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Note on the Li' Quadrupole Moment'

R. D. PREsENT
Univesdy of Tennessee, Knoxville, Tennessee

(Received June 2, 1950)

Recent measurements unexpectedly determine the sign of the quadrupole moment as positive, although
the magnitude is uncertain. On the quasi-atomic model the ground state is 1s'2p''P~ and of symmetry
$3j in Wigner's "first approximation. "The corresponding quadrupole moment is —6 in units of (r')2~/25.
The explanation of the discrepancy is sought in configuration interaction. A variational calculation of the
moment has been made taking into account the P states of symmetry L3$ from the low configurations
ts42ps3p and ts42ps4f The .maximum value of the moment is +2.32 in the above units; this value is increased
by including other configurations. The admixture of Pj P states from excited configurations has no effect
on the magnetic moment nor on the matrix element for Be' K-capture into the ground state of Li'; this is
satisfactory since the quasi-atomic model agrees reasonably well with experiment in these instances. When
the I3] D states from the above configurations are included in the variational calculation, the maximum
is raised to 8.03. The configuration interaction need not be large in this case to produce a positive moment;
however the inclusion of the $3j D states does impair the agreement with the magnetic moment and the
K-capture data. Considering the wide margin of uncertainty in the estimated experimental quadrupole
moment, we find that all the data are adequately explained without assuming large spin-orbit interaction
or large departures from partition symmetry.

I. INTRODUCTION

KCENT measurements' of the nuclear quadrupole
interaction with the molecular fields in Li2 and

~

~

~

~

~

the lithium halides indicate a positive quadrupole
moment for the I.i' nucleus. The estimated magnitude
(2X10 "cm') is uncertain, however, because of lack of
resolution in the Li2 experimental line and the uncertain
value of the electric field gradient. The quasi-atomic
nuclear model predicts a negative quadrupole moment
for the ground state (1s'2P'ski) of Li' Aval. ue of
—2 7)& 10 "cm' was calculated by Welles' using a wave
function determined from energy calculations on the
quasi-atomic central force modep together with a
reasonable estimate of (r')» (the mean square radius
of a 2p nucleon in Li'). Nearly the same wave function
and quadrupole moment are obtained in the first
approximation of %igner's theory, 4 which is based on a
central-force symmetric Hamiltonian with spin-ex-
change terms and Coulomb forces neglected. In this
approximation the orbital wave function is character-
ized by a definite symmetry with respect to permuta-
tions of the nucleons. The orbital wave function belongs
to an irreducible representation of the symmetric group
and is labeled by a partition. It is then possible to
determine the coefficients in the wave function from
the quantum numbers and symmetry considerations,
without having recourse to the usual perturbation
theory procedure which entails the calculation of energy
matrix elements and the solution of secular equations. '
Assume first that signer's approximation is valid and

*Presented at the 1950 Annual New York Meeting of the
American Physical Society.

' P. Kusch, Phys. Rev. 76, 138 (1949).' S. WeHes, Phys. Rev. 62, 197 (1942),
3E. Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937); M.

Rose and H. Bethe, Phys. Rev. 51, 205 (1937).' E. %'inner, Phys. Rev. 51, 106, 947 (1937); F. Hund, Zeits.
f. Physik 105, 202 (1937) .

~ E. Feenbcrg and M. Phillips, Phys. Rev. 51, 597 (1937).

that the partitions make good quantum numbers. The
completed shell of is particles has no e6ect on the
symmetry, makes no contribution to the quadrupole
moment, and is therefore omitted. The partitions for
Li' are then t 3], L2+1] and (1+1+1]in the order of
decreasing symmetry of the orbital wave function and
increasing energy of the nuclear state. The ground state
orbital wave function, belonging to the partition L3],
is symmetric in the coordinates of the three particIes
outside the s-shell. Assuming the ground state to be
1s'2p''Pt, the wave function is simply determined
(see Table I) and the quadrupole moment found to be
—6 in units' of (r'),„/25.

The discrepancy with the result inferred from
Kusch's experiments may be resolved in several possible
ways: (a) by configuration interaction (admixture of
wave functions for higher configurations), (b) by spin-
orbit interaction (admixture of D states), (c) by the
breakdown of partition symmetry (admixture of [2+1]
and L1+1+1]).These possibilities, of course, are not
independent; furthermore, combinations of (a), (b),
and (c) are possible. We denote, e.g. , by "Case (bc),"
the case in which configuration interaction is absent,
but in which L —S coupling and partition symmetry
both break down.

Case (a): Partition symmetry and L —5 coupling are
both preserved. Configuration interaction introduces
an admixture of 'P functions of symmetry f3] from
low odd-parity configurations. A positive quadrupole
moment may arise from the non-diagonal matrix ele-
ments of the quadrupole moment operator. This case
is considered below in detail.

Case (b): It is impossible for D states to be admixed
without either configuration interaction or a breakdown

This unit, which is used in the following, is roughly estimated
to be 0.3X10~6 cm~.
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TAsI.E I. Symmetric wave functions. *

42„'(P') = (2/3)gp'(P D,)+(v 5/3)gp'(P S„)
+2m'v(P') = (1/v'3)0 p'(F D.)+v'2/v'34I'(P~. )
+2js 3~(P') = (2v'5/3v'&}k~'{P~*D.)+(2v'6/3v'&)0 p'(P~P. )—(1/3V'&)4~'(P~'~. )+v'2/v'&4 p'(P S.)

+ 2&'3u(P') = (1/3v'7}4~'(P~*D.)+(v'&/3v'2}4~'(P~L)—v'5/v'424 p'(P P.)+(2v'5/3v'&)4~'(P *~.)
+(v10/3v 7)$ *{PS„)

@'(D)= —(1/v'5) +(D') 'xi+(2/v'5) +(D') 'X-~
+2 ' f'(D') = (1/V'3)ls|D'(I I .)+(2/3)4D'(P ~.}

+(V 2/3)4'&'(P 5 )

+ ' (D') =(1/v'3)4 '(P *D.) —(1/v'6)0 '(P D„}
+(1/v'2)4 I '(P P.}

+ See footnote 13.

of partition symmetry, since the 2p' configuration gives
rise to no D state of symmetry [3].

Case (c): A large departure from partition symmetry
is unlikely without a large spin-orbit interaction. The
spin-exchange and Coulomb forces do not cause large
departures from symmetry [3) in Li'. This case has
been investigated by Avery and Blanchard. ' Taking
into account the three P states of symmetry [2+1),
they are unable to fit the quadrupole moment and
other ground state properties of Li7.

Case (ab): Both P and D functions of symmetry [3]
from low odd-parity configurations are mixed in. The
admixture of D states implies spin-orbit interaction
and this breaks down the partition symmetry. Thus it
is somewhat artificial to take into account the above D
states and to omit the [2+1]D states from 2p'. How-
ever, one may reasonably inquire to what extent the
properties of light nuclei can be accounted for without
assuming a large departure from partition symmetry.
This case is also considered below in detail.

Case (bc): This case has been investigated completely
by Avery and Blanchard. ' Using the eight independent
functions of the 2p' configuration, they find it possible
to secure reasonable agreement with the quadrupole
moment and magnetic moment of I.i7 and with the Be'
K-capture data. A fairly unique wave function is deter-
mined in this way; it appears impossible to fit the data
with any very difFerent choice of coefIicients. In order
to obtain a positive quadrupole moment and retain
good agreement with the other data, the wave function
is required to be predominantly of symmetry [2+1].
Their final wave function, ' which corresponds to a
quadrupole moment of 3.5 in the above units, is 6
percent [3]and 94 percent [2+1).

Case (ac): In this case there is an admixture of P

states of all partition symmetries from all low odd-
parity configurations. This is somewhat artificial for
the reason given under Case (c), and has not been
considered.

Case (abc): The discrepancy is here attributed to a
combination of all three explanations. This last alter-
native, while probably the most nearly correct, is so
general and provides so many adjustable constants
that it can be reasonably expected to explain all the
experimental results without, however, providing much
insight into the reliability of the various nuclear
approximations.

II. CONFIGURATION INTERACTION

In the following it is assumed that all terms in the
wave function are of symmetry [3]. Configurations
that interact with 1s42P' must be of odd-parity; the
lowest of these are 1s'2p'3p, 1s'2p'4f, 1s'2s2p', and
1s'2p'3d. If the individual nucleons are assumed to
move independently in zero-order in a suitable "aux-
iliary potential, " the zero-order energy is the sum of the
eigenvalues for the individual particle states. In the
case of the isotropic space oscillator potential, the four
excited configurations listed above are lowest in energy
and have all the same zero-order energy. Since the
approximation of the auxiliary potential (Hartree) is
not very suitable for the type of force found in nuclei,
the description in terms of single configurations is
correspondingly inaccurate and an appreciable inter-
action between neighboring configurations of the same
parity is expected. For simplicity we consider only the
2p'3p and 2p'4f configurations. Quartet states are ex-
cluded by the symmetry [3] requirement; since the
total nuclear angular momentum J is —.,', this excludes
5 and F states. The enumeration of the states of
symmetry [3) arising from each con6guration is ele-
mentary. For example, in the case of 2P'3P there is
only one way to write a symmetric function correspond-
ing to an orbital angular momentum component
Mz, =Pm& =3, hence one P state; there are two linearly
independent symmetric functions with M1, =2, hence
one D state; and, since there are four such functions
with ML, =1, this configuration gives two I' states. The
number of linearly independent symmetric functions
for each value of Pm& is just the number of different
ways in which values of vs& can be assigned to the
individual nucleons. As noted in the previous section,
the con6guration 2p' gives rise to no D states of sym-
metry [3] and to but one [3]P state. In the case of
2p'4f there is one P state and one D state of this

TABLE II. Matrix elements of Q in units of (r )2„/25.
R. Avery and C. Blanchard, Phys. Rev. 77, 756A (1950);

78, 704 {1950).A detailed article describing this work was kindly
sent to the writer by R. G. Sachs.' This function does not conform to any nuclear model hitherto
proposed. The breakdown of partition symmetry through large
axial dipole interaction should lead to comparable proportions of
L3j and I 2+1j, The above function preserves the partition
symmetry, but the symmetry is not that appropriate to the Li'
ground state.

2p3 P 2p&4f P 2p23p P 2p23p P 2p&4f D
—6 2 +14/+5 2 +2/3 +7 —34 Q2/3 +35 4 +7/+15

—46/15 8/+5 4/5 28 Q6/15
-38/21 —32 +5/35 8 Q2/ +1S

—748/105 4 +2/5 Q3
22/15

2ps3p D
2 Q2/+15
4 +21/15
16Q3/ +35
—46/5 +21
—4 +14/5
28/15
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symmetry. Taking into account all the I' and D states
arising from 2p', 2p'3p, and 2p'4f, there are six sym-
metric wave functions to be calculated. Details of the
calculation are to be found in Appendix I and the
results are given in Table I.

The notation in Table I is conventional or self-

explanatory except in the following respects: P, is a 2p
function and P„* a 3p function for the proton; D,
represents a D state for equivalent 2p neutrons, D„a
non-equivalent 2p3p pair and X), a 2p4f pair. The two
linearly independent P state functions for 2p'3p are
denoted by C and 4 . In calculating the matrix elements
of the quadrupole moment operator, the functions P
are expanded in terms of product functions for the
protons and neutrons each with its own magnetic
quantum number, e.g. ,

4 ~'(P-D.) = (1/V'10) t P-' D' —v'3P-'D. '
++6P 'D„' I.

The functions in Table I are orthogonal and normalized.

GI. THE QUADRUPOLE MOMENT

The quadrupole moment, q, is defined as the expecta-
tion value of Q =g (3s'—r'), summed over the protons,
for the ground state eigenfunction with M =J. The 1s
shell protons make no contribution to q and the sum
reduces to one term. ' The matrix elements of Q are to
be calculated with respect to the set of normalized,
symmetrized, orthogonal wave functions given in Table
I. The radial integrals which occur in the matrix
elements require for their evaluation some explicit
assumption about the 2p, 3p, and 4f radial eigen-
functions. Assuming isotropic oscillator functions, these
integrals have been expressed in terms of (r')2~. Some
details of the evaluation of the matrix elements are
given in Appendix II; the results are in Table II.

%e seek the greatest possible values of q under the
assumptions of Case (a) and of Case (ab) of Section
I. The maximum of q is given by the largest root of the
secular equation:

~ Q;,—Xh;,
~

=0. In Case (a) only the
I' states are taken into account and the maximum
value of the moment is 2.32 in units of (r')»/25. The
coeKcients of the normalized wave function for this
value of q are 0.344, 0.630, 0.670 and —0.190 in the
order: 2p'P, 2p'4f P, 2p'3pP, and 2p'3pP". The
maximum quadrupole moment, while positive, is not
large and since the corresponding eigenfunction is only
12 percent 2p', very large con6guration interaction is
indicated. However the I' states from other excited
configurations have not been taken into account; their
inclusion in the variational calculation can only increase
the maximum above 2.32. %e conclude that a positive
quadrupole moment is consistent with a pure I' ground

'This is proved immediately by observing that, (a) Q is a
one-particle operator, (b) the one-particle integrals vanish for the
1s protons because the angular dependence of the operator is
given by P&{cos8).

state of symmetry [3j, provided that there is large
configuration interaction.

The inclusion of the D states helps materially to
increase the moment. In contrast to the P states, the
diagonal matrix elements for the D states are positive,
and the two D functions together give a maximum q of
4.67. If all six functions of the set given in Table I are
taken in combination, the maximum moment is raised
to 8.03. The corresponding coeScients of the normalized
wave function in the order of Tables I and II are:
0.276, 0.502, 0.523, —0.111, 0.542, and 0.304. This
function is 38.6 percent D state and only 7.6 percent 2p'.
It is interesting to note that a fair-sized positive
moment can be obtained from a combination of the
functions of Table I which is predominantly 2p'. Thus,
a function which is 60 percent 2p' and 10 percent each
of 2p'4f P, 2p'3p P, 2p'4f D, and 2p'3p D, if the phases
are all the same, yields a quadrupole moment of 2.55.
We conclude that Case (ab) of the Introduction pro-
vides a possible explanation of Kusch's results.

IV. CONCLUSIONS

As a further test of the adequacy of the wave func-
tions discussed in the preceding section, one can use
them to calculate the magnetic moment of Li' and the
matrix element for Be' E-electron capture leading to
the ground state of Li'. The symmetry L3] of the space
wave functions makes the magnetic moment calculation
very simple. The admixture of I' states from excited
configurations has no effect on the magnetic moment,
essentially because the magnetic moment is given by
the vector model and depends only on the quantum
numbers. More explicitly, the non-diagonal terms in
the spin part of the moment vanish through orthogo-
nality of the space functions and the diagonal terms are
all the same because all states have the same quantum
numbers. The orbital part of the moment is unaffected
by I' state admixture since the symmetry of the wave
function permits /, for the proton to be replaced by
l.,/3 and Mr, is a good quantum number. The magnetic
moment in Case (a) remains at the value predicted by
the quasi-atomic model: p~+ (1/3) =3.123 nuclear
magnetons, in reasonable agreement with the experi-
mental value" of 3.253. Admixture of symmetry [3]D
states can only decrease the magnetic moment. All
cross terms vanish and the moment is the weighted
sum of contributions from P', D', and O'. The result
is 3.123—4.1 7p9~ where pg& denotes the percentage of
D state. Thus the magnetic moment favors Case (a)
over Case (ab).

Avery and Blanchard' have pointed out that an
additional condition on the Li wavy function is pro-
vided by the experimental results" on the lifetime and
branching ratio for Be' E-capture. The absolute square

'0 Rabi, Millman, Kusch, and Zacharias, Phys. Rev. 55, 526
(1939).

««E. Segrb and C. Wiegand, Phys. Rev. 75' 39 (1949) j R.
Williamson and H. Richards, Phys. Rev. 76, 614 (1949),
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of the matrix element of the Gamow-Teller interaction
operator g;r~"'a"' has been inferred' from experiment
to have the value 1.76. The theoretical value" is 5/3
for a I' state of symmetry [3].This value is independent
of the detailed properties of the wave function, just as
in the case of the magnetic moment, and is unaffected

by I' state admixture through configuration interaction.
The agreement is very good and provides additional
evidence in favor of Case (a). Admixture of [3]D states
can only decrease the matrix element and impair the
agreement, since the absolute square of the matrix
element is 3/5 for a [3j D state.

Considering the wide margin of uncertainty in
Kusch's estimated value for the quadrupole moment,
we may conclude that Case (a) is reasonably consistent
with all the data. While Case (ab) provides the possi-
bility of explaining a larger quadrupole moment than
can be obtained from Case (a), this can only be secured

by sacrificing the good agreement with the other data.
It appears from the calculations that the experimental
results to date can be understood without assuming

large spin-orbit interaction and, especially, without
invoking any large departure from partition symmetry.

This problem was suggested by E. Feenberg of
Washington University. I wish to record my appreci-
ation for this suggestion and to acknowledge some
useful preliminary discussion.

APPENDIX I. CALCULATION OF WAVE FUNCTIONS

The functions needed for the calculation of the quadrupole
moment are those with M =J=~. Hence the P states have ML, = 1
and M8 ———,', while the D state functions are given by the linear
combination: —5 &4(D') x~+{4/5)&4(D') x ~ where the super-
script is ML, and the subscript Mq. Since we are neglecting spin-
spin forces between unlike particles, the neutrons have their own
multiplicity and are in a singlet state. The orbital functions C

for each state are linear combinations of functions P with the
same total I. and gal. and corresponding to a proton orbital
angular momentum I. and a neutron angular momentum L„,
the coefficients being determined by the symmetry requirement.
The P-functions are expansible in terms of product functions
which assign separate magnetic quantum numbers to protons and
neutrons; the coeScients are given by the well-known transfor-
mation formulas for angular momentum eigenfunctions. " The
Gnal step in the decomposition is to express the separate proton
and neutron functions in terms of one-particle functions with
definite values of e, l, and mf, . The neutron functions for non-
equivalent particles require symmetrization. After the decompo-
sition is effected and each P expressed in terms of one-particle
functions, the coeKcients of the P's given in Table I are obtained

by requiring that C be completely symmetrical in all particles.
This can be done in the simpler cases by inspection; in others,
e.g. , the 2p'3p con6guration, some algebra is required.

The procedure is illustrated in the case of 42p24y(P'). The
component functions can only be fI &(F~D,) and P~&(P&%)y), the

~ E. Signer, Phys. Rev. 56, 519 (1939)."E. U. Condon and 6, H. Shortley, The Theory of Atomic
Spectra {Cambridge University Press, London, 1935), p. 76. The
phase conventions 14'7 and 4'8 on pp. 78 and 123 have not been
used; instead j2 is taken always to be the lesser angular momentum
(when j& =j & we use j& =J,j&=I., and ji for 2p,j"for 3p neutrons).
The phases of the functions in Table I depend on this convention;
the results, of course, do not.

former corresponding to 2p neutrons and the latter to a 2p4f pair.
The transformation formulas give

Pp&(F„D„)=35 &
I 15&F~'D„~—10&F ~D„'

+6)F 'D„o—3)F 0D„'+F 'D

P& {P.Z,) = 10-&IP.Z, —3V., +6M.—Z„ I.
The normalized one-particle functions are denoted by

( p ')=c
(4f') =- -d, (4f') =-e (4f")=- -f (4f') =g (4f ') =»

where the phases have been chosen to agree with the Condon-
Shortley convention. The normalized neutron functions are given
by

D =aa, D'= —2 &(ab+ba), D =6 &(2bb —ac —ca),
D '=2 &(eh+bc), D =cc
E~=42 &

I
—15&(dc+cd) —5&{eh+be)+ (fa+af) I

'=42 &I10&{ec+ce)+8&(fb+bf)—3&{ga+ag) I

P'=42 &
I
—6&(fc+cf)—3{gb+bg) —6&{ha+ah) J.

Hence

PI ~(F D,) =70 &I —30&dcc —10&(ebc+ecb) —8&fbb

+2&(fac+fca)+3&(gab+ gba)+ 2&haa I

P~&(P E„)= 140 & I
—30&(cdc+ccd) —10&{bec+bce+ceb+cbe)

+2&(afc+acf+cfa+ caf) —8&(bfb+bbf)
+3&(agb+ abg+ bga+ bag)+ 2&(aha+ aah) I

and inspection suKces to give the coefficients of Table I. In the
case of 2p'3pP' there are two independent solutions to the equa-
tions for symmetrization; these give the orthogonal functions
42p~»(P ) and 4 p~»(P ) of Table I

APPENDIX II. CALCULATION OF MATRIX
ELEMENTS OF Q

The matrix elements of the one-particle (proton) operator
Q=32:i' —rP with respect to the set of functions given in Table I
are reduced immediately to integrals of the form:

where p, and pf, are the functions of Table I. All integrals of this
type, in which the neutron state specified in P, does not exactly
match the neutron state speciFied in P&, vanish by orthogonality.
Thus all cross terms in the diagonal matrix elements must vanish.
In the next step the trt-functions are expanded in terms of the
product functions with separate quantum numbers for neutrons
and protons. All integrals vanish in which the magnetic quantum
numbers of the two neutron functions do not match; in the re-
maining integrals the integration over the neutron coordinates
gives unity since the functions are normalized. Thus all integrals
have been reduced to the form J'Qp, @gEvi where p and pf, are
one particle functions for the proton with the same magnetic
quantum numbers. The one-particle functions of Appendix I
contain the normalized associated Legendre functions eg,

~

with the Condon-Shor tley phases. Since Q =2r PP2(p, &) the pre-
ceding integral reduces to the product of an angular integral:
Ig, t ~;g, ~ l

=J' idpP~(p) i, [ ~(p) ~,
~ ~(p) and a radial integral:

(r ) i, i . The eigenfunctions for the isotropic oscillator have been
used to evaluate the radial integrals and express them in terms of
(f ) 2p, 2p (r ).p. The number of integrals to be evaluated is greatly
reduced by observing that, e.g.,

fel& (~ D.) (' felt (&=.D,)i =felt '(».)I

and that

fÃ~'O' D.)4~'(& *D.)
is obtained from

felk~'(& D.) I'

by replacing (r')», » by (r~)», ».
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%e illustrate by calculating the non-diagonal matrix element

Q;; between 2p'4fP and 2p'3pa. After summing over spins this is
equal to: —(1/g5) J'Q42 &4y(P') 42„»(D'). On. inserting the
expansions of Table I, Q;; further reduces to:

(t/—3v 5)fQt pi(F D,)Ppi(P *D,)

The decomposition of PI&(F D„) in terms of product functions
was given in Appendix I; the corresponding development for
PD&(Pw*D„) is: 6 &I —3&P~'*D„P+P~P*D„'+2&P» '*D„2I. Integra-

tion over the neutron coordinates gives

fQ4'(F D.)k~'(P.*D.)

=210-il 3v 2fQF tP '* +3fQF oP o*

+g2fQF. ~P. ~
I

=2 210 &(r')3J, 4f I 3"/2I3, 1;1,1 +3I3,0; 1, 0++2I3, 1;]., 1I

where I3, p;1, p=3+21/35 and I3, 1;1,q=3g14/35. Since (r')3y, 4f
= {2+14/5}{r')2„,the resulting value of Q;; is (4+21/15) ((r') 2„/25) .
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The Primary Specific Ionization and Intensity of the Cosmic Radiation above
the Atmosyhere at the Geomagnetic Equator*

S. F. SINGER

2 pp/ied Physics Laboratory, Johns Hopkins University, Silver Spring, Maryland

(Received June 9, 1950)

Directional intensities and the primary speci6c ionization of the charged cosmic-ray Qux above the
atmosphere were measured by means of a G-M counter telescope in an Aerobee sounding rocket launched
at the geomagnetic equator. The intensity at a zenith angle of 45' averaged over all azimuths, was found
to be 0.04 particle sec. ' cm ' steradian ', of which not more than 65 percent can be attributed to primaries,
the remainder being due to albedo. The low value (~40 percent) of the observed east-west asymmetry is
most directly explainable in terms of positive proton primaries and a large albedo flux at large zenith
angles, although a small contribution of negative primaries cannot be excluded.

The primary specific ionization of the radiation above the atmosphere is found to be essentially the
same as that of the sea-level radiation, indicating a predominance of singly charged particles of near minimum
ionization. This result strongly suggests that the albedo radiation at the equator does not consist of low

energy (&100 Mev) protons.
Most of the properties of bursts produced in a small lead block. can be accounted for reasonably in terms

of known initiating particles and interactions.

I. EXPERIMENTAL ARRANGEMENT

A N Aerobee sounding rocket (Round A-11) was
hred at the geomagnetic equator about 600 miles

oG the coast of Peru from the USS Norton Sound on
March 22„1949.The rocket reached an altitude of over
100 km and spent 217 sec. above the appreciable
atmosphere. Its trajectory and general Bight history
were very similar to those" of Aerobee A-10 which was
&red a few days earlier.

This note is mainly concerned with results obtained
with an unshielded telescope (Fig. 1) similar to that
used in earlier work. ' In addition to measuring the
directional Qux of charged radiation, it determined the
average primary specific ionization of the radiation,
essentially by measuring the eKeiency of a low pressure
hydrogen-filled counter. This method is not refined
enough to determine the ionization of individual parti-
cles which traverse the telescope, but does have the
advantage of experimental simplicity. All counters'
were made of relatively thin-walled (0.020 inch) brass

~ Supported by the U. S. Navy, Bureau of Ordnance.' J. A. Van Allen and A. V. Gangnes, Phys. Rev. 78, 50 (1950).
2 J. A. Van Allen and A. V. Gangnes, Phys. Rev. 79, 51 (1950).
s S. F. Singer, Phys. Rev. 76, 701 (1949).

The coun. ters were made up to our specilcations by the
Nuclear Development Laboratory, Kansas City, Missouri.

tubing with an inside diameter of 2.44 cm. Their
effective length was 14.5 cm. As before, ' the low efIIci-
ency counter 8' was filled with pure hydrogen, this time
to a pressure of only 2.5 cm Hg. Coincidences ABC,
AB'C, and ACG were telemetered' to ground from the

ROCKET AX I S

o I 2 3 4 s EFF. COUNTER LENGTH «l4. 5 cm
EFF. COUNTER DIAMETER «P. .44cm

I'IG. 1. Disposition in the rocket of telescopes ABC and EST,
and lead block.

s G. H. Melton, Electronics 21, 106 (1948).


