evaluating s(0) on the basis of
the Thomas-Fermi model he obtained for the ratio of
induced to external 6eld

B'(0)/H = —0.319X10 4Z"'. (1)

In the cases Z =19, 20, 26, 29, 37, 55, 74, and 80 where

~ This work has been supported in part by the Signal Corps, the
Air Materiel Command, and the ONR.

f Present address: Los Alamos ScientiGc Laboratory, Los
Alamos, ¹wMexico.

~ W. E. Lamb, Jr., Phys. Rev. 60, 817 {1941).

rI(0) was explicitly available from Hartree wave func-
tions, Lamb showed that Eq. (1) is checked fairly welL
This paper extends the computation of s(0) and hence
H'(0)/H for all atoms and singly charged ions which
have been treated by the Hartree or Hartree-Pock
approximations to the self-consistent Geld method. The
project was undertaken originally for a limited number
of cases to determine the dependence of the shielding
6eld EP(0) on the state of ionization of an atom. The
results indicated the possibility of just detecting a shift
in nuclear resonance positions between an atom in a
neutral and singly ionized state. However, with the
subsequent discovery of larger shifts due to the eGect
of chemical binding (discussed below) it would be dif-
ficult to distinguish this small eGect experimentally.

II. THEORY

Consider an atom with a spherically symmetrical
charge distribution of radial charge density p(r) in an
external 6eld B. As an element of volume we take a
ring with axis passing through the nucleus and parallel
to H, with cross section rd8dr and perimeter 2~r sin8,
so that its volume is 2xr' sin8d8dr and it will contain a


