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The Zeeman EBeet in Oxygen*
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This paper describes the calculation of the energy of magnetic sub-levels belonging to the Z-state of 0
in an external magnetic field. A general secular determinant is derived, the roots of which yield the desired
energies. The results are particularly useful in the investigation of levels associated with a low value of the
rotational quantum number. The perturbation representing the external magnetic field is introduced
together with the perturbations leading to the rotational triplets; thus the distortion of the rotational
triplets is considered from the beginning of the calculation. The work is performed in two stages to avoid the
mathematical difIiculties of treating a ninth-order secular determinant. Comparison between theory and
experiment is satisfactory.

I. INTRODUCTION calculation reduce to those of Schmid, Budo, and
Zemplen for large values of the rotational quantum
number, E; the approximation is increasingly good for
all K)5. Hence we are primarily interested in the mag-
netic sub-levels belonging to the rotational levels for
which E=1 and 3. (States for which E is even are
prohibited by the homonuclear character of O~.)

A S a result of the application of microwave tech-
niques to the examination of molecular Zeeman

patterns, a need has arisen for more exact theoretical
expressions for the Zeeman energy levels of a diatomic
molecule. Recently a method for computing these levels
has been applied to the 'II3~2-state of N'40" the results
of the calculation are in good agreement with experi-
ment. In the present paper the same method is used to
compute the energy values of the magnetic sub-levels
of the rotational triplets in 0"O' . The mathematical
details are somewhat diferent, since 02 is an example of
Hund's case (b), whereas NO corresponds closely to
Hund's case (a).

A general method of computiiig the Zeeman effect in
02 has been discussed in a paper by Schmid, Budo, and
Zemplen. ' Their procedure is to suppose that the rota-
tional spin triplets in 02 are examples of Hund's case
(b); then, employing eigenfunctions representing case
(b), they introduce the external magnetic field as a
perturbation on the three state functions corresponding
to a rotational triplet. Essentially the result is that the
efkct of the external magnetic held is superimposed on
the rotational triplets. Unfortunately, when applied to
the most intense lines in the spectrum, their work
agrees only approximately with the experimental
results of Beringer and Castle. '

In this paper we start with a set of eigenfunctions
corresponding to Hund's case (a). Certain perturbations
(discussed below) treated in conjunction with this set
lead to the rotational triplets in 02. We introduce the
operator representing the eGect of the external magnetic
field along with these perturbations and thereby take
into account from the beginning of the calculation the
distortion of the energy levels of the rotational triplets
by the external magnetic field. The results of this
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II. THE VECTOR MODEL FOR 02

The energy levels to be investigated belong to the '2-
state of the oxygen molecule. This state is a close
approximation to Hund's ideal case (b). The quantum
number A, which represents the projection along the
internuclear axis of the total orbital angular momentum,
is zero. The total electronic spin, S, has associated with
it a quantum number, S, which has the value unity; we

suppose that S is the result of the addition of the
individual spins of two electrons. The sum of S and the
rotational angular momentum vector, K, is represented
by the vector J, the total angular momentum of the
molecule; associated with K and J are the quantum
numbers E and J. For a given value of E, there are
three possible values of J; these depend on the three
possible orientations of S relative to K. As a result, each
rotational energy level of the 'Z-state of 02 (charac-
terized by a particular value of the rotational quantum
number, E) is divided into three sub-levels, the values
of J associated with these sub-levels being J=A;
J=K+1.There is a magnetic moment associated wit, h

J, and this magnetic moment interacts with an external
magnetic held, H. The result is that each member of a
rotational triplet is further divided into 2J+1 sub-

levels which depend on the 2J+1 possible orientations
of J relative to H. The quantum number M~ is used to
designate the projection of J in the direction of this
held. The energy level diagram for the case E= 1 is

shown qualitatively in Fig. 1. %'e use the notation
W(J, E, Mq) to represent the energy of a magnetic
sub-level. W(J, E, Mq) will of course be a function of
the strength of the external magnetic held, H. We shall

compare the theory to be developed with experiment

by hnding those values of the magnetic held strength,
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H, for which

W(J, K, Mg) W—(J, K, Mg —1)= vo

where po ls the operating frequency.

III. THE QUANTUM-MECHANICAL CALCULATION

Oxygen is an example of Hund's case (b). Neverthe-
less we begin the calculation with a set of eigenfunctions
corresponding to case (a). Such eigenfunctions are sharp
with respect to the quantum numbers J, S, Z, and M~,
where Z is the quantum number representing the com-
ponent of S along the internuclear axis. We use this set
so that we may take advantage of the work of previous
authors; we expect the 6nal result to be independent of
the particular basic set of eigenfunctions employed,
provided we consider the interaction of a sufFicient
number of eigenfunctions from the basic set.

The symbol
~
J, 5, Z, Mq) is to designate an eigen-

function of the basic set; explicit dependence on vibra-
tional and electronic quantum numbers is not indicated.

The functions
~
JSZMq) which correspond to Hund's

ideal case (a), are obtained as eigenfunctions of the
Hamiltonian of the oxygen molecule in a magnetic
fieM only when certain terms in that Hamiltoniaa are
neglected. In order to obtain a more accurate state
function for the molecule, these terms must be treated
as perturbations.

In doing this we first consider the terms in the Hamil-
tonian neglected when the wave equation of the entire
molecule is separated into electronic, vibrational, and
rotational parts. %'e indicate these terms by the symbol
H'. They are given explicitly by Van Vleck, 4 who com-

putes the following matrix elements of H' between
eigenfunctions,

~
JS&M~)

(JSZM, ~H ~
JSZ~1M,)

=8[(5+2+1)(SWZ)(JOE+1)(JWZ)]&, (2)

(JSZMg I H'~ JSZMg) =8[5(5+1) Z'], —

8—= b,'/2mp'; m—=reduced mass of molecule; p—=inter-
nuclear distance.

Two other perturbations of importance in this cal-
culation were 6rst introduced by Kramers. ' The first
involves the interaction of the spins of the two outer-
most electrons; the sum of these spins gives the molecule
a total spin of 1. The second perturbation takes into
account the interaction of the magnetic moments asso-
ciated with K and S. Mathematically, the two are,

A[35,'—S'] and pK S,

where A and p, are proportionality constants; 5, is the
operator representing the component of total electron
spin along the internuclear axis. Kramers gives the
matrix elements of the 6rst as

(JSZM~I A(35.'—5')
I
JS~M~)

=A[3K'—5(5+1)]. (3)
' J. H. Van Vleck, Phys. Rev. 33, 467 (1929}.
5 H. A. Kramers, Zeits. f. Physik 53, 422 (1929}.

FrG. 1. Qualitative
energy level diagram
for the lowest rota-
tional state of Og in
a magnetic Geld,

He also provides matrix elements of the second between
eigenfunctions corresponding to Hund's case (b) in
which J, E, 5, M& are "good" quantum numbers.
Following his work, we shall not introduce this per-
turbation until the stage at which we are dealing with
state functions which correspond closely to case (b)
eigenfunctions. The matrix elements then are

(JKSMgi pK Si JKSMg)
= ll~[J(J+ 1)—K(K+1)—5(5+1)] (4)

Finally we consider the eBect of the external mag-
netic 6eld. Since A is 0, and 02 has no nuclear spin, the
only interaction with the external fieM is that involving
5, the total electronic spin. This interaction may be
written

H =2p,oH S; p, o =—the Bohr magneton.

For the basic set of eigenfunctions
~
JSZMg), the total

spin is quantized along the internuclear axis the pro-
jection being designated by the quantum number Z.
The arguments of the rotational part of

~
JSZMq) are

the Eulerian angles 8 and P. (See Kronig. ' Without
losing any generality we may let the Eulerian angle p
be zero. ) These angles specify the position of an axis
system, X'I"Z', with origin at the center of mass of the
two nuclei and Z' lying along the internuclear axis of the
molecule, relative to XFZ, another axis system having
the same origin but with the X, I', and Z directions
fixed in space. %e suppose that the external magnetic
field of magnitude H is in the Z direction. Then, if we

let H, , H„, and H, be the components of 8 in the X',
I ', and Z' directions, we obtain

H =0; H„=H sin8; H, =H cos8.

Therefore

H =2@08 S=2go[H;5;+H„sv+H, S, ], (3)H = NOH[2 coses; i sing(5'+——S' )],

6 R. Kronig, Band Spectra and Mnlecular Structure (Cambridge
University Press, London, 1930}.
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where

S'+=—S, +iS„; S' =—S, —iSy.

%e obtain matrix elements of H by employing the
matrix elements between symmetric-top eigenfunctions
given by Rademacher and Reiche' and by use of the

relations

S'+ 5&)= [(S—Z)(5+2+1)]l 5, 5+1),
S' SZ) =[(5+2)(5—2+1)]& 5, Z —1),

~SZ) being the spin part of
~
JSZMq). The matrix

elements which we require are

2Z'Mg
(JSm~ja

~
JSZM, )= p,a,

J(J+1)
2Z [(J+1)'—Z'][(J+1)'—M '] &

p pH)
(2J+1)(2J+3)

(JSZM, )a„~J+1,Sm, ) =
J+1—

ppHMg
(JSZMgia„i JS, &+1,Mg) = — [(J—Z)(J+Z+1)(S—Z)(S+Z+1)]&,

J(J+1)

(J+1)'(2J+1)(2J+3)

(J—Z)(J—Z —1)(5+2+1)(5—Z)(J' —Mg') &

(JSZMgia~i J—1, 5) 2+1, Mg) = IJOH-
J'(2J—1)(2J+ 1)

(J+Z+2)(J+Z+1)(5+2+1)(5—Z)[(J+1)'—Mg"-] &

(JsrM, ja„~J+I, s, x+1, M,)=„a

In computing them we suppose
~
JSZMq) to be mul-

tiplied by a phase factor, exp[ —i
~
2—Mz

~
s/2], so that

the results given in the table of Rademacher and Reiche
have a consistent sign.

Since we are interested in energy changes within a
particular rotational level, we neglect the constant
electronic and vibrational energies associated with that
level. The total Hamiltonian of the molecule may then
be written

Ho Hr+H'+A[——35 ' S']+pK S+—H, (7)

where Hy is the operator representing the rotational
energy of the molecule in case (a); it is the Hamiltonian
of the symmetric top for case (a) and has a matrix
element which is the energy of the symmetric top. Thus

(J»Mz
~
Hr

~
Js&M~) =B[J(J+1) &'] (g)—

In order to describe adequately the energy level be-
longing to a rotational triplet, it is necessary to use nine
functions from the basic set in conjunction with the
Hamiltonian (8). We avoid the ninth-order secular
determinant which arises from such a procedure by
performing the calculations in two stages. These stages
are best described with the help of Fig. 2.

Ke begin with the nine eigenfunctions the energy
levels of which are represented under the column "start"
in Fig. 2; the values of the quantum numbers J and Z
which distinguish them are indicated on the figure; the
energies associated with them are B[J(J+1)—Z'].
Since they are case (a) eigenfunctions, they have no
correspondence to states of the O~ molecule.

Next, we form a linear combination of

~
J~S, 1, M~), ~ J~S, O, Mq) and

~
J&5, —1, Mq)

' H. Rademacher and F. Reiche, Zeits. f. Physik 41, 453 {1927).

ppHM g
+ (2Ji+1)' B-

Jg(Jg+ 1)

2XypHM g
+'A' —2BX+

Ji(4+ 1)

2 2ppHM g
E(Jg, Jg) =BJg(J,+1)+—X+

3 Ji(J,+1)

p pHM, r
E(Jg, Jg —1)=B[Jg(Jg+1)+1]——+

Ji(Ji+1)

p pEXMg
(2Jg+1)' B——

Ji(Ji+1)

where X=—~3A.

2Xp, pHMg
+X'—28K+

Ji(Ji+ 1)

The notation E(J&, J&+1),etc. will be explained below.
By putting the roots (9) back into the three equations
which led to the secular determinant, we evaluate the
coefFicients of the linear combination and obtain the

and diagonalize the Hamiltonian (8) with respect to it,
omitting the term p, K S at this stage. This procedure
gives rise to a secular determinant the roots of which are

ppHM g
E(Jg, Jg+ 1)=B[Jg(Jg+1)+1]——+

Ji(Ji+ 1)
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eigenfunctions corresponding to the three roots. They
are

START STAGE (t) STAGE (2)
K=Ji+2

P(J» J&+1)=u(J» Jg+1) I JgS1Mg)

+b(J„J,+1) I
J,soM, )

+~(A J~+1) I
J~s—1M~),

a(J(, J)+1)=c(J), J~+1)

E(J» Jg+1)—E(Jg, Jg)

I 2f'+ [E(J» Ji+1)—E(Ji, Ji)j' I
'

K=Jl+ I

K=Jl

b(Jg, Jj+1)=
I2f'+[E(Ji J~+1) E(J~ Ji)O'I ~

f~B[2J,(J,+I)]&-
[2Ji(Ji+1)7&

K=Jl-I

$(J» Jg)=o(J), Jg) I
JgSIMg)

+b(J„J,) I
J,soM, )

(11)+c(J„J,) I
J,s 1M,),

a(J), Jg) =c(Ji, Ji) =1/V2; b(J), Jg) =0,

0'(J~ J~—1)=o(J~ J~—1)IJ~SIM~)

+b(J» J,—1) I J,soM&)

+~(J» J~—1) I JP—1M~)

a(J» Jg —1)=c(Jg, Jg —1)

E(Ji, Jg —1)—E(Jg, Jg)

I2f'+[E(Jp, J&—1) E(Jg J&)]'I~—

b(J» Jg —1)=—
I2f'+[E(Ji, Ji—1)—E(Ji, A) j'I'-.

If we let X and H be zero, the energies (9) have the
form BE(K+1), where E=J~+1 for E(J~, Jq+1),
E=Jq for E(J» J~) and E=J~ 1 for E(J» Jq ——1).
Now BE(K+1) is the form for the energy of a molecule
in Hund's case (b) with A=O; hence the energies (9) are
all associated with the same value of J but with the
values of K: E=J&, E=J1~1.This accounts for the
notation of Eq. (9). For instance, E(J» J~+1) signi6es
that the value of J associated with this energy level is
J1 and the value of E is J1+1. It follows that the
functions f(J&, J~+1), @(J~,J~) and P(A, J~—1) are
eigenfunctions of the operators K as well as the operator
J; hence these functions correspond to Hund's case (b)
and thus are a good representation for states in the 0~
molecule.

By repeating the above process for the cases J=J&+1
and J=JI—1, we obtain the energy level scheme shown
in stage (1) of Fig. 2; if we were to include all possible
levels arising from different values of J, stage (1) would

K=J&-&

FIG. 2. Rotational energy levels at diGerent stages of the
calculation.

TABLE I. Theoretical and experimental held strengths and line
intensities for transitions between Zeeman components of 6rst
two rotational levels in 02.

K

1

1

1
1

Transition
MJ~MJ —1

0 —1
1~0—1~—2
0 —11~
2~1

0 —1
0 —1

H (oersted)
Calc. Obs.

5524.2 5527
~10,000.0

8703.6 8657
7169.5 7149
6633.7 6620
6023.0 6014

7447.5 7445
8528.8 8500

Relative
intensity

Calc. Obs.

0.35 0.60
0.35
0.68 0.40
1.00 1.00
0.99 1.00
0.66 0.60

0.34 0.25
0.68 0.80

' R. Schlapp, Phys. Rev. 39, 806 (1932}.

be a series of triplets, each set being associated with a
difI'erent value of E. Except for the presence in the
Hamiltonian of the operator representing the magnetic
field and the temporary omission of the term pK. S, the
calculation and results at stage (1) are identical with
those of Schlapp. ' Since the state functions for 0~ must
be antisymmetric in the exchange of the identical
oxygen nuclei, states associated with even values of E
do not exist; this result would appear automatically if
we were to start with a basic set having the correct sym-
metry properties.

When J=0, Eq. (9) are not valid, since [01,&1, Mz)
does not exist. For this special case

E(0, 1)= —(4/3) X+2B,
P(0, 1)=a(0, 1) I011Mg)+b(0, 1) I010Mg)

+c(0, 1) I01—1MJ), (13)

a(0, 1)= c(0, 1)=0; b(0, 1)= 1.
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In stage (2) of the calculation, we form a linear corn- diagonalize the Hamiltonian (7) with respect to this
bination of f(Jq 1,—J~) from (10), (or 13, if Jq ——1), combination, including now the term pK S. This leads
P(J~, J~) from (11), and P(I~+1, J~) from (12). We to the secular determinant

(E+1)(E' MJ'—)

K'(2K+1)

E(K 1, E—) p(E+—1)—K'
2a(E 1, E—) ( K 1 i '—

x
v2 &2K—1)

E
+b(E-1, K)

~

&2X—1&

(E+1)(E'—Mg') &

2poH
E'(2K+1)

2a(E 1, E) (—E 1)1—
V2 (2K—1)

K
+b(E-1, E) ((2K—1)

E(E, E,—p —lV

E[(E+1)'—MJ'] i
2poII

(E+1)'(2K+ 1)

2a(E+1, E) ( E+2 i '*

=0, (14)
W2 E2E+3)

t' K+1 q
&

—b(E+1, E)
~

&2K+3)

EL(E+1)'—Mg'] '
2p, pII

(E+1)'(2E+ 1)

2a(E+ 1, E) ) E+2 i &

v2 (2K+3)

) E+1 y
'*-

b(E+1, E)
I I
I 2m+3)

E(E+1,K)+pK 1V—

X (J+Mg)(J—My+1)J'(J+ 1)'
W(JEMg)

Xexp—
kT

(15)

where quantities are labeled by the value of E; i.e.,
E(K 1, E) is the—energy for which J=E—1 and
E=E. The roots of this determinant are the energy
values required for the solution of Fq. (1). For large E
or small H, (9) reduces to the analogous result in the
paper of Schmid and Budo. Under the method of cal-
culation used here it is necessary to consider the per-
turbation of neighboring rotational states in order to
obtain for the energy a value which reduces to the
Paschen-Back energy at very high fields.

Ke compute relative intensities by calculating for the
transitions the numerical expression for the quantity

Q (JEMz) I 5,+iSy~ P(JKM J 1))'—
W(JKMg)

Xex
kT

=L—2a'(J, E)+2a(J E)b(J K)(2J(J+1))&]'
1

where the dependence of the eigenfunctions (10), (11)
and (12) on the quantum number, Mq, is indicated in
the flotation P(JEMq). T stands for the absolute tem-
perature of the oxygen in which the transition is taking
place; k is the Boltzman constant.

IV. RESULTS

The values of II which are solutions of (1) and which
lie in the experimental range of Beringer and Castle's
apparatus are given in in Table I along with the inten-
sities computed by use of (15). The expressions for the
constants needed in the calculation are as follows:
8=1.4377 cm ', @=0.008 cm ', ) =1.985 cm ',
vo

——0.31163 cm ', T=78 Kelvin, p,0=4.66846)&10 '
cm '/oersted. The first three are taken from the article
of Schlapp the third and fourth are experimental
values. Results are given only for the energy levels for
which E equals (1 or 3). For K=3, all values of the
field strength other than the two given lie outside the
experimental range (9200 oersted). All of the intense
lines arise from transitions within these two levels. The
principal cause of the discrepancies between theoretical
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and experimental results is probably the proceedure of
solving the problem in two stages. This proceedure
neglects part of the distortion of the internal coupling
by the magnetic 6eld. Because the coupling in 02 is
quite small and is therefore easily broken down, this
neglect may be signi6cant. It is of no importance in No
(see reference 1) which has a large coupling energy.

Two more lines have been found in a preliminary in-
vestigation of the level for which K= 5. The method of
Schmid and Budo (which leads to results differing from
experiment by about 200 oersteds for X= 1) should be
sufficient for the investigation of transitions within

levels associated with values of E greater than 5. Even
when this simpler formula is employed, the arithmetical
work involved in identifying the entire spectrum re-
solved by Beringer and Castle is very laborious and has
not been attempted.

I wish to thank Professor Henry Margenau for sug-
gesting this problem and the method of solution and for
helpful criticism and advice throughout the course of
the calculation.

To Professor Robert Beringer and Mr. J. G. Castle,
Jr. I am indebted for prepublication use of a part of
their data on oxygen.
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The &~6uence of a Transverse Magnetic Field on the Conductivity of Thin Metallic Films
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The inHuence of a transverse magnetic Geld on the conduction properties of thin metallic Glms, of thickness
comparable with the free path of the conduction electrons, is investigated. It is shown that, owing to scat-
tering of electrons at the boundaries of the film, the Hall coefBcient is increased, and the electrical resistance
oscillates with the strength of the applied magnetic field.

I. INTRODUCTION

N the theory of metals it is usual to assume that the
~ - conduction electrons may be treated as if they were
free, the energy being proportional to the square of the
wave vector. This assumption is sufIicient to explain
most of the conduction phenomena, but it leads to a
zero change of resistance in a magnetic field, and to
explain the usual type of magneto-resistance effect' it
is necessary to employ more complicated models which
take into account the departure of the energy surfaces
from spherical symmetry. ' However, in proving that
there is no magneto-resistance effect for the free electron
model it is tacitly assumed that all the dimensions of
the specimen considered are large compared with the
free path of the conduction electrons. This requirement
is ful6lled under ordinary conditions, but it may break
down in the case of thin 6lrns or wires at very low
temperatures; under such conditions, where boundary
scattering of electrons plays an essential part in deter-
mining the resistance, the alteration of the free electron
trajectories in a magnetic field may lead to a finite
magneto-resistance effect. This is a "geometrical" effect
which is of a totally different type from the ordinary
increase in resistance observed in the bulk metal, and,
being essentially classical in nature, it is much simpler

* Now at Trinity College, Cambridge, England.
~* This work has been supported in part by the Signal Corps,

the Air Materiel Command, and the ONR.' P. Kapitza, Proc. Roy. Soc. A123, 292 (1929).'-R. Peierls, Ann. d. Physik (5) 10, 97 (1931).

to understand. The details of the phenomena observed
in any particular case depend, of course, upon the shape
of the specimen and upon the relative con6gurations of
specimen, electric current and magnetic field.

An effect of this type was 6rst observed by Mac-
Donald, ' who found that the resistance of a thin sodium
wire at low temperatures decreased when a longitudinal
magnetic 6eld was applied. In the present paper,
however, we discuss only the case of a thin film placed
in a magnetic field which is perpendicular to the plane
of the film. Although this is perhaps not the simplest
case to visualize, it is the easiest to analyze mathemati-
cally, and an exact solution can be obtained assuming
only that the conduction electrons are quasi-free and
that a time of relaxation can be defined for their
collisions with the ionic lattice of the metal. These
assumptions are sufficient to bring out all the essential
features of the phenomena; a more general model, which
leads also to a finite magneto-resistance effect in the
bulk metal, will be examined in a later paper.

The increase in resistance of a thin metallic film in
the absence of a magnetic field has been discussed by
Fuchs, ' and the present theory is a simple generalization
of Fuchs' analysis. General formulas for the electrical
conductivity and the Hall coeKcient in a magnetic Geld

of arbitrary magnitude are derived in Section II, both
for the case in which the electrons suffer diffuse reQec-

' D. K. C. MacDonald, Nature 163, 637 (1949).' K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938).


