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Asymptotic Expansion of Irregular Coulomb Function for Angular Momentum Zero
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(Received June 12, 1950)

A justification is given for an expansion of the irregular Coulomb function, usually denoted by Gp, in terms
of Bessel functions of the second kind with an imaginary argument. This expansion has been considered
speculatively by Yost, Wheeler, and Breit and explicitly verified by Breit and Bouricius for a number of
terms. A general rule of replacement of the Bessel functions of the first kind with an imaginary argument in
the corresponding expansion of the regular Coulomb function is here established. The formulas developed
are convenient for the calculation of coefIIcients of the energy.

Notation
,$f, M' and Ze, Z'e, masses and charges of the particles.

p=reduced mass p, '= V I+{M') '

m =mass of electron.
v= relative velocity of the particles.
a =&v/Ii.

IS=angular momentum.
a = Ii'/pZZ'e'.
7i = 1/ka, =ZZ'e'/Av.
p= kr.
x= (8pe)'= (8r/a)'.

Fp, Gp= regular and irregular solutions of the differential equation
for r)&radial function for Z=O; the signs and nor-
malization are as in YYVB.

C(P =2'-g/(e "I—1).
4 p=Fp/Cpp is a power series in p the first term of which is 1.
Op= CpGp.

1"{x)=gamma-function of x.
y =0.5772 = Euler's constant.
q =2q(2y —1+R.P.F'(iq)/F(iq)) for I.=0.

+p= ()p—p(2g ln2p+q)4p is a power series in p beginning with
the term 1 and having no term in p.

p=2g for L=O.

I. INTRODUCTION

T has been shown by Yost, Wheeler, and Breit' that. ~ in the limit of zero energy the quotient G&/(DL, p ~)
= 0+I, approaches a finite limit,

lim Oz ———(2/(21)!)(x/2) "+'Kz+i(x), (I)

where it„(x) is the Bessel function of an imaginary
argument of the second kind defined by Whittaker and
Watson's' Eq. (17.71). It has been also stated in that
reference' that the replacement of E21,+I by a series
obtainable from the series for the regular Coulomb
function by the substitution of the E„ for the Bessel
functions of an imaginary argument I„ leads to values
which agree in some cases with results obtained by
direct calculation also at finite values of the energy. At
the time there was no proof that the expansion of O~L,

in the E„is justifiable. For I =0 the expansion has been
used by Breit and Bouricius. ' These authors have

* Assisted by the joint program of the ONR and AEC.
' Yost, %heeler, and Breit, Phys. Rev. 49, 174 {1936),referred

to as YWB.' E. T. Khittaker and G. N. watson, Modern Analysis {Cam-
bridge University Press, London, 1920), third edition, Chapter
XVII.' G. Breit. and K, G. Bouricius, Phys. Rev. 75, 1029 (1949},
referred to as BB.

verified the expansion for a number of terms by a rear-
rangement of the standard series for 00. The quantity
I"(iq)/I'(ig) which multiplies the regular function in
the expression for 00 was replaced in these calculations
by Stirling's series for the logarithmic derivative of the
F function. These calculations have been preceded by
some closely related ones made by the present authors.
Since then a different treatment has been published by
Jackson and Blatt. ' An explanatory note concerning the
procedure of Breit and Bouricius was inserted in a
footnote by Breit and Hatcher' and the relationship to
the work of Jastrow' was pointed out. In the present
note considerations are presented which dernonstater
that the replacement of the I„by the E„ in the series
for the regular function should lead to the result of
employing Stirling's approximation for F (ig)/I'(ig) in
the standard expression for 00. The replacements are
meant to be made by means of Eqs. (7.24), (7.26) of
Breit and Bouricius. These give

Co= V o+o i/n'+v o/n'+

po
——(2/x) Ig(x), (2)

—20o&x'= Ho+ 9)/vP+go/g' (3)
and here the p, can be obtained from Eqs. (7.3), (7.31)
of the same reference, ' while the 8, follow by replacing
the I„by the F„.A proof can be given as follows.

It will first be noted that the expression for ()0 in
terms of 0'o, 4o, p, q of YWB contains a term in Ing
when p is expressed in terms of r/a= pp. The quantity
qo contains I"(ig)/I'(ip). When Stirling's series is used
for the logarithmic derivative of the gamma-function
the term in lng is removed everywhere, the two com-
pensating terms occurring in the single factor p ln2p+q
which multiplies the regular function. The series for 00
can be rearranged, therefore, as in Eq. (3). The symbols
0; are independent of g but are functions of x. The
cancellation of terms in lng is essential for the validity
of this form. The absence of positive powers of g is
readily seen from the structure of Eq. (10) of YWI3.
The step of the proof, just conducted, will be referref1
to as step A.

4 J. David Jackson and John M. Blatt, Rev. Mod. Phys. 22, 77
(1950).

s G. Breit and R. D. Hatcher, Phys. Rev. 78, 110 (1950).' R. Jastrow, Phys. Rev. 73, 60 (1948).
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It will next be noted that %hittaker's integral
representation of %'hittaker's confluent hypergeo-
metric function gives

I'„+i(iz, (ie ——' /(:o') f t ""(t+2ip)' e 'dt

= (i/Co) (r ip)—'&(r—+ip)'&e 'dr, (4)
0;p

where each of the integrals may be taken along an
arbitrary path from the lower limit to the in6nitely
remote part of the complex plane to the right of the
axis of pure imaginaries. This requirement is essential
because it is necessary to require that

e
—ztI —io+1(t+ 2i )z+zo z—

have vanishing values at both limits of integration. In
terms of the variable r the original path of integration
from t =0 to t = ~, along the axis of reals in the t plane,
corresponds to integration along the straight line
Im7. = p. This path may be deformed into a path along
two straight lines, the first from 7.=ip to 7=0, the
second from ~=0 to v = ~. In the process of deforming
the path one must vary argt=arg(r ip) —as well as
arg(z+ip) continuously. Accordingly arg(r —ip) on the
vertical part of the path is —zr/2, while arg(r+ip) on
this part of the path is + zr/2. There results, therefore,
the factor exp( —zrz)) which multiplies

f r i p f

-'o
f
r+i p f

'o-

in the integrand. It now follows that

I

Co(I"o+iGo)=e '"PJ~ (1 zz) "(1 +—)z'z"e '~"dzz

+ i
J

f expL —r —2z) tan —'(p/r)]dr. (5)
0

in agreement with the fact that Fo is the regular solution
which can be expressed as a power series having for the
6rst term Cop. The quantity Op is readily transformed
into

Aoz = (x/2) f exp
f

—(x/2) (v+ 1/o) ]
0o

Xexp[22)($ —tan 'f)]a=,tz,„da. (8)

The establishment of Eqs. (6)—(8) will be referred to as
part 8 of the proof.

It will be shown next that the expansion dered by
part A of the proof can be obtained from the following
symbolic expression for Go

Co(Go)»~b = (O~o)»~b = (2:/2) e '*'@'"+"'
Qp

p ( -2 "(-)"t'""/(2 +1) f =*«,.d~ (9)

The relation of Eq. (9) to Eq. (8) is that of replacing
$—tan '$ by its Taylor expansion. The employment of
the symbolic expression for Go is meant in the sense that
if one expands the exponential containing $ in a power
series in 1/z) and integrates over s then one obtains a
representation of Go=Oo/Co which is claimed to be
identical with that obtained by the Stirling series
procedure described in part A of the proof. In fact
according to Eq. (3)

—x'e./2 = (1/s!)[I)'Oo/i)(z) ') ']

This relation is true irrespective of questions of con-
vergence of the right side of Eq. (3). In fact Stirling's
asymptotic series for I"(y)/I'(y) has the property that
the coefficient of 1/y' can be obtained by successive
differentiation of

1"(y)/F(y) —lny+ 1/2y

Henc(
(O, =P,G„=()„+(-)„~

where

exp' —.—2n t»i-'(p/. )]d.r( )0~ ——

~() tdt

J o (t2+ y'-) (ez« —1)
(12)

1 1+@
(-)ozz = e "P sin —P'zz+ z) log ——dzz. (6")

I) 1 —'H and that Stirling's series is obtainable by expanding
1/(l'+y'-) in ascending powers of t'/y' and integrating
term by term in accordance with Fq. (12).On the other
ll a Adq

The real part, of Kq. (5) gives

Q I

P„——.(pe ""/2('o) Jf (1—zz) "(1+zz)'"e '& "dzz

—I
', (')"I,'(')(y '-')"

lo „

~)
and equating both sides of the resultant equation as
though Stirling's series were a convergent rather than
an asymptotic one. The reason for this circumstance is
the fact that the above expression is6')

=-(pe "' '&')[I 1'(1+z~)l'/-ip]~ . —:(2zp)

=Cow;„„.(2ip)/(»), (z)
= —2 — — (tz+v'-) ' f dt, (13)

ez~t 1 g(y
—2)a
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$8
(i'-+~-')-' ~ = '(-) -'~'- --' (13')

8(y
—')"

The differentiation under the integral sign in Eq. (13)
is legitimate because the integrals converge for all
deriva tives.

In the present application the variable y=ig. The
The term in') in Eq. (11) is removed by a similar term
arising from lnp. The term in 1/y does not enter because
1/y is purely imaginary. The expression listed as Eq. (11)
is, therefore, the one of interest. The differentiation of
(')0 involves the differentiation of 40, p, q and 4O, p. An
inspection of Eq. (18) of YWB shows that pp=2r/u
does ~ot bring in q and that 4p, Cp, and the expression
listed under Eq. (11) are the only ones containing r).

Since 4'p, 4» are absolutely convergent their differen-
tiation with respect to g

' can be performed as though
they were polynomials. It has just been shown that the
same may be done employing Stirling's series for the
expression arising from q and listed under (11). It
follows, therefore, that one may use Eq. (10) in order to
evaluate 8, even though the series for Op in powers of

p
' is an asymptotic one.
Returning to Eq. (6) it will now be sufficient to con-

sider separately the contributions arising from the two
parts of Op. The presence of e & in Op'~ causes the
disappearance of its contributions to the right side of
Eq. (10). The form of Oor presented as Eq. (8) and the
expansion

tan —&(= ~ ~( )~~@~+i/(2//+1)

sinh(iri))
(
+'

Cp= (1 u) —'~(1-+u) *"e '& "d-u

2XQ ]
(14)

sinh(~i)) 9 8
exp ii)8—i ta—nh — e'(e'+1) 'd8.

Sg 2

In the second form of 4», listed above, the parts e "/2
and e '"/2 of sinh(vari)) will be first considered sepa-
rately. For the first, the path of integration is moved to
the line Im8= m, going around the point 8= xi in a
small semicircle from below. For the second part the
path is moved to the line Im8= —m, going around
8= —~i in a small semicircle from above. The two
integrals can then be combined into one since the con-
tributions on the rectilinear portions of the paths cancel.
One finds by a short calculation

exp i8i)—i (e'+—1) (e' —1)
2-." 8.

y e'(e' —1)-'d8, (14')

the I„(x) and E„(x) are the same, that the Taylor ex-
pansion of the second exponential factor in Eq. (9)
brings in powers of x which combine with the Bessel
functions and that the powers are in agreement with the
lowest permissible ones occurring for 4p. It is hard to
write out this proof briefly and unambiguously because
of the necessity for distinguishing between operations
on the I„and E„. A more usual type of proof will be
given, therefore, making use of the possibility of ex-
pressing 4» in a form similar to Eq. (9).

It follows from Eq. (7) that

show that these derivatives can be obtained by for-
getting temporarily that the expansion of tan —'p is
inapplicable for $&1 because this circumstance is
irrelevant in the evaluation of successive derivatives
for )=0. It now follows that the 8, can be obtained by
means of a formal expansion of Eq. (9) in powers of i) ',
successive differentiation with respect to q

-'and
evaluation for i)= ~ by means of Eq. (10). The pro-
cedure of performing differentiations is unnecessary,
however, because the symbolic expansion furnishes the
coefficients directly. Eq. (10) had to be brought into the
discussion only as a means of defining coeKcients of
an asymptotic series. Since the power series in $ for the
second exponential in Eq. (9) is a power series in i) ' it
has been proved by now that the formal expansion of the
integrand of Eq. (9) in ascending powers of i) 2 yields
a series which is identical with that obtained through
the replacement of p'(ir))/F(ig) by Stirling's series. The
part of the proof just concluded will be referred to as
«)art C. It demonstrated the equivalence of the symbolic
expansion to the employment of Stirling's series.

It remains to show that the 8. are obtainable from the
A by replacing the I„(x) by the E„(x) Aproof of this.
can be given by noting that the recurrence relations for

where C is a contour around 8=0, taken counterclock-
wise. Expressing this result in terms of u and introducing
a variable of integration

one obtains
f' =ix/(4r)u), (15)

'l t ( ZX $'"( iX
e,=—t(1+—

/ ]
I—

4&i.j & 4&()

( i2) (~+i/

~x "c
&(exp [ —27) 2,"(—)"(s/4i)i)' "+'/(2m+. 1) )d-|'. (16)

In the last formula C denotes a counterclockwise
con tour around the origin in the ~ plane. This form of
4 p is directly comparable with

—(2/~'-') p-&0].y„,i, .

It is seen by means of Eq. (9) that aside from the fact
that the integrals in Eqs. (9), (16) are over different
variables and different paths their integrands have the
same form and that the formula for Cp contains an
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extra factor I/(s. i). The standard integral

(x/2) "I'(2)
A'„(x) =—- —cos(x v) e *-""sinh'"018

I'(v+-', ) ~ u

may be expressed as

(x/2) "I'(l-)
K,(x)=————cos(xv) 1 e &"-"'"""

21'(v+ k) ~ o

(v 1 ) -'dv
(»)

E2 2v)

alK1 one l|'as also

(x/2)"I'(k)
I,(x) = ——— — ' cosh(x cosy) sin'"pdp

n. i'(v+P ~,

(r/2) I(-')
(os(xv) )t e

—(*I2) (r+&Ir')

27ri I'(v+!;) ~ c

1 q
-'"dj

X
i

——
(

—', (18)
42 2f')

the last contour being in the same sense as in Eq. (16).
It will be noted that the integrands in Eqs. (17), (18)
di6er only by a change of the letter v to |, that the
contours dier in the same way as in the representations
of —200/x' and 40 by Eqs. (9), (16) and that the extra
factor 1/(xi) occurs in the formula for I„,just accounting
for its presence in Eq. (16). The coHection of the same
l&owers of I/g' in Eq. (16) must lead to the Bessel func-
t.ion expansion of YWB since there can be only one
such expansion. The same process applied to —200/x'
through Eq. (9) will give in accordance with Eqs. (9),
(16)—(18) the same form for the 0, as for the y, but
with the I„replaced by K„.

It may be mentioned that the symbolic expansion of
Ho and the analogous form for Co are reasonably con-

venient for the calculation of coeScients of q
"-'. The

absence of the I„in the series for Oo means that all terms
of the asymptotic expansion vanish exponentially with
x for large x. These terms provide, therefore, a con-
tinuous passage to the solutions of negative energy for
which the particles are bound to each other by a devia-
tion from the Coulomb law at short distances.

It is clearly possible to subtract the term in
[I"(i')/I'(iq) —logr/jp40 from 00, expressing it by
means of Stirling s series and then to add it again with-
out the use of Stirling's series. The calculations of
Jackson and Blatt' give a formula which has this rela-
tion to the asymptotic expansion discussed here. The
law of formation of the coeKcients appears to be sim-
plest, however, for the asymptotic series and it can be
used as a starting point for the modification just men-
tioned avoiding the somewhat laborious operations
which appear to be necessary in the solution of the
chain of equations for the 0.. Whether one does so or
not does not matter in the calculation of 0'0. This
quantity is the only one used by BB.

In connection with the calculations of BB, the Bessel
function expansion of 0'0 was compared with series
calculations of 8reit, Thaxton, and Eisenbud for
proton-proton interaction in the energy range 0.2 to
2.8 Mev, and of Thaxton and Hoisington' in the energy
range 3 to 9 or 1.0 Mev. It was found that the Bessel
function expansion including the term in E' gave values
of 4'0 0.05 percent smaller than exact calculations at 2.8
Mev for r=0.75e'/mc' and 0.001 percent larger for
r=e'-/mc'. In the higher energy range, the Bessel func-
tion expansion gave a result smaller than the results of
exact calculations at 10 Mev by 0.07 percent for
r =0 'i5e'/mc', and at . 9 Mev by 2.4 percent for
r=e'/mc'-. A Bessel function. expansion including only
the linear term in Ewas found to give agreement within
0.4 percent below 2.8 Mev.

7 Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 {1939).
'H. M, Thaxton and L. E. Hoisington, Phys. Rev. 56, 1194

{1939).


