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On the Interactions of BirkhofPs Gravitational Field with the
Electromagnetic and Pair Fields
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The Rat space-time theory of gravitation proposed by G. D. Birkhoff is discussed from the standpoint of a
field theory and, in particular, the interaction of BirkhoG s field with other fields is developed. This inter-
action is shown to take place through the interaction Lagrangian function h„„|t„„and when applied to the
electromagnetic and pair fields, it leads to a modification of the Maxwell and Dirac equations. These modi-
fied equations determine a change in the index of refraction and a shift of the energy levels of the atom,
which account for the bending of light and the red shift in gravitational phenomena. Furthermore, they pre-
dict a gravitational correction to the magnetic moment associated with the spin and orbital motion of the
electron.

at a distance r from its center, is given by 2

0 if nWP
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1 if a=P
h p=MG/c'rb p, where b p=

and that this is also the 6eld of a point particle. With
the field (3) introduced in the equation of motion (1),
one obtains an advance for the perihelion of a planet in
the field of a star, which has the same value as in the
general theory of relativity. ' 4

While the bending of light rays and the red shift
could be discussed in Birkhoff's theory with the help of
the equation of motion (1) and the photon concept, '~
it is more proper to view them as due to the action of
the gravitational field on. the electromagnetic 6eld
and on the process of emission of light. For this purpose,
the procedure for setting the interaction of Birkhoff's
field with other fields, must be developed.

The Lagrangian function' from which the 6eld equa-
tions (2) could be derived, is given by:

c' Bh&' Bh, g

L= —
g P +h"T,g= Lp+h&'T g —(4)

SxG Bx Bxt'

as bJ'Ld'x=0 leads to (2). The first part of this Lagran-
gian function, Lg, corresponds to a free gravitational
Geld, as the variational procedure applied to it leads to

h, p=0 The secon.d part, h&'T~q, in which T~i is the
energy momentum tensor of the external field, gives
rise to the interaction between the gravitational and
external 6elds. This term is somewhat similar to the
corresponding interaction Lagrangian function j A /c
between the electromagnetic and matter 6elds.

When we introduce the Lagrangian function Lg for
Birkhoff's free 6eld, we obtain from the general formal-
ism of field theory" an energy momentum tensor for
this 6eld, and this energy momentum tensor of gravi-
tational origin, will affect the field equations (2). It is
clear therefore, that an interaction term of the form
h&'T, ~, in which T~~ corresponds to the external 6eld,

~ W. Pauli, Rev. Mod. Phys. 13, 203 (1941).
G. Wentzel, Quantum Theory of Fields (Interscience Pub-

lishers, Inc. , New York, 1949) Chap. 1.
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T the present time there is a wide interest in rela-
tivistic field theories in connection with the inter-

actions between meson, electromagnetic, and pair fields.
The effect of the gravitational Geld on these interactions
has been mainly neglected, partly because of the small-
ness of the gravitational interactions, and partly
bemuse of the special position given to the gravitational
field in the general theory of relativity.

It seems therefore, worthwhile to examine descrip-
tions of gravitation in Hat space-time, from the stand-
point of field theory. The theory of gravitation that we

propose to discuss from this viewpoint was introduced
by 6. D. Birkhoff, ' ' and in it, the gravitational field is
described in Hat space-time by a symmetric tensor
potential h p, a, P=O, 1, 2, 3. The equation of motion
for a particle of rest mass m is given by the usual rela-
tion of special relativity, m(d'x /ds') =f, where f the
ponderomotive force for the gravitational held, has the
form:

f,=m(8h, p/Bx& Bhp, /Bx )d—xp/ds dx&/ds (1).
The motion is therefore independent of the mass of the
particle.

The 6eld caused by a distribution of matter repre-
sented by the energy momentum tensor T p is given by
the Geld equation 6

h p=4wG/c'T p, (2)

where —=V' —1/c' 8'/BP, and G is the gravitational
constant.

It can be shown from (2) and other assumptions that
the 6eld outside of an homogeneous sphere of mass 3f

' G. D. Birkho8, Proc. Nat. Acad. Sci. 29, 231 (1943).' G. D. BirkhoE, Proc. Nat. Acad. Sci. 30, 324 (1944).
'Barajas, BirkhoG, Graef, and Vallarta, Phys. Rev. 66, 138

(1944).' A. Barajas, Proc. Nat. Acad. Sci. 30, 54 (1944}.
fl' G. D. Birkhoff, Bol. Soc. Mat. Mexicana 1 (No. 4, 5) 1 {1944).
6 In BirkhofPs papers (references 1, 2) the field equations take

the form Qk~=8mG/c'T~p where h~p is dimensionless and Tp
has dimensions of energy density. The difference of a factor of 2
from the above expression (2), stems from the special form taken
by Birkho8 for the tensor of a perfect fluid. When the usual form
of this tensor is introduced, the factor Sx must be changed to
4x {reference 10, p. 71).
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BIRKHOFF'5 GRA VITATIONAL FIELD

The metric tensor of the coordinate system x" is
—8„. and this imples A"= —A„, Ig&"=h„„. The inter-
action part of the Lagrangian function becomes h„„8„„.

L=Lg+h &0 p+L', (5)

where L' is the Lagrangian function of the other field
and 0 p its corresponding symmetric energy-momentum
tensor.

The modified 6eld equations will be derived from the
usual variational principle:

II. INTERACTION WITH THE ELECTRO-
MAGNETIC FIELD

The Lagrangian function for the electromagnetic field
is given by:

will only be valid for weak gravitational 6elds (h»(&1), In the system of coordinates x the gravitational Geld (3)
to which we shall restrict ourselves in this article. becomes then:

The Lagrangian function from which the interaction
of Birkho6's field with any other 6eld can be derived
is then given by:

b tLd'x=0 (6) L, = —1/16'„„E„„—=1/Sx(E' —B') (Sa)

%e will apply this analysis to the interaction of
Birkhoff's 6eld with the electromagnetic and pair 6elds,
for which we need the following notation:

x = (ct, r) the indices a, p, y, 8 take the values 0, 1, 2, 3
with repeated indices summed from 0 to 3.

x"= (r, fact) the indices p, v, p, cr take the values 1, 2, 3, 4
with repeated indices summed from 1 to 4.

g
t =0 If a&P and g00= —g"= —g~= —g~= 1

g„„=0if p, gv and —g11= —g22= —
g334

—g44=1.
~pv=0 if @+vs ~pv 1 lf y= v.
ds2=g pdx dxt = —B„gx"dx".
dl2= (dx')2+ (dx')'+ (dx')'.
A„= (A, ip) electromagnetic potentials.
El„„=BA„/Bx"—BA„/8x" electromagnetic Geld strengths.

&(~14) ~24) +34) 7 (~32) ~13t ~21) '
~=dielectric constant.
p =magnetic permeability.
n = index of refraction.
lit = four component wave function of Dirac's equation.

f+= the adjoint Dirac wave function.
m, e=mass and charge of the electron.

y„, n;, p, cr;= Dirac matrices defined as in Pauli's book. '
j„=4-vector current density.
I.g=c'/SING 8hp /Bx Bhp /Bx" the Lagrange function of

the Birkhoff field.
51/8q = —8/Bx" $8L/8(8q/8x") j+81/Bq) the variational

derivative of I. with respect to the variable q.
T„„=the energy momentum tensor defined from the

Lagrangian of the Geld as in Kentzel's book.
8„„=the symmetric energy momentum tensor.

/'~/
M = mass of the body originating the gravitational Geld.
G =gravitational constant.
k =Planck constant.
c=velocity of light.

r, 8, y=spherical coordinates.
I=1/r.

M'—=MG/c', f=—MG/c'r.
3 =frequency, x=c/s wave-length.

p
( ho tkao't—
E —a., —hi

9 W. Pauli, Handb. der Physik. 2 Au6. , Band 24, {Springer,
Berlin, 1933) p. 219-220.

%'e will use from now on the coordinates xl', so that
we must transform the tensors de6ned with respect to
the coordinates x to the coordinate system x& by the
usual rules. For example h p goes into h„„whose com-

onents are:

L=Lgg+8„„' h„„+L, . (Sc)

The 6eld equations are derived from it with the help
of the variational principle (6), where lt„„, A„are the
6eld variables, so that:

t ( 8L 8L
W„~d *=0.

~ &at„, w„

This variation al relation leads to the equations
bL/bh„, =0 and 8L/5A„=O. The first is the Eq. (2) of
the gravitational 6eld with T„„=8„,' .The second gives
the electromagnetic field equations in the presence of a
gravitational field, which take the form:

a/ax"[E„. 2h»E„2E»—h„+E„,—h» j=0. (10a)

To these equations we must add the field equations
which are obtained from the definition' of E„„i.e.:

aE„„/ax +aE,„/ax+aE„/ax =0 (10.b)

Equa, tions (10) reduce to the ordinary Maxwell
equations if there is no gravitational field, i.e., if
h„,=0,

%e are particularly interested in the electromagnetic
6eld equations in the gravitational held outside of a
spherical distribution of matter, such as a star. For that
purpose we only need to substitute the corresponding
Geld tt.„„=—MG/c'rg„„ in (10). We write the resulting
equations in terms of the vectors E, 8 and we obtain:

7 (1+2f)E=O, VX(1—2f)B=1/c a/at(1+2f)E (11a)

v B=o, VXE= —1/c a/atB
f=MG/c'r—

(11b)

%e compare these equations with the electromagnetic
equations in an inhomogeneous material medium in the

'o R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Oxford University Press, London, 1934) p. 97.

and the corresponding symmetric energy-momentum
tensor is:

e..' = 1/«LE. aE.~ 4E~.E—"4.j (Sb)

The Lagrangian function for the interacting gravita-
tional and electromagnetic 6elds takes the form:
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becomes:

Fro. t. Bending 8~I +(&)(pre+.ped82)5
of a light ray in
a gravitational 6eld.

n(r)(1+r'8")Vr—= 8 Zdr (15b)

absence of currents and free charges, "which are:

& D=O, VXH=1/ c8/8iD (12a)

V & =0, VXE = —1/c 8/BtB (12b)

and the corresponding Euler equation is:

d 8g 8Z d m(r)r'8'
—=0

dr 88' 88 dr (1+r'8")'*
(15c)

9=~E, B=pH.
01

(12c) n(r)r 8'(1+r'8") &= conts= .o (15d)

p
1+2M'/r

~
&

n= (ep)&=
i

&1—2M'/r)
(14)

is also a function of the distance from the star. Light
that passes in the neighborhood of a star will therefore
be bent by its gravitational field.

III. THE BENDING OF LIGHT RAYS

We can use Fermat's principle to calculate the bend-
ing of light rays in the gravitational Geld of a star, as
this principle is a consequence of the electromagnetic
field equations" in Qat space-time.

Let us take a light ray coming from infinity which,
in the absence of a gravitational 6eld, would travel
along the straight line [AB]. Let C be the point at
which the gravitating mass is situated, and b the length
of the perpendicular from C to [AB] as in Fig. 1. We
introduce spherical coordinates with origin at C and
polar axis parallel to [AB]. The plane CAB is taken
as @=0.

Fermat's principle states that the path taken by the
light ray is given by:

8 "Wi=0, (15a)

As the index of refraction n= n(r) is only a function of
the distance from C, the problem has spherical sym-
metry and a light ray starting in the plane q =0 v ill
continue its motion in it The variati. onal principle (15a)

"J.H. Van Vleck, The Theory of Electric and Magnetk Sus-
cePtibilities (Oxford University Press, London, 1932), pp. 1, 13.

'~ J. A. Stratton, E/ectromageetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), First Edition, p. 343.

From (11) and (12), it is clear that the gravitational
field of the star makes the space surrounding it behave,
from an electromagnetic standpoint, as an inhomo-
geneous material medium. In fact, (11)and (12) become
identical if we set:

e= 1+2M'/r, p= 1/(1 —2M'/r). (13)

As the dielectric constant and magnetic permeability
are functions of the distance from the star, the index of
refraction in the space surrouning the star, which is
given by"

as again M'/b&M/R«1 The equat. ion for the hyper-
bola becomes:

u= 1/b[2M'/5+sin(8 —2M'/b)] (16d)

and the second asymptote is given by 8= sr+4M'/b as
u~0 for this value. The angle a between the asymp-
totes, shown in Fig. 1, is given then by:

a= 4M'/b (17)

which is the same value of the general theory of rela-
tivity.

IV. INTERACTION WITH THE PAIR FIELD

The Lagrangian function for the pair 6eld is given by:~

In = hc/2i($+—y„8$/8x" 8$+/Bx"y—„P)
+imcef+P (18a)

and the corresponding energy momentum tensor is:

T„„o=Ac/2i(rP+y„8$/8x" 8$+/Bx "y—„P) (18b).

This tensor is not symmetric, but it is knownv that the
symmetric energy momentum tensor has the form:
8„„=e'(T„„+T„„o).The interaction with the gravita-

Introducing u= 1/r, the Eq. (15d) becomes:

n(e) [(du/d8)'+ I'] &=——a (16a)

where from (14) m'(u) =1+2M'u/1 2M—'I~1+4M'p
This last approximation is valid because r must be
larger than the radius R of the star so that Me &M/ R
and for all stars M'/R is small, e.g. , for the sun it is

1M. With this value of n'(I) the equation (16a) can
be immediately integrated, giving:

I= 1/a[2M'/a+ (1+4M"/a') ~ sin(8+ 8)]. (16b)

The path described by the light ray is then a hyper-
bola, and the two integration constants a, 5 are de-
termined by the condition that the hyperbola tends
asymptotically to the line [AB] whose equation is
N=b ' sin8. When 0—4 we must have then I—4 and
dN/d8~b ', and assuming that (2M'/b)' can be dis-

regarded as compared with unity, we have the relations:

a= b and sin8= 2M'/b —or 8 2M'/b (16c—)
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6L 8L 8J
Ld4x= I btt~ +by+ + bg tf4x P (]9)

.Sh„„bp+ 5$

This variational relation leads to the equations
bL/btt„, =p, 5L/++=0, bL/8$=0, the erst of which is
Eq. (2) with T„„=B„,o and the others are the pair
6eld equations in the presence of a gravitational 6eld,
that take the form:

'rpBIP/Bx~+ mc/kg 2 kgb'rpBLP/Bx
',y„Bh—„,g-/Bx" =0, (20a)

BQ /Bx"'rp+mc/kl// +2BlP kgb/Bx "rp

+z~BQ+/Bx" y„k„„=p (20b).

Introducing the operators P„=ft/i B/Bx", we see that
Eq. (20a) could be derived from the free particle Dirac
equation by the substitution:

P„—+P„,h„„P„—2P„h„„. (21)

In the classical picture, where the energy-momentum
vector P„and h„, commute, (21) implies that P„must
be substituted by P„—h„,P„, which is somewhat similar
to what happens in the electromagnetic case where
P„~P„+e/cA„. This result could not be derived di-
rectly from the equations of motion (1) as they do
not admit in general, a Hamiltonian formulation.

We are interested in the form of the charge-current
density 4-vector in the presence of a gravitational 6eld.
For that purpose we multiply (20a) by P+ to the left
and (20b) by f to the right and subtract, and making
use of the symmetric form of h„„we obtain:

(22a)

It is clear that the charge-current 4-vector for an
electron 6eld becomes:

as it satis6es the continuity equation (22a), and in the
absence of the gravitational Geld, i.e., h„=0, it reduces
to usual form for the charge-current 4-vector.

The problems which interest us are those in which the
electron moves in a combined gravitational and electro-
magnetic 6eld. For that purpose we must add to the
free pair 6eM Lagrangian besides the term T„,~h„„a
term of the form j„A"/c= —j„A„/c which gives the
interaction with the electromagnetic Geld. In this term,
we should take the current j„as modified by the
presence of the gravitational field as in (22b). The

tional 6eld is given by 8„, h„„and as h„„ is symmetric,
this is equivalent to T„„~h„„.

The Lagrangian function for the interacting gravita-
tional and pair Gelds takes the form:

L=Ls+ T„Ph»+Ln. (18c)

The field equations are derived from it by means of the
variational principle (6), where tt„„, f, P+ are the field
variables, so that:

Lagrangian function for the pair field with these inter-
actions, becomes:

L= Lg&+ T»~h» e(—P+y„P h»—f+y.P)A „. (22c)

The Geld equations are derived as usual, from the varia-
tional principle (6), where P, P+ are taken as the vari-
ables, and we obtain for f the equation:

y„[(h/i B/Bx"+e/cA „)P (—0/2i tt„„B&/Bx"
+h/2i Bh„„g/Bx„+e/cA„h,„„f)j imcf—=P. (23)

Equation (23) is then the Dirac wave equation for an
electron moving in a combined gravitational and elec-
tromagnetic 6eld. This equation can be obtained from
the Dirac free particle equation if we replace P„by
(P„+e/cA„) h„„(P—„+e/cA, ) and symmetrize the ex-
pression to allow for lack of commutability between
P„and h„„ in the quantum picture. It can also be ob-
tained from (20a) if we replace P„by the form P„+%A„
it takes in the presence of an electromagnetic 6eld.

With the help of (23) we can study the effect of a
gravitational field on atoms and electrons. The gravita-
tional interaction between the elementary particles
themselves, is of the order of m'G/e'~10 ' times
smaller than the el.ectromagnetic interaction, and there-
fore, is not observable. On the other hand, the effect
of an external gravitational 6eld, such as that of a star,
on atoms and electrons does give rise to observable
phenomena which merit discussion.

V. THE HYDROGEN ATOM IN A GRAVITATIONAL
FIELD

Let us consider a hydrogen atom near the surface
of a gravitating mass M (such as a star) of radius R.
The hydrogen atom will then be acted on by a constant
gravitational held h„,= MG/c'R—g„„= fg„„and f—is
small for all gravitating bodies; i.e., f«1. We assume
furthermore, that the hydrogen atom is acted by an
external electromagnetic field represented by the vector
potential A.

From (23) we see that the wave equation for the
electron of this hydrogen atom becomes:

y„(b„,+fg„„)(t't/i B/Bx"+e/cA, )P inca =0 (24)—
where (A;) =A and A4 ip where ——p is the electrostatic
6eld of the proton. In the absence of the gravitational
6eld, the electrostatic Geld of the proton takes the
usual form P=e/r where r is the distance from the
proton. When a gravitating mass is present, we recall
that it changes the dielectric constant of the space
surrounding it, so that e takes the value (13), i.e.,
e=1+2f. The electrostatic field of the proton takes
then the form:

$= e/er =e/(1+2f)r. (25)

Multiplying Eq. (24) by i&4/1+f and using the rela-
tions'iy4y;=a, , y4=P, we obtain:

(i7i/c B/Bt+ e/c4) P
= (1—f)/(1+f)e (ft/iV+e/cA)/+etc/1+fPP (26).
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(1-f)'
(SC/c+c/cy)'=

(1+f)2

X[(P+e/cA)'+ ebs/c(o. B)]+, (28)
(1+f)'

where 8=V')(A, and 0; are the spin matrices.
Assuming now that the energy of the 6rst term on

the right of (28) is small compared with the rest energy,
which is actually the case for the hydrogen atom, we can
take square root of both sides and obtain:

mc (1—f)'
X/c+c/cy= +

1+f 2mc(1+f)
X[(P+e/cA)'+eh/ce B]. (29)

The non-relativistic Hamiltonian is given by (29),
when we disregard the modified rest energy term
mc/1+f Introduc. ing (25) in (29) and making use of
f((1, so that (1—f)'/(1+f) 1/1+3f we obtain:

K= c'/(1+2f)r+ 1/—2m(1 j3f)
X[(P+e/cA)'+ eh/ce B]. (30)

With the help of this Hamiltonian we can discuss the
effect of an external gravitational 6eld on the hydrogen
atom. Let us 6rst assume that there is no external
magnetic 6eld; i.e., A=O,

X= —e"/r+ 1/2m'P', (31)

where e"=e'/1+2f, m'=m(1+3f). The Schroedinger
equation with this Hamiltonian gives for sth energy
level E,' the value'4

E,' = —m'e"/2h's'
= —(1+3f)mc4/2(1+2f)'h's'~(1 —f)E, (32a)

where E, is the corresponding energy level in the ab-
sence of a gravitational 6eld. %'e see, therefore, that
there is a shift in the energy levels which gives a corre-
sponding shift in frequencies:

v, '=h-'(E '—Ev') = (1—f)h—'(E E)= (1 f)v,v- —
(32b)

~3P. A. M. Dirac, Qgantum Mechaeks (Oxford University
Press, London, 1947), Third Edition, p. 264."Reference 13, p. 158.

In the case A=O we can solve this equation and show
that it leads to a shift of the spectral lines toward the
red. Our physical picture would be simpler though, if
we work in the Heisenberg representation. As the
Hamil tonian is 3'.= ih8/8/, Eq. (26) determines it by the
relation:

X/c+e/cg=(1 —f)/(1+f)a ( i7—iV+e/ Ac)

+ (mc/1+f) P (2.7).

Squaring both sides of (27) and using the anticommut-
ing properties of n;, P we obtain by a procedure similar
to that of Dirac:"

which leads to: (v' —v)/v= bv/v= f—T.he correspond-
ing shift in wave-lengths, observed at large distances
from the gravitating mass, so that the relation Xv=c
holds, is given then by:

bX/X=f=3f'/R (33)

We seen then, that the gravitational 6eld leads to
shift of the wave-length of the emitted light toward
the red, which has the same value as that predicted
by the general theory of relativity.

—(1—f)eh/2mc e, (34)

which reduces to the usual magnetic moment" when the
gravitational field disappears, i.e., f=0.

The gravitational correction to the magnetic moment
of the electron is very small, as on the surface of the
earth, where we could attempt to detect it, f is only
~10 '. This gravitational effect is therefore, masked by
the correction of quantum electrodynamical origin, "
which is of the order of 10 '. It would be of interest
though, to study the effect on the magnetic moment
of the electron of the gravitational field of rotating
bodies, in connection with the recent suggestion of
Blackett" concerning the magnetic moment of rotating
masses.

The gravitational correction affects the orbital as
well as the spin magnetic moment of the electron in the
hydrogen atom. In fact, if we assume a constant mag-
netic field Bo——WHO we can write as usual A = s'(pHo X r),
and introducing this in the Hamiltonian (30), we have
BC=K&+X2 where K& is given by (31) and 3C2 becomes:

3C2 ——(1—f)e/2mc[(r XP)+ke].Ho
+e'/8mc'(1+f) (rXHO)' (35)

The magnetic moment associated with the orbital
motion of the electron is —(1—f)(e/2mc)(rXP) and
it is affected by the same gravitational correction as is
the spin magnetic moment.

From the form of 3'.2 we see that there will be a
gravitational correction to the Zeeman effect, though
again, it is very small, and it will be masked by the
second term in (35) as well as by the quantum electro-
dynamical corrections.

"J.Schminger, Phys. Rev. 73, 416 (1948).
' P. M. S. Blackett, Nature 159, 658 (1947).

VI. GRAVITATIONAL CORRECTION TO THE
MAGNETIC MOMENT OF THE ELECTRON

In the Hamiltonian expression (30), the last term
corresponds to the additional potential energy of the
spin of the electron. We can replace in this term 8 by
pH, and because of the presence of the gravitational
field, p takes the form (13), i.e. , @=1/1+2f. As f((1,
we can write the last term of (30) in the form (1—f)eh/
2mce-H. This potential energy may be interpreted as
arising from the electron having a magnetic moment:



DELAYED ALPHA —EMITTERS OF LOW MASS

The observed gravitational eBects can be explained
quite simply in terms of the interaction of Birkho6's
gravitational 6eld with other Gelds, The mathematical
simphcity of Bat space-time gravitational theories,
suggest that they could be used with pro6t in the study
of the classical and quantum aspects of 6eld theories.

I am indebted to Professors A. Barajas and C.
Graef of the University of Mexico for a presentation of

G. D. BirkhoG's theory of gravitation, and to Professors
G. BirkhoG and %.H. Furry of Harvard University for
discussion of the manuscript.

It is a pleasure to acknowledge the support given. to
the present research by the Comision Impulsora y
Coordinadora de la Investigacion Cienti6ca, and the
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Vallarta.
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Three New Delayed Alpha-Emitters of Low Mass~

LUIS %. ALVAREZ

Radiation Laboratory, Department of Physics, Urzzversity of Cahfornia, Berkdey, Calzforrzia

(Received July 24, 1950)

Two new positron active isotopes, B' and Na~, have been found to decay to excited states of Beg and Ne~,
which in turn decay "instantaneously" by alpha-emission. Their half-lives are 0,65+0.1 sec. and ~ sec.,
respectively. N~ is also found to have a low energy positron group which leads to an a-unstable excited state
in C".The masses of B' and Na" are 8.027 and 20.015, respectively. B decays by a 13.7+0.3-Mev positron,
through the same excited state of Beg as does Lig. Estimates of the energies of the excited state in C'2 and
Ne are made.

I. INTRODUCTION
'

NT&L the present time, the only known light, de-

layed alpha-emitter, ' was Li'. In the terminology
of classical radioactivity, "delayed alpha-particles, "
such as those from I.i', are called "long-range alpha-
particles. "They arise from excited states of a daughter
nucleus, following a beta-decay, and their real lifetimes
are too short to be measured directly. Their apparent
lifetimes are those of their parents, with which they
are in equilibrium. The expression "delayed neutron
emitter, " is used for the same reason, to indicate that
the observed neutron activity of nuclei such as' N",
is not a true neutron radioactivity, but rather the "in-
stantaneous" disintegration of an excited beta-decay
daughter nucleus. In both neutron and alpha-decays of
the delayed variety, it is possible to determine the life-
time of the actual heavy particle reaction, not by time
measurements, but indirectly, from the uncertainty
principle, using a measurement of the energy spread of
the emitted particles.

Li' has been investigated by a number of nuclear
physicists, ' ' and its decay scheme is well understood.
The beta-transition is first forbidden, and leaves the Be'
daughter in a broad excited state about 3.1 Mev above
the ground state. The width of the state is 0.8 Mev.
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IL DESCRIPTION OF EXPERIMENTS

The present experiments were started in an attempt
to observe an example of delayed proton emission.
Although this process has not yet been reported, it
would be expected from nuclei such as Ne", 0",and C'.
In the case of Ne", the reactions would be

Ne17~ F17++s+
F17+~ O16+ H1

This pair of reactions is similar to the pair describing
the delayed neutron activity of N':

Nlv~ Q174+~
Q174~ Q18+@

The 32-Mev proton beam from the Berkeley linear
accelerator was used to bombard a proportional counter
filled with B"F~. (Protons plus B"could give C', and
protons plus F"could give Ne".) The linear accelerator
is pulsed 15 times per second, for 300 p,sec., and the pro-
portional counter "cleans up" in a few milliseconds
from the huge burst of ions formed during the 300-@sec.
pulse. It is therefore very convenient to count delayed
heavy particles through a gate circuit which eliminates
all pulses during the time the counter is paralyzed. Ac-
tivities may be followed in this manner, through buildup
to equilibrium, and after the accelerator is turned oG,
through decay. A del.ayed heavy particle activity was
observed in BF3, with a half-life of about 3 sec.

Before giving the reasons for the assignment of this
activity to B', it will be well to describe other experi-
mental techniques which were used in these investiga-
tions. Gaseous targets of CH4 and Ne were also bom-


