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Methods of Calculation of Radial Wave Functions and New Tables of Coulomb Functions
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In connection with the tabulation of Coulomb wave functions special methods of obtaining numerical
results having an accuracy of about one percent have been developed and are reported. Some of the methods
are applicable also to other problems. Many of them are concerned with the calculation of the second solution
of an ordinary differential equation of second order making use of the first solution. The present paper con-
tains an introduction to the use of new Coulomb Functions tables which cover ranges of parameters required
for the calculation of nuclear reactions of protons, deuterons and alpha-particles from hydrogen to oxygen
in the energy range of a few Mev. The ranges covered are 0 to 6 for p, 0 to 3.98 for g. For alpha-particles
the tables suffice for the treatment of reactions up to about 10 Mev for Z=9(F) and 5 Mev for Z=2(He).
For protons the tables cover an energy range of roughly 4 times that for alpha-particles.

I. INTRODUCTION

HE availability of Coulomb functions is of obvious
importance for the development of nuclear

physics. The computation of these functions was
started in 1946 under the auspices of the ONR and
approximate values of the functions sufficing for the
treatment of nuclear reactions of protons, deuterons,
and alpha-particles bombarding elements from hydro-
gen up to oxygen have been obtained at the close of
June 1948.The tables have been tried out in some appli-
cations during the last year and a few minor errors have
been found. They are now available for distribution. '

During the course of the work it has been found
possible to employ some short cuts and methods of
approximation which should be of help in the calcula-
tion of radial wave functions not only in the Coulomb
case but also for more general central fields. A summary
of these methods is presented below. A characteristic
feature of the problem is the fact that one needs two
functions for each energy, the regular and the irregular
functions. The regular solution can be started as a power
series at r=0 and its calculation is easier than that of
the irregular function. Means of making use of available
relations between the two functions have been found.
It also proved possible to make use of solutions for the
special case of zero charge in the calculation of functions
for the case of a non-vanishing charge and the method
employed in this connection has considerable generality.

The introduction of high speed computational ma-
chines decreases the importance of approximation
methods. Nevertheless, there is still a large need for
being able to obtain approximate answers without the
aid of such machines or of large computational projects.
This is especially true for problems in which a systematic
tabulation covering large ranges of parameters is not
needed. The tables referred to above may be considered
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Copies of the tables may be obtained by writing G. Breit,
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to be an extension of those published by Vost, %heeler
and Breit -' Breit, Condon, and Present Breit, Thax-
ton, and Eisenbud ThaxtonandHoisington richer
%heeler and Pavinsky. ' lt is understood that new and
much more complete tables will be published soon by
the National Bureau of Standards.

Notation

(a) Physical quantities

I.h =angular momentum.
e= relative velocity of colliding particles.
e= electronic charge.
A= wave-length of relative motion.
p = reduced mass.
a= b,'/tee'.

Z, Z'= atomic numbers of colliding particles.
b/2sr = 1/A =wave number.

st =ZZ'e'/he.
r =distance between particles.
p= kr.
Q= energy evolved in a reaction.

(b) Functional symbols and mathematical
abbreviations

F(x) =gamma-function of argument x.
at, argl'(L+. 1+——irt)

'=d/dp.
Fl,= regular Coulomb function otherwise de6ned

by being a solution of d'Ft/dp'+$1 2rt/p—
L(L+1)/p'jFr, =—0 and having its asym-

ptotic form Pr, sin(p —Lsr/2 —st ln2p+ a r) at
p= 00 ~

s Yost, Wheeler, and Breit, Phys. Rev. 49, 174 {1936),referred
to hereafter as YWB.' Yost, Wheeler, and Breit, J.Terr. Mag. At. El. 40, 443 (1935).

4 Breit, Condon, and Present, Phys. Rev. 50, 825 (1936).
~ Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939),

hereafter referred to as BTE.
s H. M. Thaxton and L. E. Hoisington, Phys. Rev. 56, 1194

{1939).
7 E. R. Wicher, J. Terr. Mag. At. El. 41, 389 (1936).
s J. A. Wheeler, Phys. Rev. 52 1123 (1937).
«P. P. Pavinsky, J. Exper. Theor. Phys. 9, 411 (1939) (in

Russian).
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Gl, =irregular Coulomb function satisfying the same
differential equation as FI., otherwise defined
by its asymptotic form Gr, cos(p Lx—/2—)!ln2p+(rL, ).

Ci={[1+n'/L'][&+a'/(L —1)'] "[I+a'/I']I'
)&[2s)!/(e"&—1)]&/[1 3 5. (2L+1)].

Dr, = 1/[(2L+1)CL].
yr, dFr——/Fop, y= dF/Fd p.
pr, ——(2L+1)(e' "—1)CL,'/s.

H the boundary conditions are such that F'y„, F'y&, ~ ~,
F'y.g„„... vanish at p=0 then there result formulas"

pP pP

y
— P-& F2dp y&

— P-2 l ~g (&)dp

P

y) ) = —2F ') F'y~'dp,

pP
y~= —2F '

' y.y~F'dp, . " (23)
~Jo

pP

0

pP

y) ~,= —F ' ' (4y~y)„+.2y,yes'dp,
40

2(iy L)(ir( —L+1).—(is+L 1)—
+ 10

(2L)!

y =Euler's constant= 0.5772. . .
41., Ol. ——quantities defined by FL,——CJ.p'+'4l. ,

Gr.=DI.p Or, .
4 &~, OL,*——quantities defined by Iir.'=Cl, p~4»~,

GI.'= DJ.p ~'e».*
g~=1 2n/p L—(L+1—)lp'

pP

&(p) = F(p) ' F —'(p')dp'J„
&z.= ~Fz,'+Gz,'I'
qL,

——phase of the phase amplitude method, defined
by I'I.=A I, sin rp~, GL, =Al. cosy~ with the ad-
ditional requirement q 1.=0 when p=0. p&o) «+&(o&p(o) 0

A few additional formulas are available in Eq. (9.1) of
Breit, Thaxton, and Eisenbud for the calculation of
derivatives with respect to four parameters.

By means of these expansions it is possible to calcu-
late y for the regular Coulomb function from y for the
corresponding field free function, with the same I.The
values tabulated by Yost, Wheeler, and Breit' served
as a convenient starting point. In a few cases their
accuracy had to be improved in order to secure sufhcient
reliability of the final values.

The application of the BTE expansion is convenient
if it is desired to obtain the values of y and F for a
number of values of g and if the expansion for y con-
~erges su%ciently rapidly. If this is not the case the
following procedure works satisfactorily. The equation
corresponding to Eq. (1) for which a solution is avail-
able is

General convention: subscript I. will be dropped when
no confusion will arise by doing so.

IL RICCATI EQUATION METHOD

y(0)'+.y(o)~+ A(o) —P

y(0) dF(0)/F(0)dp

(3.1)

(3 2)

and the relations corresponding to Eqs. (2), (2.1) are

The differential equation
Denoting the difference between the two logarithmic
derivatives byI'"+gI =0,

y'+y'+g=p

y=dF/Fdp,

(3.3)is equivalent to

where
(2) there results

d—[F""by]+L(by)'+ (bg) ]F""=o
dp

(2 1)
(3.4)

is the logarithmic derivative of F. A way of expanding

y in terms of one or more parameters has been described
by Breit, Thaxton, and Eisenbud. ' By means of their
Eqs. (9), (9.1) one can compute successive derivatives
of y with respect to parameters x, ), p, v, ~ ~ entering
linearly in

where
bg = g —g(o) (3.5)

If one neglects the term in (by)' in Eq. (3.4) there results
an approximation for by identical with that obtainable

~
—„+y~(»+&~(~)+.. . (2.2)

"A misprint in Eq. (16) of YWS, the omission of 2y in the
formgla for gL,, is here corrected.

"The formula for y)),g„ in Eq. (9.t) of Breit, Thaxton, and
Eisenbud contains a misprint 2' y„ for 2y„ypz under the integral
sign.



TABLES OF COULOMB FUNCTIONS

(0) o=~/(L+&),

hg = —2'/p.

(3.7)

(3.8)

III. CALCULATION OF THE IRREGULAR FUNCTION
FROM THE REGULAR FUNCTION BY QUADRATURE

Omitting the subscript I., one has

pP2

G(p2)/F(p2) G(pi)/F(pi)+ —)' F '(p)d p= o (4)
Pl

from Eqs. (2.3) by neglecting contributions to 8y which
arise from derivatives of higher order than the erst. It
has been found possible to employ Eq. (3.4) for a step
by step construction of by by the following procedure.
The range of needed values of p is divided into suitably
chosen relatively small intervals and the value of by at
one end of an interval is found from the value at the
beginning of the same interval. This is accomplished by
integrating Eq. (3.4) through the intervaL Quantities
corresponding to the smaller value of p in the interval
will be here designated by the subscript 1, those for the
larger by 2, For an interval that is not too large one has
with sufhcient accuracy

(~y) 2= I:F""(pi)/F""(p2)j(hy) i—(p2 —pi)LF"'(p2)3 '-'ILF'"(p~) j'
+LF'"( )PIMPS(2)+~&(I)3

+-'[(hy)i'+(~y) ~'jI (3 6)

On the right side, in this equation, there is only one
unknown quantity (hy)P. By employing the value of
by2 which results from an extrapolation from lower p for
(&y) 22 on the right side of the equation one obtains a first
approximation to (by)2 which can be improved by in-
serting the first approximation for (8y)P, and repeating
the procedure if necessary. This iteration procedure is
simply a convenient way of solving a quadratic equation
for by2.

In the application to Coulomb functions the initial
values are

such a manner that the accuracy of the numerical
quadrature becomes questionable. In particular this is
the case whenever a node of I' falls in the interval
pi(p& p2. At the node then one of the two terms G/F
becomes infinite and so does the integrand. However,
the quantity needed is G rather than G/F s.nd in the
equation,

rp
H'(p )= —F '(p) —F'(p) ' F'( p) d'pJ., - p=p()

(4.3')

are available from the quadratures. The values of any
desired number of successive derivatives are, therefore,
also available at p= p& from the result of difkrentiating
the original differential equation. Thus H" can be
determined as —oH, H"' is obtainable from

H'"+O'H+OH'= 0, (4 4)

and so on. The value of H(p&) is thus obtainable from
H(p&) by a Taylor Series expansion around p= p&. The
series is

p

G(p) LG(pl)/F(pl)]F(p) F(p—) F '(p')dp', (4 3)
Jp,

the two terms representing G(p) remain finite as one
goes through a node. The only practical question is,
therefore, that of carrying the second term across a
small interval surrounding the node. Two general pro-
cedures which have been found useful for doing so will
now be described. In this discussion the node of P will
be referred to as po, the point to which the quadrature
has carried the solution as p& and the point at which the
quadrature is resumed as p&.

(a) The value of the second term on the right side of
Eq. (4.3) is obtained on one side of the node from that
on the other by noting that this term, H(p), satisfies
the original differential equation and that the values of
the term and of its first derivative,

This formula is dosely related to the Wronskian relation
H= I h —h'll(p&)/6 —h'g'(p&)

F'6—O'Il =1,
and in fact the latter is the diGerential form of the
former. By means of Eq. (4) one can obtain G(p2) if
one knows F(pi), G(pi), F(p2) and if there is enough
information about F(p) between pi and p2 to enable a
numerical quadrature to be made for the integral oc-
curring in Eq. (4). The computation of the regular
function Ii is usually easier than that of the irregular
function G and Eq. (4) is, therefore, more frequently
applicable than the similar relation

PR

F(p2)/G(p )—F(p )/G(p )—) G (p)dp=0. (4.2)
Pl

In applying Eq (4) special .methods recommend them-
selves whenever the integrand varies rapidly and in

where
h= p —p&.

This series applies on either side of the node. If it is
desired to obtain the integral in Eq. (4) for pi ——p&,
p&= p, the same series may be used on division by F(p).
The right side of Eq. (4.5) varies smoothly on going
through the node. The integral varies rapidly and be-
haves to a first approximation as h/F(p&)F(p).

(b) The Taylor Series expansion just described is
used with a small number of terms in the series to calcu-
late the values of H(p) at p= p&+h, p&+2h, p&+3h.
These values of H(p) are then used as startmg values of
a numerical integration of the Hartree type" for the

'2 D. R. Hartree, Memoirs and Proc. Man. Lit. Phil. Soc. 77,
9i {1932-33),.
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difFerential equation B"+go=0. This procedure is
superior to (a) if it is desired to have a higher accuracy.
A larger interval p&—p& can be handled by this means
and the numerical integration of H can be used to
check on the accuracy of the numerical quadrature for
J'F 'dp by arranging for an overlap of the two pro-
cedures. The main inaccuracies in the numerical quad-
rature arise for values of p close to p~ and p» and an
occasional check of the type just described has been
found to be a useful precaution.

It is desirable to point out that usual quadrature
formulas are not especially suitable for the integration
of F ' as one approaches the node. In this region one
deals essentially with integrals of the type

pb
dx/x'= (b a)/ab—.

This circumstance suggests the approximation,

will be listed consecutively with methods (a), (b). The
6rst of these approximations is:

(c) For small p and especially for large L the inte-
grand of

Ii(P) =
) dPIF~'

P

(6)

Cc'Ir, (p) =~ p ' 'Xzdp
P

(2L+ 1—n)!—g + I P
—2r 2+~x~(~)dP (6 2)

(2L+1)!

varies rapidly primarily on account of the factor p~'
which is present in Fz,. This circumstance suggests the
introduction of

XL +L (6.1)

and integration by parts as follows

~'(P)dP=12/[F(P)F'(P+&)] (5 1) where

which is often better than Simpson's rule. A still better
approximation is obtainable from Eq. (4.5) by applying
it to the intervals (p—h, p), (p, p+I2) and employing
values of g, g', Iat" at p. One obtains in this manner

XI,'"' =d"Xr/dP",

(2L—z)!
g n-1 {i)p-{2L+1—i)

(2L+1)!

(6.3)

(6.4)

p-h
F '(P)dP=[I/F'(P)]

X[1/F(P+!2)+1/F(P—!2)][1—!22g(P)/6], (5.2)

where all terms in an expansion in powers of h have been
kept up to h'. This equation is often more reliable than
the Newton-Cotes five point quadrature formula. It will

be noted that the methods just discussed are applicable
not only to Coulomb functions and that the numerical
procedure for obtaining a second solution of an ordinary
differential equation of second order is not made im-

practical by the presence of a node of the 6rst solution
within the desired range of values of the independent
variable.

It is desirable to caution against the employment of a
value of p& close to a node of F(P) in Eq. (4.3). In such
a case ~G(p2)/F(P~) ~

will be greater than the absolute
value of the integral in (4.3) through most of the range
of values of p and the nuxnerical accuracy will be poor.
It is desirable to have, therefore, a starting value of
G(p~) at a value of P reasonably close to a maximum
of ~F(p) ~

or a node of G(P2). If P2 is made to be anode
of 6 the accuracy close to the node of F suGers because
the second term in Eq. (4.3) is then the only one present
and the fractional accuracy of the factor multiplying F
becomes poor close to its node unless the interval p&

—p&
is made large enough.

The function F has a node also at p=0. Here there is
no need of carrying G across the node of F. Some con-
venient approximations can be made, however. They

The sum Z„often converges very rapidly for small p
and large L. Under these circumstances the method is
very convenient because two or three terms suKce for
high accuracy. Thus, for example, for g =0.1585, p = 1.4,
L=4 the second term is of the order of 3 percent and
the third of the order of 0.1 percent of the first. In cases
of such rapid convergence the calculation of derivatives
of X~ need not be accurate for the higher i. The 6rst
term of the series gives

C 21 ~1/[(2L+1)P2L+I@ 2]
so that

(6.5)

and
G;—P- /[(2L+ 1)C.C,],

C 1,0~1.
(6.6)

(6.7)

This relation corresponds to what one expects from the
JWKB approximation, in the (L+-,)' modification,
which is applicable to these conditions and yields"

FiGi=P/[2(L+2)], (6.8)

in agreement with Eq. (6.7). The first derivative of 4 I.
has been available in the present work through the
calculation of the series C ~*.

(d) A related method applicable under similar cir-
cumstances makes use of an effective value of L which
will be referred to as L* and which is dered by

L*+1=PF'/F.

There are appreciable ranges of values of p for 6xed g

~ Equation (38) of YWB.
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where

pj p2
(L*—)(p p)-—,(t.l)

-F'(pi) F'(po)

and
b = —LL*(p )—L*(p )]/(p —p ), (& 2)

(L*)= LL*(p~)+L*(po)]/2 (7 3)

The accuracy obtainable by this method is illustrated in
Tab1.e I for intervals with p2 —p~ ——0.4, q=0, 1.=4.

(e) A modi6cation of the XI, procedure for L=O.
The procedure described under (c) is not convenient

for I.=O. A modification is possible in this case which
makes the numerical quadrature appreciably more man-
ageable than it would be in a direct application of
general quadrature formulas. The integral I(p) is inte-
grated partially once, yielding

C,'I(p)= p-' C—(p) + (1lp)(dao 'ldp)dp
Pl P1

= Coo) dp/Fo'.
P1

By singling out the dominant term for small p under the
integral sign, subtracting it from the integrand and
integrating it separately there results

Co'I(p) =— ps

—2q lnp
p@ 2

pi

2(C'0*—C o)
i dp. (g)

poc,,o

for which I* varies nearly linearly with p. If it is as-
sumed that the variation of L* between p~ and p~ is
exactly linear then one obtains

f"dP Pj. P2[(*)+3'
F'(pi) F'(po)

b/(L') pP po'

)+1 ~(p&) +(po)

TABLE I. Values of error introduced by approximation of
Eq. (7.1) for g=0, I=4, p -p =0.4.

pt =0.6

Error (percent) 0.03 0.22

4.6

1.2

5.0

5.7

t '~'(t+2ip)*~'e 'dt (9)-
(2L+1)!CI.ps ~ 0

however, have the advantage of representing G(p) very
simply. In the work for the tabulations use has been
made of the logarithmic transformation for occasional
checks and some overlap between methods applicable
to adjacent ranges of parameters was usually ar-
ranged for.

IV. NUMERICAL CALCULATION BY CONTOUR
INTEGRATION

Most of the methods described in the preceding sec-
tion are applicable only if the value of the irregular
function G(p) is available in some other way. An excep-
tion to the general rule is found for small p and large I,.
In this case the contributions to the integral in Eq. (4)
from the region of small p outweight everything else and
the result is very insensitive to the value of G(p&). In
the general case, however, it is necessary to obtain
G(p&) by some other means. An obvious way of doing
so is to calculate one or a few values by the series listed
by YWB. It has also been found practical to calculate
the values by means of a numerical quadrature of one
of the integral representations of the functions in the
complex plane. The general method is similar to that of
Hoisington and Breit."

The same integral representation can be used" for
the establishment of corrections to the expressions ob-
tained by the application of the method of steepest
descents. The latter are of special value for heavy ele-
ments and can be used for the theory of n-decay.
Formulas by means of which one can evaluate correc-
tions to the expressions obtained by the method of
steepest descents will be also listed.

The starting point is the definite integral

I'1.=Fl.+iGr,

For p& 1, in the range of parameters used, this formula
is only slightly better than a direct quadrature. For
smaller p, however, the transformed form listed above
as Eq. (8) gives a considerably higher accuracy than
the original.

The special methods (c), (d), (e) described for small

p have been valuable because the numerical integration
of the differential equation has to be used with caution
when 6 varies rapidly. A transformation of the inde-
pendent variable to

makes it feasible' to handle this region by the Hartree
type of numerical integration. The methods (c), (d),

where the integral may be terminated in any part of
the complex plane for which Re(t) =+ oo. The saddle
point lies at

to= ro —ipi &0=L+ (L'+2pot p') Oi (9 1)

where the quantity ro is supposed to be real. The path
is led from t=0 to t= —ip and from t= —i p along a line
parallel to the real axis to —ip+ ~. Its direction at to

is the same as that of the path of steepest descents. The
integrand is expressed as an exponential, the integral is
Grst approximated by neglecting all terms in the Taylor

"L.E. Hoisington and G. Breit, Phys. Rev. 54, 627 {1938).
~ A. A. Broyles and J. L. Powell, Phys. Rev. 72, 155A {1947).



558 BLOCH, HULL, BROYLES, HOUR ICI US, FREEMAN, AND 8 REIT

TAaLE II. Va1ues of Gp/(Go) 8g).

p= ii 14 18 10 30 35
q=i6 16 16 20 20 20

Gp/(G0) g D = 1.012 1.013 1.016 1.010 1.027 1.099

expansion of the exponent around the saddle point and
carrying out the integration from —00 to +~ for the
variable r= r0—ip. This approximation will be referred
to here as the "steepest descents approximation. "The
dBerence between YL, and its steepest descents approxi-
mation is evaluated by subtracting the integrands in the
two integrals and correcting for the presence in the
steepest descents approximation of an extra integral
from v= —~ to ~=0 and for the true function from
t=0 to t= —i p. It is found in this manner that

(ro—L)'
Gz,/(Gz) so =1+

(2orpg) !(1+Lrp/prl) &

X " exp[g(«)-g(r)]

r p L+ (L'+——2pr! p') &, — (9.3)

g(r) = r+2r! tan '(p/r) —L ln(po+r ), (9.4)

g"(«)= (L' p'+2p~—)'/(Lro+ p~), (9.5)

and the value obtained by taking into account only the
main term in the steepest descents integral is

—exp[ —(r—rp)'g" (rp)/2)dr

1 r rp(rp L—)& )—— 1—C{
2 (2~(Lr + pr!)t J .
(rp —L)&p'~' exp[ rrr—!+rp+2r!tan '(p/rp)]

(2rr) &2z(Lrp+ ps) ~ &

1—zq
(1—z')z sin! ps+a In !dz, (9.2)

J0 1+z&

where

(Gc)so=
2 (2pr)&(Lrp+pg) +& exp[ —rp 2e tan '(—p/rp)]

(2L+1)!Czp (rp L)&— (9 6)

Equation (9.2) gives the correction factor which must
be applied to (Gz)sn in order to obtain Gr, Values of
Go/(Go)sn obtained by means of these formulas are
reproduced in Table II.This quantity has the value 1.01
for g=23, p=8, 10, 13; g=30, p=7, 10. Variations in
the correction factor occur in the latter cases in the
third place after the decimal. Similarly for q= 20, p= 10

the correction factor has values 1.010, 1.0097, 1.0093,
1.0089 for L=O, 1, 2, 3 respectively; for g=20, p=30
it has the values 1.027, 1.025, 1.022, 2.018, 1.017 for

L=O, 2, 4, 6, 7 and for g=16, p=28 the correction

factor is 1.015, 1.014 for L=O, 1. The JWKB method

yields a very similar approximation

p&(lTp+ pq)' exp{pry —Tp —2g(p/Tp)+l —g tan '(l/g) }
(GI )JWKB

O'I 0+Pl[9+(P+~')']'}(To l)'— (10)

where

l= [L(L+1)]&,

To=1+(P+2pn p')'. —
(10.1)

(10.2)

pose it proved practical to use

Fz [Dze-~PPz+'/(2—L—)!] (1—z') z costs, (10.3)

The quantity (Gz)qwxa behaves similarly to (Gr,)so.
The correction factor GI/(Gq) qwxn has the values 1.010,
1.0096, 1.011, 1.012 for L=O, 1, 2, 3 with g= 20, p= 10.
1.027, 1.026, 1.025, 1.023, 1.020 for L =0, 2, 4, 6, 7 with
q=20, p=30. The values of p and q referred to above
are in the general range needed for the calculation of the
escape of alpha-particles from naturally radioactive
nuclei. Thus, for example, a nuclear radius of 20—"cm
for atomic number 8=80 corresponds approximately to
g=22, p=10.

The contour integral has proved to be useful for the
calculation of Fl. and Gl, at the classical turning point;
i.e., for values of p and q for which g =0. For this pur-

pl
Gz= [Dre "p~'/(2L)!]~ (1—z')z sin$dz

where

+[p~'Dz/(2L)!7)t (1+u')z
0

Xexp[—up —2g tan '(1/u))du, (10.4)

$=2p! tanh 'z—pz. (10.5)

This computation has been carried out with the aid of
auxiliary tables of tanh 'z, tan '(1/u), (1+u') (1—z') z

and for each pl of 2p! tanh 'z, exp[ —2q tan '(1/u)], Cp,
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e- &. In much of the numerical work it proved useful to
replace ds in the integrals by (ds/d$)d$. Integration by
parts when applied to J'(sin()(ds/d$)d$ gives outside
the integral a result which would be exact if ds/d$ were
constant, a second integration by parts gives a result
which would be exact if d's/dP were constant. By re-
peating this procedure convenient series have been ob-
tained by means of which it has proved practical to
evaluate the contributions to the integrals arising from
regions within which the integrand has an oscillatory
character.

VL, '+O.J.+iV~~ ——
J.+1

+
p L+1

(11.5)

A disadvantage of recurrence formulas as a means of
checking is the frequent lack of indication as to which
of the values is at fault if agreement is not secured.

VI. ADDITIONAL METHODS

The phase amplitude method has been found con-
venient as a means of checking. By means of it, values
at smaller p can be compared with values in the region
within which the Co~lomb functions become essentially
sinusoidal. It has also proved useful to tabulate the
phase and the amplitude as a means of detecting slips
in calculation. The smooth behavior of phase and ampli-
tude as functions of p enable better detection of errone-
ous values than is readily possible with F~, GL, . The
relation

pP2

ÃL(P2) PL(pl) If L (P)dP
Pl

'e J. L. PoweU, Phys. Rev. 72, 626 (1947).

V. RECURRENCE FORMULAS

A set of recurrence formulas developed by Powell"
has proved to be very useful, especially as a means of
checking values obtained by other means. A convenient
set of formulas suitable for intercomparison of FL,, GL,

for different L is

PI—1I L 1+aL I L—+aI —1I L 2—
(aI PI PI 1)I L+a—LlaI y L 2-—

+Pl laL+1 YL+1——0, (11.1)

(PLPI 1PL 2aI 1—PL aL PL 2) y L-
+(aL 1 aL+1 —aL+1PL lPL 2) y L—+1-

aLaL laL 2I L 2— 0— (11—2)

aL(FI 1GL FLGI 1) =—1, (11.3)

aL [1+——vP/L2]&

PL= (2L+1) I ~/[L(L+ 1)]+1/Pl (11 4)

Equations (11.1), (11.2) are obtainable from Eq. (11).
They are reproduced here so as to provide convenient
ways of checking tables. An additional relation due to
Powell which was also found to provide useful checks is

provides for an additional check. It is also possible to
relate the phase amplitude method to the JWKB ap-
proximation for the larger p, as will be discussed
presently.

The Hartree form of arranging a numerical integra-
tion of a differential equation is convenient as a means
of extending tabulations to values of p not covered by
other means. Numerical quadrature of F"=—oF or
G"=—gG to check on F', G' and of these quantities for
intercomparison with F, G is practically equivalent to a
check by a numerical integration of the diBerential
equation. Being somewhat simpler it has proved very
useful in detecting slips. The JWKB method of approxi-
mation has been of occasiona1 value in the work re-
ported on. It su6ers, however, from the disadvantage of
having an accuracy which is dificult to ascertain except
under special circumstances such as exist for the high
repulsive barriers when alpha-particles react with
heavy elements.

g=0.1574ZZ'EM. &(M;/M )&, (12)

where EM, is the energy of the incident particle meas-
ured in Mev.

pg= (ZZ'p/M„) [r/(2. 905&& 10 " cm)], (12.1)

where

p =M,M b/(M, +M t,)

The set of units used is such that

5/[(M„m)&c]=0.9043X10 "cm,
and

(12.2)

pg =0 3113(p/M„)ZZ. '[r(M.m) &c/fl]
=0.0969(2)(p/M„)ZZ'(rmc2/c') (12.3)

If the reaction gives rise to two outgoing particles of
masses Ml and M2 with an energy release Q then the
value of g for the end products is

21 =0.1574ZIZ2(EM, „') &(P'/M„) &,

where
P'= MIM2/M', M =Ml+M2,

(12.4)

(12.5)

is the reduced mass for the second stage of the reaction
and

E'= (M2/M)E+Q, (12.6)

is the energy available in the rest system after dis-
integration.

VII. VALUES OF PARAMETERS FOR NUCLEAR
REACTIONS

In the notation,

M„=mass of oxygen atom/16,
M;=mass of incident particle,
Mt, ——mass of bombarded particle,

and on the assumption that the bornbarded particle is
at rest one has for the parameters of the first stage of
the reaction
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TAaLK III. Comparison of eoeScients of series for A q given by
J.W.K.B.approximation and asymptotic series.

0 1

Coefficie of (1/p) &

asymPtofic series

L(L+1)
8 4

15'' 5qL{L+1}
16 8 4'

195&4 45~&L(L+&) 23~& 5L&{L+1)& 3L{L+1)
128 32 16 32 8

663rl' 91'' 195''L(L+1) 45qL'(L+1)~
256 16 64 64

23gL(L+1) 3q
8 4'

4641'' 243 1g' 3315g4L{L+1) 585g~L2(L+1)~
1024 128 512 256

455''L{L+1) 281'' 15L'(L+1)' 13L'(L+1)~
32 32 128 32

15L{L+1}
8

J.W.V.B, approximation

20

L(L+1)
8 4

s 5gL(L+ 1

16 8

195$ 451pL(L+1) 5L2(L+1}2
128 32 32

663'' 195''L(L+1) 45qL'{L+1)»
256 64 64

4641~6 3315~4L{L+1) 585~~L2(L+1)~ 15L3(L+1)3
1024 512 256 128

where
Q =F/(1 FGb iF' 8), — —

~=F'/F —5"/5

(13)

(13.1)
'7 G. Breit and F. L Yost, Phys. Rev. 48, 204 (1935}.

VIII. QUANTITIES CONVENIENT FOR INTER-
POLATION AND SOME RELATIONS

USEFUL IN APPLICATIONS

For smaller p, especially for the higher I., the Cou-
lomb functions FI., GI, vary too rapidly for accurate
interpolation. Here the quantities Cr, , CI,Or„C'r.*/C'1.
form a convenient set. The latter two have the ad-
vantage of giving the combinations which are needed
in the calculation of the amplitude of the wave function
at the nudear boundary in a "potential well" picture of
the nucleus. The formula for the latter is"

pF'/F=C~/C.

The remaining quantity

pa'/Q =xdQ/adx,

(13.2)

(13.3)

where x is length expressed in any unit. The latter cir-
cumstance is convenient. The factor multiplying pb is

FLGr/p= C rOr/(2L+1). (13.4)

The phase amplitude variables Al„@L, defined in the
section on notation are very useful. in applications and
have good interpolation properties. They are con-
nected by

Al. dpL, =dp, (13.5)

which make it possible to calculate differences in yL,
from values of Al. . In applying the phase amplitude
variables it is natural to express results in terms of the
phase shift El.. A formula for the latter has been given
by Wheeler. ' Substituting for p&' its value in terms of
Al, ' his formula becomes

xdg/Qdx —pA'/A = (p/A') cot(y+E) (1.4)

Having E one can obtain Q at the nuclear boundary
from

5=e'x(F cosE+G sinE). (14.1)

Equation (14) is convenient when pdA/Adp is readily
available. If this is not the case use can be made of

cot(y+E) —coty= (tt'/5 F'/F)A'. (14.—2)

A knowledge of the behavior of A L, for large p is helpful
in determining values of the functions in regions not
covered by the tables. It also can be used for starting a
numerical integration of the diGerential equation for A L,

toward smaller p. A list of coefficients of powers of 1/p
in the asymptotic series for AL, is given in Table III.
In this table the coefFicients are compared with those
corresponding to the usual JWKB approximation; i.e.,
to the approximation A L,

—
CItL, &.
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At the nuclear boundary one knows 5"/Q from the
internal solution and one has it available for substitu-
tion into Eq. (13.1). It is convenient to deal with
FGb as

(FG/p)(p~)

The quantity pb contains


