CONDUCTIVITY OF THIN METALLIC FILMS

and experimental results is probably the proceedure of
solving the problem in two stages. This proceedure
neglects part of the distortion of the internal coupling
by the magnetic field. Because the coupling in O is
quite small and is therefore easily broken down, this
neglect may be significant. It is of no importance in NO
(see reference 1) which has a large coupling energy.
Two more lines have been found in a preliminary in-
vestigation of the level for which K=35. The method of
Schmid and Budé (which leads to results differing from
experiment by about 200 oersteds for K=1) should be
sufficient for the investigation of transitions within
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levels associated with values of K greater than 5. Even
when this simpler formula is employed, the arithmetical
work involved in identifying the entire spectrum re-
solved by Beringer and Castle is very laborious and has
not been attempted.

I wish to thank Professor Henry Margenau for sug-
gesting this problem and the method of solution and for
helpful criticism and advice throughout the course of
the calculation.

To Professor Robert Beringer and Mr. J. G. Castle,
Jr. I am indebted for prepublication use of a part of
their data on oxygen.
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The influence of a transverse magnetic field on the conduction properties of thin metallic films, of thickness
comparable with the free path of the conduction electrons, is investigated. It is shown that, owing to scat-
tering of electrons at the boundaries of the film, the Hall coefficient is increased, and the electrical resistance
oscillates with the strength of the applied magnetic field.

I. INTRODUCTION

N the theory of metals it is usual to assume that the
conduction electrons may be treated as if they were
free, the energy being proportional to the square of the
wave vector. This assumption is sufficient to explain
most of the conduction phenomena, but it leads to a
zero change of resistance in a magnetic field, and to
explain the usual type of magneto-resistance effect! it
is necessary to employ more complicated models which
take into account the departure of the energy surfaces
from spherical symmetry.? However, in proving that
there is no magneto-resistance effect for the free electron
model it is tacitly assumed that all the dimensions of
the specimen considered are large compared with the
free path of the conduction electrons. This requirement
is fulfilled under ordinary conditions, but it may break
down in the case of thin films or wires at very low
temperatures; under such conditions, where boundary
scattering of electrons plays an essential part in deter-
mining the resistance, the alteration of the free electron
trajectories in a magnetic field may lead to a finite
magneto-resistance effect. This is a ‘“‘geometrical” effect
which is of a totally different type from the ordinary
increase in resistance observed in the bulk metal, and,
being essentially classical in nature, it is much simpler
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to understand. The details of the phenomena observed
in any particular case depend, of course, upon the shape
of the specimen and upon the relative configurations of
specimen, electric current and magnetic field.

An effect of this type was first observed by Mac-
Donald,? who found that the resistance of a thin sodium
wire at low temperatures decreased when a longitudinal
magnetic field was applied. In the present paper,
however, we discuss only the case of a thin film placed
in a magnetic field which is perpendicular to the plane
of the film. Although this is perhaps not the simplest
case to visualize, it is the easiest to analyze mathemati-
cally, and an exact solution can be obtained assuming
only that the conduction electrons are quasi-free and
that a time of relaxation can be defined for their
collisions with the ionic lattice of the metal. These
assumptions are sufficient to bring out all the essential
features of the phenomena; a more general model, which
leads also to a finite magneto-resistance effect in the
bulk metal, will be examined in a later paper.

The increase in resistance of a thin metallic film in
the absence of a magnetic field has been discussed by
Fuchs,*and the present theory is a simple generalization
of Fuchs’ analysis. General formulas for the electrical
conductivity and the Hall coefficient in a magnetic field
of arbitrary magnitude are derived in Section II, both
for the case in which the electrons suffer diffuse reflec-

3D. K. C. MacDonald, Nature 163, 637 (1949).
4 K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938).
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tion at the surface of the film and for the more general
case of partially elastic surface scattering. In Section
11T we discuss the Hall coefficient in the limit of small
magnetic fields, and find that it shows an increase above
the bulk value analogous to the increase of the zero-field
electrical resistance. The field variation of the magnetic
effects is considered in Szction IV, and it is shown in
particular that, for films whose thickness is small
compared with the free path, the resistance oscillates
with the strength of the applied magnetic field. By
measuring the position of the resistance maxima and
minima it is possible to obtain a direct estimate of the
momentum of the electrons at the surface of the Fermi
distribution, and hence of the number of conduction
electrons per unit volume.

II. GENERAL FORMULAS FOR THE
MAGNETIC EFFECTS

(A)

We consider a metal film of thickness @, with its
surfaces parallel to the xy-plane, which is subjected to
an electric field (8., 8,, 0) in the plane of the film and
a transverse magnetic field (0, 0, H). (For this particular
arrangement, the condition curlE=0 ensures that the
electric field components are constant across the thick-
ness of the film.) The conduction electrons in the metal
are regarded as free, in the sense that the energy E is
related to the wave vector k by E=#?|k|?/(8xm), m
being the effective mass of an electron. The distribution
function f of the electrons is written in the form

f=foth(v, 2), 1)

where fj is the Fermi function 1/{e(®=9/*T41} (¢ being
the Fermi energy level), v is the velocity of an electron,
and fi is a function of v and z which must be determined.
fo depends on the absolute value of v only.

Under the combined action of the applied fields and
the collisions of the electrons with the lattice a steady
state is set up, and the distribution function in the
steady state is determined by the Boltzmann equation®

— (2ne/k)(E+(1/c)v X H) - gradxf+v-grad:f
=—(f—fo)/7, (2)

where —e is the electronic charge and 7 is the time of
relaxation of the conduction electrons. f is regarded as
a function of the wave vector k and the space vector r,
and 7 is assumed to depend on the absolute value of k
only. The term v-grad:g must be included to take
account of the non-uniform space distribution of the
electrons in the z-direction.

On combining (1) and (2), using the relation kk
=27mv which holds for free electrons, and neglecting
as usual the product of § with f; but retaining all the

5 A. H. Wilson, The Theory of Metals (Cambridge University
Press, London, 1936), p. 158.
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terms involving H, f is found to satisfy the equation

ofy s bt _fﬂ(v fy 6f1)

v Uz
dz Tv, Mmcu,\ 0V, vy
€ afo afo
(e ).
mo, v, v,
B)
To solve this equation we put
fr= (vacrtvyc2)0f0/ I, 4)

where v is the absolute value of v, and where ¢; and ¢,
are functions of v, v, and z which do not depend ex-
plicitly on v, and v,. From (3) and (4) we obtain the
following simultaneous equations for ¢; and ¢,:

661 C1 GH €

} { (2= é’-‘t; (5)
9z TV, MCY, moy,
ac 2 Co GH €

} 1= 8,. (6)
dz TV, MmCY, muv,

Introducing the complex quantities g=c1—ics, =8,
—1&,, we can write these equations in the compact form

ag g ieH €
—t—t—g=

9z TV,

g. (7)

mev,  mw,
The general solution is
ety
8= mu[ 1+ (GeH ) /mc]
X[1+F(v) exp‘ — (l-l-iGHT)i } ], 8)

mc TV,

where F is an arbitrary function of » and ,.

The boundary conditions which are used to determine
F depend on the nature of the scattering at the surface
of the film. If we assume, as we shall do for the present,
that the electrons are scattered entirely at random,
with complete loss of their drift velocities, the distribu-
tion function of the electrons leaving each surface of
the film must be independent of their directions of
motion. This requirement is obviously satisfied if we
take

F(v)=—1 for all v such that v,>0, 9)
and

F(v)=—exp{[1+ (teH7)/mc](a/7v.)}

for all v such that »,<0, (10)

since these equations ensure that g (and therefore f1)
vanishes for electrons leaving the surfaces z=0 and
z=a respectively.
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(©)

The current density (J ., J4, 0) can now be calculated.
For example, we have

Jo= —2e(m/h)3fffv,fdv,dvydv,.

Using (1) and (4), introducing polar coordinates (v, 8, @)
in the v-space (with »,=v cosf) and integrating over @,
this becomes

Jo=— 27re(m/h)3ffv4 sin®6c¢,(8fo/dv)dvds.

There is a corresponding expression for J, with ¢; re-
placed by c,.

Introducing the complex current y=J.—1iJ,, and
integrating over » by means of the formula

-fw(v)(afo/av)dv =y(7)

which holds for a degenerate electron gas, 9 being the
velocity at the surface of the Fermi distribution, we
obtain

gj=21re(m/h)32')“f sin%fgds. (11)
0

For comparison with experiment we require the mean
current gu, averaged across the thickness of the film.
Combining (8), (9), (10) and (11), we obtain after
some calculation

In= (1/a)f 9dz = xkooF /$(s), (12)
where '
1 1 3 3 p*/1 1
LG (—-—-—)e—“dt, (13)
o(s) s 8* 2%, \# v
and where s is a complex variable defined by
s=«k+10, (14)
with
xk=a/l, B=a/r, (15)

l=1?7 being the free path of the conduction electrons,
and r=mic/eH being the radius of the circular orbit
of an electron in a magnetic field H. We have also used
the expressions

n=(8x/3)(mv/h)? (16)

for the conductivity of the bulk metal and for the
number of electrons per unit volume.

The formal similarity between Eq. (12) of the present
paper and Eq. (17) of Fuchs’ paper* should be noted.

(D)

Equation (12) contains all the results required for
comparison with experiment. The electrical conduc-

co=nel/mb,
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tivity o, for example, is measured by applying an
electric field in, say, the x-direction and observing the
current in this direction, no electric current being
allowed to flow in the transverse direction. We therefore
have o= R(Ju)/ R(F), with 9(ga)=0, where ® and 9
denote the real and imaginary parts respectively.
Using Eq. (12) for ga and eliminating &, we obtain for
the ratio of the resistivity 1/¢ to that of the bulk
metal 1/a

ao/a=R{p(s)}/x. a7

The Hall coefficient is defined by Ax=8,/HJ.
=—9(5)/{H®R(Yn)}, where &, is the transverse electric
field set up under the above experimental conditions,
and we easily obtain

An/Ano=9{¢(s)}/8, (18)

where 3 is defined by (15), and where Ay, = —1/(nec)
is the Hall coefficient of the bulk metal. The ratios oo/c
and Ay/Ap,, are therefore functions of the two dimen-
sionless parameters k and 8 only. Note that « and 8 are
both proportional to the thickness of the film; also that
« depends upon the temperature (its temperature
variation being the same as that of the bulk electrical
resistance), whereas § is proportional to the strength of
the magnetic field but is independent of the temperature.

(E)

The theory is easily extended to apply to the more
general case of partially elastic surface scattering, where
a fraction, p, of the electrons arriving at the surface of
the metal is supposed to be specularly reflected, retain-
ing its drift velocity, while the rest are scattered
diffusely. The analysis is formally identical with that
given by Fuchs! for the case of zero magnetic field and
will not be presented here in detail. (Note that our
notation differs somewhat from that used by Fuchs,
a, I, and p being used instead of ¢, N, and e.) It is found
that all the results of the preceding sections apply,
except that the function ¢(s) defined by Eq. (13) must
be replaced by ¢,(s), where

1 1 3( ) /71 1 1—e‘“‘d
e[ ()
bo(s) s 282 1 \& B)1—pe !
This reduces to (13) when p=0, and to the bulk metal
value 1/s when p=1.

(19)

III. THE HALL COEFFICIENT IN SMALL
MAGNETIC FIELDS

When =0, Eq. (17) combined with (13) or (19)
leads at once to expressions for the conductivity of a
thin film in the absence of a magnetic field which have
already been given by Fuchs [Egs. (18) and (22) of his
paper ]. By expanding (13) and (19) in ascending powers
of B and retaining only the linear term, corresponding
expressions may be obtained for the Hall coefficient in
the limit of vanishingly small magnetic fields, In this
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limit Ay/Au,o is independent of B8, and the resulting expression (for arbitrary p) can be written in the form

3 3 © mict 1 mx m** mid
=== p)——(1=pP % W[ Ez(—mx>—exp<-mx)(-——+——— ]
An 4k 2k m=1 12 2 6 12 12
Ano 3 3 © mixt 15 mi®  mid 2
[1——(1—1))——(1—-{7)22 p"‘—l{Ei(—-mx)(mW— )——exp(—mx)(——-—mx—— +——) ”
8« 4k m=1 12 2 6 12 12
where
—Ei(—u) =f (exp[—ut]/t)dt. (21)
1
When =0, (20) reduces to
1 3 1 « &
1—-KBEi(—k)——(1—e* —-e“(——— —)
An 8 4« 4 8 8
= . (22)
Ao 3 K3 3 5 k K\
(1) a5
4 12 8k 8§ 16 16

Equations (20) and (22) are to be compared with Egs. is’
(22) and (18) of Fuchs’ paper. Figure 1 shows An/An,o
as a function of « for three values of p, and should be %o _‘f 1-p 1 i 24
compared with Fig. 1 of Fuchs’ paper. It is seen that —;_ 31+p« k! ne) (24)

the Hall coefficient of thin films shows an increase above
the bulk value analogous to, but smaller than, the
increase of the electrical resistivity. For very small
values of , Eq. (20) reduces to

Ap 41—p 1
Amo 314 s(nc)?

(23)

the corresponding expression for the electrical resistance

f " — L L
Q003 0005 Q0! 002 005 ar 02 Qs Lo
K

Fic. 1. The Hall coefficient of thin metallic films in the limit of
small magnetic fields.

6 As « decreases from large values, 4z at first actually decreases
slightly below the bulk value before increasing in the expected
manner; the effect is very small, however, and is of no practical
importance.

To my knowledge there are at present no experi-
mental results with which to compare the theoretical
predictions outlined above.

IV. THE FIELD VARIATION OF THE
CONDUCTION PHENOMENA

(A4)

The field dependence of ¢ and Ay is obtained from
Egs. (13), (17), (18) and (19) by keeping « constant
and varying B. Various methods have been used for
evaluating the theoretical expressions numerically.
Considering for the present the case =0 only, we find
that, for small |s| (that is, for 243<1), ¢(s) is most
conveniently evaluated by means of the power series

1 3 1 1
——=—(1—v—logs)+—-s——s*(31—12y—12 logs)
o(s) 4 2 192 &

sn

+35 (-1

—_—, (25
n=3 (n—2)n(n+2)! )

where v is Euler’s constant. For sufficiently large |s|,
the asymptotic series

t 13 1 = 4)(n—3)(n—1)!
"*——+——e—"2(—1)n("Jr J(n=3)(n—1) (

;6—5 8? 16 »— s

26)

may be used. For intermediate values of |s|, however,

7 The expression given by Fuchs for oo/ in the limit of small «
(Eq. (23) of his paper) differs from (24) and is incorrect.
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F16. 2. The field variation of the resistivity, assuming diffuse
surface scattering.
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F16. 3. The influence of the surface scattering coefficient on the
field variation of the resistivity.

neither of these series is of practical utility, and numer-
ical integration is necessary. The integrals required are

of the form
©s1 1
f (————) exp(— «t) cosftdt
1 B

71 1
f (——-—) exp(— «t) sinBtdt,
1 \B B

and cannot, in general, be expressed in terms of tabu-
lated integrals. For small values of «, however, approxi-
mate values can be obtained by replacing exp(—«f) by
1—«kt+3x*? and expressing the integrals in terms of
the sine and cosine integrals for the argument g.

For non-zero values of p the calculations become very
laborious. It is possible to write down expansions
corresponding to (25) and (26), but in general it is
simplest to evaluate the real and imaginary parts of
(19) by direct numerical integration.

(B)

The results of the calculations are shown in Figs. 2
to 5 for some typical values of the parameters, sufficient
to illustrate the general behavior and to show the effect

and
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of varying « and p. The curves of Fig. 2 show oo/ as a
function of B for p=0 and for three values of x, while
those of Fig. 3 show ¢o/c as a function of 8 for k=0.02
and for three values of p. Figures 4 and 5 give the
corresponding curves for Ay/Ap,o.

The most interesting result of these calculations is
that the resistance of a thin metallic film oscillates with
the strength of an applied transverse magnetic field.
In the absence of a magnetic field the resistance is
given by Fuchs’ value; as the magnetic field is increased,
the resistance increases initially and reaches its first
maximum for a magnetic field such that g8 is approxi-
mately unity. The higher oscillations are of roughly
constant spacing (successive maxima occurring for
8=1,7,13,19, - - - approximately) but decrease rapidly
in amplitude, and in very strong magnetic fields the
resistance tends to the constant asymptotic value

(00/0)po=1+3(1—p)/8k. @7

The oscillations die out and the resistance approaches
the bulk value as « tends to infinity or as p tends to
unity; the position of the maxima and minima, however,
is not appreciably affected.

The Hall coefficient, on the other hand, does not
oscillate, and, as 8 increases from zero to infinity, 44
decreases steadily from the value (20) or (22) to the
bulk metal value.®

©

It is interesting to compare Eq. (24) for the conduc-
tivity of a thin film when H=0 with Eq. (27) for the
conductivity when H= «. The logarithmic dependence
of o on the ratio //a when >>a is due to the fact that,

000! 0.0 o1 ) 0

B

F1G. 4. The field variation of the Hall coefficient, assuming diffuse
surface scattering.
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F1c. 5. The influence of the surface scattering coefficient on the
field variation of the Hall coefficient.

8 More precisely, Ax decreases to a value slightly below the
bulk value, passes through a minimum and finally increases
towards the bulk value. This behavior is similar to that of Ax
for H=0 as a function of «.
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in the absence of a magnetic field, the dominant contri-
bution to the current arises from electrons which, after
reflection at the surface of the film, move in directions
so nearly parallel to the surface that they do not travel
freely to the opposite surface but make their next
collision in the bulk of the metal. Equation (27) shows
that the contribution of these “anomalous” electrons is
eliminated in a strong transverse magnetic field, and
the conductivity is given by an expression of the ordi-
nary type (16), with a length of the order of the thick-
ness of the film playing the part of an effective free
path of the conduction electrons.

The oscillations in conductivity which occur for
intermediate values of the magnetic field are connected
with the oscillations in speed of an electron moving in
perpendicular electric and magnetic fields, as pointed
out by Chambers.® If we put §,=0 and regard &, as
the resultant of the applied electric field and the Hall
field, kinetic arguments may be used to show that the
distribution function is given by [compare Eq. (24) of
Chambers’ paper]

67)081 6]’0 0
f(v,2) =fot+ — sin(

myy, 0vJ_,

+a)ew o g, (28)

r cosf

where v,=1,sind, v,= —1vpcosd, and the remaining
symbols have their usual meanings. This expression is
easily shown to be equivalent to the expression for f
obtained by combining Egs. (1), (4), (8) and (9) of the
present paper and putting §,=0. The integrand of (28)
represents the contribution to f of electrons which have
traveled freely to the point considered from a distance
£ away in the z-direction, the limit of integration —z
corresponding to electrons which have traveled from
the surface of the metal. The fluctuations in f as a
function of z/r are due to the presence of an oscillating
integrand in (28), and to the presence of the metal
surface which provides an upper limit to the distance
from which electrons can come to contribute to the
current at . In a metal of infinite extent the limit of
integration in (28) may be replaced by — e, and f is
then independent of z and no longer fluctuates.

(D)

Observations on the resistance oscillations predicted
by the present theory may be used to estimate the
momentum m? of the electrons at the surface of the
Fermi distribution and hence the number # of conduc-
tion electrons per unit volume, which is related to m®
by Eq. (16). It should be noted that this estimate can
be made without any accurate knowledge as to the
values of « or p, since the values of 8 for which the
maxima and minima occur are almost independent of
the values of these parameters. It must, however, be

9 R. G. Chambers, Proc. Roy. Soc. A202, 378 (1950).
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borne in mind that a correction will need to be applied
for the ordinary bulk magneto-resistance effect which
is superimposed on the effect discussed above, and
which will not be negligible at the low temperatures
and high fields required to observe the oscillations even
in the case of metals like the alkali metals for which it
is most likely to be small.’® To estimate this correction
theoretically it would be necessary to employ a more
general model than the free-electron model used in the
present theory, since this leads to a zero bulk effect.
It is hoped to return to this question in a later paper.

The values of # obtained directly as explained above
can be used to check the validity of the free-electron
theory by comparing them with the values of # obtained
by combining estimates of / obtained from the increase
in resistance of a thin film in the absence of a magnetic
field (assuming some value for p) with estimates of #¥
obtainable according to Eq. (16) from the bulk conduc-
tivity oo. Alternatively, the direct estimates of #» may
be used together with values of oy to obtain /, and hence
to obtain an estimate of the surface reflection coefhicient
p from the observed increase in resistance in the field-
free case (which depends sensitively on the value! of p).

Finally, we give an estimate of the orders of magni-
tude which may occur in an actual experiment: these
indicate that the resistance oscillations should be
observable, though the experiment would probably
not be easy. Note that the film thickness must be
chosen to be neither too large, since it must be made
small compared with the free path of the electrons, nor
must it be too small, since otherwise it would not be
possible to obtain sufficiently large values of 8 with the
magnetic fields that are obtainable in practice. If we
choose a=10"* cm, then a sufficiently long free path
may be obtained by employing very pure unstrained
specimens and liquid helium temperatures. Also, if the
metal used is sodium, we have »=2-5X10%2 and we
estimate that 8=1 in a magnetic field of 60,000 gauss.
Smaller magnetic fields would be required in the case
of metals with a smaller number of conduction electrons.

The work described in this paper was begun at the
H. H. Wills Physical Laboratory, University of Bristol,
England and was completed at the Research Laboratory
of Electronics of the Massachusetts Institute of Tech-
nology. The author would like to express his thanks to
Professors N. F. Mott, J. C. Slater, and A. G. Hill for
the hospitality extended to him at their laboratories.
He also wishes to thank Mr. R. G. Chambers for
showing him the manuscript of his paper before publi-
cation, and Miss Elizabeth J. Campbell of the Joint
Computing Group of the Massachusetts Institute of
Technology for patiently performing most of the heavy
numerical work.

10D, K. C. MacDonald, Proc. Phys. Soc. London A 63, 290
(1950).



