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It, is shown that the force dF exerted on a line element vdo of a dislocation with Burgers vector f by a stress
w is given by dF= —v &((f ~)da. An analogy is drawn between the behavior of a closed line dislocation in a
stress 6eld and the behavior of a closed current-carrying loop in a field of magnetic induction. Then formulas
for the stress components caused at any point of an infinite elastically isotropic crystal by a line element of
a general Burgers dislocation are deduced from Burger's expressions for the displacements (see Sec. III(C)).
These formulas bear a close analogy to the Biot-Savart formula of electromagnetic theory. Both of these
results taken together constitute a complete system for the investigation of the mutual interaction of dis-
locations in an infinite elastically isotropic crystal.

I. INTRODUCTION

HIS paper aims to answer the following two
questions. (1) How does a given dislocation

interact with a given stress field? (2) How do two dis-
locations interact with each other? The first problem is
treated with complete generality. The second problem
is discussed for the case of an infinite isotropically
elastic crystal.

In Section I, we describe the Burgers dislocation. In
Section II, we obtain a result which gives the force on
an element of a Burgers dislocation in a given external
stress 6eld. This force bears a certain analogy to the
formula giving the force on a current element in a mag-
netic 6eld. In Section III expressions are given for the
stresses produced by a line element of a Burgers dis-
location. These expressions are obtained from pre-
viously published formulas' giving the displacements
produced by an element of a dislocation.

The results given constitute a complete system for the
investigation of the behavior of a dislocation in a stress
field and, within the limits mentioned, the interaction
of dislocations with one another.

Let us create a Burgers dislocation in a crystal
(Fig. 1). The crystal is cut along a surface (i.e., the

hatched surface in Fig. 1). Next remove a cylinder of
material of radius ro having as axis the line ABCDA
bounding the cut surface. Give one face of the cut
surface an arbitrary displacement f relative to the
other face. Rejoin the two faces of the cut in their dis-
placed position. Finally replace the atoms originally
lying inside the cylinder of radius ro. The block now
contains a Burgers dislocation lying along ABCDA. If
f is not parallel to the surface of the cut it will be neces-
sary either to remove a thin slice of material on the cut
surface or to add it when the translation is accomplished.
ro is chosen large enough so that outside this cylinder
the classical theory of elasticity can be used. If f is one
atomic distance ro turns out to be two or three lattice
parameters. '

The discussion given in the present paper enables one
to treat the behavior of that portion of the crystal
which behaves elastically. In the case of a Burgers dis-
location this excludes only the region inside the cylinder
ro. In the case of two half-dislocations' one must exclude
a slab of material a few atoms thick lying along that
portion of the slip plane which joins the two half-dis-
locations. In many cases the changes in the arrangement
of dislocations and other sources of stress are such that
only relatively minor changes in stress occur in the
excluded regions. For such situations elastic calculations
such as those given in this paper are valuable.

II. FORCE ON AN ELEMENT OF A
BURGERS DISLOCATION

(A). Sign Convention

The vector f is the Burgers vector of the dislocation.
The sign of this vector can be determined by adopting
the following convention. Figure 2 shows the positive
sense of description of the dislocation line, the positive
outward normal n of the dislocation surface, and the
positive sense of description of a closed curve linking the

Fro. 1. A Burgers dislocation in a crystal. dislocation line. If one crosses the cut surface going in
the direction of the outward normal n, he goes from* This research constitutes a portion of a thesis submitted by

O. peach in partial fulfil}ment of the requirements for the the cut surface No. 1 to the cut surface No. 2. Ke shall
degree of Doctor of Science at Carnegie Institute of Technology.
This work was supported in part by ONR. ' J. S. Koehler, Phys. Rev. 60, 397 (1941).' W. G. Burgers, Proc. Akad. v. W'ettensch. (Amsterdam), 42, ' R. D. Heidenreich and W. Shockley, Bristol Conference
293 (1939}. Report on Strength of Solids (1948).
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Fic. 2. Sign conventions for general dislocation.

in all cases obtain the dislocation by translating surface
No. 1 through the distance f while surface No. 2 is held
fixed.

(8). Fundamental Principle

If, in constructing the dislocation shown in I'ig. 1,
we had cut the block along any other surface having
AHCDA as its sole internal boundary, the final physical
state of the block would have been identical with that
produced above. In other words the distribution of dis-
placements and strains in a crystal containing a dis-
location depends only on the configuration of the dis-
location line and the Burgers vector.

This result is established' in Love's treatise. The
argument is based on the definition of strain, the com-
patibility equations, and the assumption of a con-
tinuous stress distribution in the dislocated body. It is
independent of the elastic properties of the body except
that it is assumed that the continuity of stress implies
a continuity of the strains. In particular, the result
holds for elastically anisotropic crystals as well as
isotropic bodies.

(C). Force on a Line Element of Dislocation in a
Stress Field

Consider a rigid dislocation I' having a vector f. Let
de be a line element of the dislocation in the direction
shown (Fig. 3). The dislocation is immersed in a stress
field described by the tensor 7

~Sg ~ZZ

+VZ

+gZ ~ZZ

where the components 7.„are scalar functions of posi-
tion.

The dislocation possesses energy W (interaction
energy with stress field) by reason of the presence of the
stress field v-. The stress field does rot include the stress

' A. E. H. Love, A Treatise on the MathematicaL Theory of Elas-
ticAy (Cambridge University Press, London, 1927).

field caused by the dislocation itself but includes that
due to all other sources. Ke wish to calculate change in
energy 5W= W —W caused by giving it an infinitesimal
translation ds in an arbitrary direction, thus bringing it
into a new position l" where it possesses (interaction)
energy 5".

Erect a cylinder on F with generators parallel to ds
and extending to the surface of the crystal. %e know
we can construct the dislocation F by cutting the crystal
along the surface of this cylinder and displacnig the
material inside the cylinder by a translation f. %e know
further that the interaction energy lV of F with the
stress field v can be computed' by evaluating the work
done on the surface of this cylinder during this dis-
placement by the stress field r. Similarly, the energy
W' is the work done by v on the surface of the cylinder
erected on I" during the displacement f. It follows that
AW= W' —W is the negative of the work done by r on
that portion of the cylindrical surface having F and F'
as bases. Consider an element of this surface, de)&ds,
a vector element (Fig. 3) of area with normal pointing
outward from the cylinder. The force on this area' is
v (deXds). Then the work done is f {r (deXds) } on
this element. The total work —AW= J,f {v (deXds) }.
The force acting on the dislocation in the direction of
dsisthen —BW/Bs=+ J;f {r (deXX) },wherede=vdo
and ds=Xds, 2 and v being unit vectors. Then, since 7

is symmetric,

Fi= — {(f v) (XXv)}d(r

Since the integration is on do- we may interpret the
integrand as being the ) -component of force acting on
an element of length d0. of the dislocation. This can be
written as

de= —X {vX(f r)}do.

It follows that the resultant force dF, in a stress
field v, on an element vdo of a dislocation having a

'A. H. Cottrell, Progress in Metal Physics (Interscience Pub-
lishers, Inc. , New York, 1949), p. 85.' For notation see L. Page, Introduction of Theoretical Physics
(D. Van Nostrand Company, Inc. , New York, 1928), p. 34.
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vector f is given by the expression'

dF= —vx(f r)do

It should be noted that this formula is very general. '
The stress Geld may arise from any source whatever.
The dislocation may be of the most general Burgers
type. The crystal may be Gnite or infinite. The crystal
may be elastically isotropic or elastically anisotropic.

(D). Immediate Deductions

The quantity f v is simply the vector traction ~y

across an element of area perpendicular to f multiplied
by

~
f~. Since f is a constant vector there is no loss of

generality in choosing the x-axis parallel to f. Then
ir„+——jr„,+kr„More. over ~1 is a solenoidal vector,

for
BT~~ 8Ty~ Gag~

dZ'VCf = — —+ +
Bx 8'v Bs

and this last expression equated to zero is one of the
three equilibrium equations of elasticity theory for the
case where body forces can be neglected. The formula
for the force on a line element of dislocation becomes
dF= —

~
i~ vX~ydo and this is exactly analogous to the

formula dF= (i/c)vXSdo from electromagnetic theory.
The behavior of a dislocation in the vector field ~f is
exactly the same as that of a current-carrying wire in
the vector field 8. In particular, one can introduce the
concept of lines of force and arrive at a result that a
dislocation loop will tend to move in such a way as to
link with the greatest possible number of lines. Whether
it actually mill move depends upon the atomic con-
straints, just as whether a current loop will move
depends upon the mechanical constraints imposed upon
it. The only motion which is easily possible for a dis-
location is motion in its slip plane. Any other motion
requires the simultaneous breaking of so many atomic
bonds as to be virtually impossible at ordinary tern-
peratures, except in so far as diffusion of holes and
extra atoms allows such motions to proceed. Greater
freedom may be expected at high temperatures. One
motion which is possible for dislocation loops which is
not possible for current loops is a motion in which the
length of the loop increases. The loop length will
increase if sufhcient energy is supplied to furnish the
increased self energy corresponding to the increase in
length of the loop and the energy lost (converted into
heat) in overcoming the atomic constraints. If the
stress system is reversed the field cf will be reversed,
and since the dislocation loop is not free to rotate through
180' to align itself with the Geld but is bound to the slip
plane, it will try to reduce its area as much as possible.

' The force on a dislocation given by J. S. Koehler, reference 2,
differs slightly from that obtained above because he did not use
an energetically dosed system. This discrepancy will be dealt
with in detail in a later paper, together with other discrepancies
which exist in the literature.' Shockley and Read have obtained a formula which gives the
component in the slip direction of the force on an edge dislocation
produced by any externally applied shear stress. T. %. Read and
W. Shockley, Phys. Rev. 78, 275 (1950).

A difference appears between electromagnetic theory
and dislocation theory when one considers a set of dis-
locations in a crystal. There is only one field 8 but there
are, for example, six different fields zf in a face centered
cubic crystal, since there are six different slip directions.
The dislocations may be divided into six groups ac-
cording to their vectors f.

If electrostatic or other non-mechanical forces act on
a crystal the fields ~f will not be solenoidal; there will be
sources of ~f within the crystal.

III. STRESS FIELD CAUSED BY A LINE
ELEMENT OF DISLOCATION

(A). Displacements Expressed as Line Integrals

In the paper' in which Burgers introduced the concept
of a Burgers dislocation he also gave explicit expressions
for the components of displacement caused by a general
dislocation in an infinite, elastically isotropic crystal.
Each expression contained three terms, of which two
were given as line integrals over the dislocation curve,
and the remaining one as a surface integral over an
arbitrary surface bounded by the dislocation curve. He
pointed out that the surface integral could be replaced
by a line integral but did not express it as such. The
problem of replacing the surface integral by a line
integral does not have a unique solution, but one can
choose a symmetric solution which enables the x-com-
ponent of displacement to be written as follows

1 p d$~ YZ( 1 1—f~
4s. ~, da 3R &Z'+X' X'+ Y')

E
+X ( f2Z+ f3Y—)—

R'

df& ZX) 1 1
+—f

d~ 3R kX'+ Y' Y'+Z')

E (1—E)
+X ( f3X+fgZ—) — f3—

R' R

dg, XY( 1 1
+—f

do 3R E Y'+Z' Z'+X')
E (1—E)

+X ( f&Y+f2X)+—— f2 da.
'

R3 R

From this the expressions for u2 and us can be obtained
by simultaneous cyclic permutation of the three sets of
quantities (g&, g2, $3), (X, Y, Z), and (f&, f2, f&). The
quantities appearing in this equation are defined as
follows:

X=x—
$g, Y=y—

$g, Z=s—$3,
R= (X'+ Y'+Z') &,

' This formula can be obtained from Eq. (21) and (5) of reference
1 by writing (5) as a line integral. The connection between the
line and surface integral is given by Stoke's theorem. Thereafter
it is necessary to And a vector potential for the 6eld r/r'.
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x, y, z are coordinates of the field point $&, $2, $3 are
coordinates of the source point, i.e., a point on the
dislocation line.

f~, f2, fz are the components of the Burgers vector

X+@, p,
E=- —, I—E=

X+2p X+2@

) and p are the Lame constants of isotropic elasticity
theory. (Figure 4.)

(B).Strain Components Expressed as Line Integrals

The strain components are defined (Love's definitions)

e„=Bu&/Bx, etc. e„.= Be2/Bz+ BN3/By, etc.

An elementary though somewhat tedious calculation

then gives the following line integral expressions:

1 I
d$&- (3ZX' Zq (3VX' Vq-

e„=— Kf, {
——

I

—Ef, {
4z- ~, do ( R' R') E R' R')

dP,
-

( X X'q
— f, { {1—3E}—+3E—

I

do. R3 R~)

Z ZX'q
—f,{ {1 K} +3E- —

R' R' )
db- ( V VX'q

f { {1 E} +3E— —
do ( R' R' )
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FIG. 4. Sketch showing the quantities which appear in the

formulas for displacement, strain, and stress caused by a line
element of dislocation.

Line integral expressions for the stresses are

1 l Id(g ( ZX' Z)—f, { 31. —M—
I

R R)
I'I' I' )—f, { 31,
R R)

ding ( X' X) ( ZX' Z )+—f, { 3L, I. —
I

—f,—} 3I. +I—
I

do ( R' R') ( R' R')

dg3 ( VX' V q+ foal 31-—+I=
I

drr E R' R')
X' Xy-

Ra)
X X'q
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R' R'&
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( V'Z Z~ d$2 ( Xq
-f~l 3L —I—
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do .. E R') k R' R')
XVZi-
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1 t d$,
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———
I EfI—
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+ f2{ I+f'El

(R3)

V VZ'i
—f { {1—2K}—y6E

dg, ( Xy ( Z ZV'y
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d&r I. E R') R' R' )
p6X VZ)—f,EI
( R )

The other normal strain components can be obtained
from e„by simultaneous cyclic permutation of variables
and the other shear strain components can similarly be
obtained from e„,.

(C). Stress Components

The stress components are related to the strain com-

ponents by

7 = t 6+2pe „etc. v.„,= pe„., etc.,
where h=e, +e~+e„.

where
2P @+2'' 2p2 XpM=, iV=

X+2p X+2p X+2p,

The above integrations are on do.. Hence the inte-
grands can be interpreted as the stress produced at a
point (x, y, z) by a line element do of dislocation located
at ($q, $2, $3). It is clear that we have reached a result
which, for an infinite elastically isotropic crystal, per-
forms the same function as the formula

dS= (pi/c)drrx r/r'

from electromagnetic theory. This result, together with
the result of Section III, provide a complete system for
investigating the mutual interaction of dislocations.


