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Non-Linear Interactions between Electromagnetic Fields

ROBERT KARPLUS 'f AND MAURICE NEUMANf
Institute for Advanced Study, Princeton, Neu Jersey

(Received June 12, 1950)

The covariant 5-matrix formalism of Dyson has been applied to the calculation of the fourth order
non-linear polarization of the vacuum, which is related to the lowest order non-linear interaction between
electromagnetic fields. The finiteness and the gauge invariance of the interaction are exhibited explicitly by
an expression for the fourth-rank vacuum polarization tensor in momentum space.

I. INTRODUCTION

T has long been recognized that higher order cor-
~ ~ rections in quantum electrodynamics include non-
linear interactions between electromagnetic fields. ' They
arise from the polarizability of the vacuum, from the
possibility that transitions involve pairs only in inter-
mediate states. Since such a correction depends on the
operators of the electromagnetic field alone, it can be
thought of as an addition of fourth degree in the field
strengths to the electromagnetic Lagrangian density
or as a non-diagonal contribution to the scattering
matrix between matter-free states. The scattering of
light by light, which has received some treatment in the
literature, ' ' is an example of a process which can be
described by a specific interaction between photons.

Since the corrections we are discussing are neces-
sarily at least of the order t,4, their calculation has
involved considerable complications both because the
treatment of efkcts involving virtual pairs has been
traditionally accompanied by divergence and gauge-
invariance difhculties and because the expressions en-
countered were lengthy and tedious to manipulate.
With the promise the recent developments in quantum
electrodynamics' ' give of eliminating the former and
reducing the latter of these obstacles, it seemed worth
while to re-examine the problem in spite of the smallness
of the efkcts and the consequent difhculties attending
their experimental detection. %e have therefore rear-
ranged the appropriate portion of the fourth order cor-
rection to the 5-matrix to display explicitly its finiteness
and gauge-invariance. To this end it has been expressed
as a sum of terms each of which is a scalar product of
derivatives of field strengths multiplied by a finite
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scalar non-local operator. The I'ourier transforms of
these are given as integrals over three parameters of
rational functions of the momentum variables. The com-
putation of a cross section requires only the well-known
manipulations of the appropriate element of the scat-
tering matrix in addition to the evaluation of the above-
mentioned integrals for those values of the momenta
which are of interest. The length of the expressions
involved, however, makes the calculation of cross-
sections very tedious except for simple special cases.

A quantity which plays an important role in the cal-
culation is the vacuum polarization tensor 6„„), of
fourth rank,

bj„(x)= —(a'i12h) jtG„„p.(x, x', x", x'")A„(x')

)& A g(x")A, (x'")dx'dx"dx"', (1)

where bj „(x) is that part of the current induced in the
vacuum which is intrinsically cubic in the potential,
and which cannot be reduced to lower order sects.
This tensor, it will be shown, is finite and divergenceless
with respect to all indices,

t3

BXy,

It will appear further that the tensor depends only on
the mass of the pair field and on the nature of the
coupling between the pair and vector fields. Hence Eq.
(1) is valid even when A„(x) refers to a neutral vector
meson fields, coupled vectorially to the pair field. The
effective interaction Lagrangian density, 1.(x), and
the contribution to the scattering matrix, 5(", are
simply related to the polarization tensor:

z
S&4)= ——t d4xL(x)

kc ~

ZCX —
~t G„„g.(x, x', x", x'")A„(x)A„(x')

(kc)' 12 ~

)&A),(x")A.(x"')dxdx'dx"dx'". (1')
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The fourth-order term of the electrodynamic 8-matrix
which describes the non-linear eftects in which we are
interested is given by the Feynman diagram (Fig. 1)
or by the integral over four four-spaces'

5 "= —(1/64) (e/kc) '
J

d4x)d'x2d'x3d4x4

to zero through positive values. ~&G„,h, (*) is equivalent
to T„,)„&'& in the integrand of Eq. (6) because of the
symmetry of the remaining factors with respect to
simultaneous permutations of k~" 0&2) . ~ and p, v,

G„,h. '"', of course, is completely symmetric with respect
to these operations. Furthermore,

G 3 (v) (k(1) k(2) k(3) k(4) )

—G 3 (v) ( k(» k(2) k(3) k(4)) (9)
X A„(x,)A„(x,)A), (x,)A, (x4)

XTr{y„Sp(x2 —x1)y,SK(x3—x2) y3
because the trace of the spinor product of an odd
number of Dirac matrices vanishes.

At this stage the quantities S'" and G„,h, ~"' must be
defined more precisely because they depend on the
logarithmically divergent tensor T„„h,'"). This is accom-
plished by regularization:" "

~ps her Tp3 h&r rpvho (10)

XS) (x4—x3)ygp(x1 —x4) I. (3)

A „(x) is the vector potential of a photon and/or a fixed
electromagnetic field; Sr (x) is the function characteristic
of the Quctuations in the pair 6eld, '

2i ( i(yp) K—
lim d'p e '"*

(2)r)' v~' & p'+K' —3e

and, correspondingly,Sp(x) =—
G)vv3v hmLGvvkv Gvv3v ])M~~

)v px = p r —p()x() &

(4) 2 (
K = 2)3c/k 5&'& = ——

432J~ d4x
J

d4k&»d4k(»d4k&3)d4k&4)

12
The transition to momentum space, with

yields

A (x) =(kc)1 tA (k)e'"*d'k

Xexp[i(k(»+k(2)+k(3&+k"))x]A (k"&)A (k(2))

XA3(k&3&)A. (k&")-'G 3 '"'(k'" k&" k&" k&") (6)

where

G„,3.("&(k&(&, k&", k&'&, k&4'

(v)(k(1) k(2) k(3) k(4)) +T (v)(k(1) k(2) k(4) k(3))

+T ),„.&"'(k&" k"& k&" k&4&) (7)

Xexp[3(k&" +0&"+k(') +k(4')xjA„(k&")

XA, (k&2))A), (k&3&)A.(k&")

XG„,3 (k ' k", k ", k '&). (11)

k (1)G 3 (k(1) k(2) k(3) k(4)) —0

kv&"G»3v(k&", k(" k&'), k&4)) =0 etC
(12)

To verify the consistency of the theory, the 6niteness
and gauge-invariance of S'", one may observe that the
polarization tensor G„,h, is finite and that it satisfies
the Fourier transform of Eq. (2),

T „~ (v)(k(1) k(2) k(3) k(4))

iy(p —k"&)—K2+P—K

iy(p —k&'& —k&'&) —K

Xyh
(p k'" k&"—)'+K'—ie—

1.

d pTr
i2r2 " p'+ K' ie (p k—&'&)'+ K'—3'e—

Xy

2y(p k'" k''& k&'&) K— — — —
Xy. . (8)

(p —k&2& —k&3& —k&4&)2+ K2 —ie
Fzo. 1. The Feynman diagram.

' W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).
"Alternatively, the ambiguous integrals can be defined by

demanding that S(4) be gauge-invariant. Equation (2) would
then become a defining equation for G„h .

It will be understood from now on that integrals which
depend on e are to be evaluated in the limit as e tends
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Because 6„„~, is symmetric these four equations are
actually equivalent to one another.

That 6„„& is indeed finite may be seen more readily

by separating the divergent terms in T„„)„(")and
(M) .

the resulting terms cancel in sets of four. A characteristic
group is

imp K— iy(p k&'&—)—K

(1/2»2) &f'pT»
p2+K2 2'K (p k&2})2+K2 z6

where

T„i.= T„~.'+[T,.i.&"}—T,.~.& ' —T,.i.'5, (13) iy(p k—&'& k—&'&) K—
y, —[same with K~M5

(p k&2& k&3 )2+K2 zz

1 z'rp K z'yp K

Tpv}a =—' d pT» 7p vv
P+KZEP+K —22

z'yp K z'rp K

Xy) P 0'

p2+ K2 Zz P2+ K2

zyp M— zyp M-
Vi&s pv

P'+M' —ie P'+M' —ie

zyp —M
(14)Xy) +0'

p'+M' zz p'+M' —iz—
The quantity in brackets in Eq. (13) clearly approaches
a finite limit as M becomes infinite. The tensor T„„q
is easily evaluated to be~

imp K — iy(p+ k&») —K

p'+K' zz —(p+k "&)'+K' ie—
zy(p+k"'+ k&'&) —K

X P 0'

(p+k ' +k ' )'+K' zz—
+[same with K—&M5 =0. (17)

These four terms come from T„.}„'"'(1234),

—T„„}„&~&(1234), T„&„,'"'(—1, —3, —2, —4),

and —T„~„,&zr}(—1, —3, —2, —4) in that order. (For
simplicity, the k") have been replaced by i in the

arguments of the tensors. ) The displacement p„~p„
—k„(')—k„") in the third and fourth makes them equal
to the first and second, respectively, except for sign.

1
i

&f p (~,.f}},.+4.&.&

—2&,»..)
j~2 Q

III. METHOD OF CALCULATION

-(4/3)(p2)2+4K2p2 (4/3)(pz)2+4M2p2 ~

X
[p'+K' —2254 [p2+Mz i254—G„,}„(1234)= Q Q A"'"(1234)k„«}k"'k},&"k &~}

i=2, 3, 4 l=l, 2, 4
j=1,3, 4 m=1, 2, 3

+(7&;f'}}-+4Ã} &~&f'&-)—
+ Q B&'"(1234)b„„k},&"k.& '

From Eqs. (7), (8) and (11) it is evident that the
polarization tensor can be written

X
[p +K —z65 [p +M —225

and so does not contribute to G„„)„because one term
vanishes on symmetrization and the other on integra-
tion over the momentum p„.

One can verify Eq. (12), now, by the use of Eqs. (7),
(8), (9), and (11), if he notes that

1 1
k "'y =—[zy(p —k&'& —k&» —k&'&)+K5 [zyp+—K—5

1. 1
[zyp+K5— [iy(p+—k—2+kz+k') +K5, etc. ;

Z

'i With the aid of the identities

(t) fP f(P')&'P=fP P&&P»f(P')d'P=o,

(2) fP Ppf(P')~'P= s
&&

P'f(P')~'P-1

4 a

2 4(3) fpaP&}P2Pzf(P')&'P =24L4&&42+42S&&2+42S&&23

Xf(P')'f(P')d4P.

l=1, 2, 4
16=1, 2, 3

8 & (1234)8 k &'&k &"}+
j=1,3, 4
m=1, 2, 3

+ C&(1234)f&„,8}„+C2(1234)&}„gf}„,

+Cz(1234)b„,b„g, (18)

where the A, 8, C are invariants which depend on scalar
products of the four momenta. An expression of this
form is obtained if the spinor summation and integra-
tion over p„, Eq. (8), are carried out. Because the four
momenta are connected by the conservation equation,
only three are independent; to maintain a symmetrical
appearance of G„„~„the three were chosen in a way
which is dependent on the vector index they carry, as
illustrated by the restrictions on the summations in

Eq. (18). The problem of obtaining an explicit ex-

pression for G„„~„and so S(", can now be solved in a
straight forward manner by obtaining the coeKcients
in Eq. (18) from Eqs. (7) to (11).This task is not as
extensive as it seems, because the symmetry of the
polarization tensor means that many invariants can be
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= A, (1)A.(2)Ag(3)A, (4)g„,&,.&s&(1234)

g &s&(1234)~k &s&k &s&k &&ik &i&

obtained from others by merely interchanging some of F p(1)FP„(2)F»(3)F&& (4)
the momenta. Since 6 q (k"' k"' k&s' k&s&) is invariant
under simultaneous permutations of the arguments and
indices, the following relations hold among the A' s:

A»»(1234) =A 4441 (234] ) = A &343(3412)—A 2822(4123)
=A 4111(1432)=A 2122(2143) =A 3323{3214)—A 4443(432 1)

(1324)=A»»(2413) =A "2{3142)=A""(4231). (19a)

A 2121(1234)=A 1141{2341)=A4343(3412) =A 2323(4123)
=A 2112(1243)=A 8113{2314)=A 3443(3421) =A 2442(4132)
=A'"'(3142) =A" 2(4213) =A'"'(2413) =A""(3124). (19b)

+k &4&k„&t&k~&s&k &s& (21)

F p(1)Fp (2)k„&t&F„s(3)Fs,(4)k, &t&

= —2A „(1)A „(2)A &,(3)A, (4)g„,g, &s& (1234)

A'"'(1234) =A 4'"{2341)=A 4'4'(3412) =A 4"'(4123)
=A 4'4'(1432) =A "4'(2143)=A»21(3214}=A»43(4321)
=A""(1324)=A 4»'(2431) =A'4" (3142)=A'"'(4213)
=A "'(1342)=A'"'{2413)=A" '(3124) =A'"'(4231)
=A""(1243)=A""(2314)=A "4'(3421)=A'"'(4132)
=A""(1423)=A""(2134)=A'"'(3241) =A2"'(4312),

A""(1234)=A'"'(2341) =A'"'{3412)=A"'2(4123)
=A4'"(1432}=A'"'(2143) =A "2'(3214)=A'4" (4321)
=A3'2'(1324} =A "4'(2431)=A2"'(3142) =A'4" (4213}
—A 4112(1342}—A 4313(2413) A2312(3124) —A 4342{4231)
=A 24"(1243)=A ""(2314)=A 44'3(3421) =A'4" (4132)
=A "4'(1423)=A 3'22(2134) =A 4"2(3241)=A3"'(4321).

A""(1234)=A'"'(2341) =A"'2(1324).

(19c)

(19e)

g„„»,."(1234) [(k&"k&4&)k &'&k «&k&, &t&k &"

—(k"'k&")k "'k '"k&, "'k "'
—(k&'&k"')k &-'k «&k&, & "k '"], (22a)

F-p(1)Fp.(2)k7 "&F7s(3)F5 (4)k."'
= —2A „(1)A „(2)A &, (3)A.(4)g„,&„&4&(1234)

g„p&g&" (1234) [(k"'k&")k "'k &"k "'k "'
—(k&"k"')kg&'&k„&'&k&, &4&k, &'&

A'"'(1234) = A ""(4321)=A 2"'(1243)=A'" (3124)
=A "4'{4312}=A'"'(2431). (19f)

Some of these invariants, of course, are unchanged by
certain interchanges of the momenta. Similar equations
hold for the coefFicients 8 and C, Eq. (18). These rela-
tions, therefore, considerably reduce the labor of 6nding
all the coeKcients.

One can, moreover, take advantage of the fact that
the polarization tensor satisfies Eq. (12), in other words,
that it is gauge-invariant. It is easy to show that a
gauge-invariant tensor of the form Eq. (18) vanishes
identically if all the coefhcients A vanish. Hence,
knowledge of the A's is sufhcient to determine G„,),.
completely and it becomes unnecessary to calculate the
coefFicients 8 and C at all." They will therefore be
ignored in the subsequent work. The terms which
involve an A will be called "heads" or "leading terms. "

One can take further advantage of the gauge-inva-
riance of G„,)„by expressing this quantity as far as
possible as the sum of simpler gauge-invariant tensors.
These can be constructed from a consideration of scalar
products of four field strengths, which will certainly give
rise to gauge-invariant expressions. Thus one can define
the tensors g„„)„("as follows:

F-p(1)Fp-(2)F s(3)F»(4)

=4A „(1)A „(2)A &(3)A.(4)g„„&,.&"(1234)

g„„g,&"(1234) k &"k "&k&,&4'k &" (20)

"The method of defining the ambiguous integrals by requiring
gauge-invariance consists of calculating the coefIicients A and
constructing 8's and C's that make the tensor gauge-invariant.
This is the case because the A's are unambiguous while the C's
are ambiguous. The method is therefore completely equivalent to
regularization.

—(k&"k"')k "&k.&"k&,&s'k "'] (22b)

k, &"F p(4)Fp„(1)[F,s(2)Fs, (3)—F ~s(3)Fs, (2))k, & t &

=A„(1)A„(2)A&,(3)A, (4)g„„&,.&s&(1234)

g,g "'(1234) [(k"'k&")(k &"k &"kg"&k "&

&3&k &1&k &2&k &1&) +(k&1&k&4&)

X (k„&'&k„&'&k &'&k. &'& —k„"&k„"&k & "k.&")]. (23)

It should be noticed that Eq. (20) involves only heads
in Eq. (19e), Eq. (21) those in Eq. (19f), Eq. (22) those
in Eq. (19a—c), and Eq. (23) those in Eq. (19d). These
few types of tensors, of course, need not be su%cient
to express G„„)„completely. To 6nd out to what extent
they and their permutations are represented in G„„)„
and what remainder is left after this is done, the coef-
ficients A must be known more precisely. For this
purpose we return to a consideration of 7'„,)„.

IV. EVALUATION OF THE POLARIZATION TENSOR

By the usual methods of carrying out the integration over the
momenta of the virtual particles, g Eq. (10}can be transformed to

2'„„&„(1234)=—. ,fdrfd4p
6

, Y,t Y(p —~'")—jv, t v(p-~'"}—3
X ~),t 4 (p —),(')) —.j&.t:4(p —~(')) —~3

Tp' ) I p2+ p&.
2 Z&+, (k(l)) 2y4yl+(k(2)) 2yly2+(k(3)) 2y2y3

+(k&")'y3y4 —(k ')+k&')) (k'3)+k 4)y2y4
—(k&' +k&'))(k '+k ')yly3)2

—Lsame with s~M) I, (24)
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g (1) k (»y4 +k (2)(y2+y3)+k (3)y3

&,
&2) — k (2)y)+k (3)(y3+y4)+k (4&y4

X„&'&=+k„&»y& —k„&3&y2+k„&4&(y4+y&),
y„(4)—k„(l)(y,+y2)+k„(2)y2 k„(4)y,

and

(25)

8
A ""(1234)= —— d y (y2+y3+y4) {yi+y2 y y4)

X (yp+y2+y4 —y3}D(1234), (32a}

8
A1 '(1234) = —— d~(y, +y2)(y, +y4}(y,+y, —y, —y4)

X (y2+y3+y4 —
y&) D(1234), {32b)

dT = dy jdy2dy3dy4.

ys)0, &y~=j

Since only the leading terms are of interest, the quantities i&p
and K or M in the numerators of the two terms may be dropped;
as was already pointed out (see Eq. (9) and note to Eq. (15}),
they contribute only quadratically and are then accompanied by
a factor 8», so that they constitute part of a term B or C, Eq. (18}.
Then the regularizing term becomes of order M ' and vanishes
as the auxiliary mass tends to in6nity. Hence, as far as head terms
are concerned, the integration over the momentum p„ in Eq. (24)
becomes trivial, and

F„„)„(1234}~— dr D(1234)
I

K

~.I&.»('»y»&')~~»('». »(') I. {26)
Here

D(1234}= {I —ie'+(1 /K2}{ (k&')} y4y&+{k '&}'y1y2
+(k&'&) y y +{A('&)2y y —(k&'&+k&'&) {k&'&+A&")y y—(k&'&+A&'&) (k&'&+4&'&) y)y3 j I

' (27}
with g =g/K2

A further simplification results from the consideration of heads
only when the spin sum in Eq. {26) is carried out, because all but
twenty-four terms may be ignored. Thus

1 (v v~ "v 7~'"Yn'~ "v» "I
4L{),„(&)P,„(2)+P,„&2)P,„(I&}{/)(3)P, (4&+P,&,

&4)P, (3))

+{/ &») (3)+P (3)), (1)}{y&(2)p (4) )
&

(4)y (2)}

+{/ (Oy„&4)+y„(4)y„(&)}(y&,(2)P, (3)+P,&(3)P, (2))

+(X„&2&X„&'&—X„&3&X„&2&)() g&'&) &'& —X&,&')),&')}

+{y„(4)y„(2) y„(2)p,„(4&)(P,&(&)p, (3)+y&(3)p„(»)
+(gp&3&yy&4) —/M(4&yy&3&)(yy&»yg&2& —yg&2&)l, g&») j. (28)

It must be remembered, of course, that the 9'& have to be expressed
in terms of the three momenta appropriate to the index the X&'&

carries in accordance with the convention adopted with Eq. (18).
Sy substitution of Eq. (25) into Eq. (28) one can then express
f„,&„ in the form

g ~y~~{1234) g g A P'~(1234}k~(')k (2)k~('&k &~) {29)
i=2, 3, 4 L=1, 2, 4
j=1,3, 4 m=1, 2, 3

where the A3'2' (1234) are the contributions of P„,&l, (1234) to the
coefficients A in Eq. (18). Because f„„&,~ is less symmetric than
G„„&,„as many as 6fteen of the A~ must be obtained before the
remainder can be generated by symmetry operations. Such a set
may consist of the following:

8
A g2'"(1234} =— d7y&{y2+y3+y4} {y&+y2—y3 y4}

K

X {yg+y2+y3 —y4) D(1234), (30a}
—8

{1234}
4 d+{y&+y2) {y3+y4)(y2+y3+y4 yl)

X (y1+y2+y3 —y4) D(1234}, (30b)
—8

A ~""(1234)=—«yi{y2+y3+y4) {yx+y3+y4 —y2)

X(y~+y2+r3 —y4)D(1234)) {3»)
8

A 1 "(1234)=— d~yj. (y2+y3+ y4) (yg+y2 y3 y4)

X (y2+y3 —yi —y4) D(1234), (31b)

8
A 1""{1234) =— d~{yi+y2}(y3+y4) (yj, +y3+y4 —y2)

X (yp+y2+y3-y4) D(1234}, (31c)

32
A z2 (1234)=—dry zy3(1 —yz) (1—y3) D(1234), {35a}

32
A ~""(1234}=—«(y~+y2} (y2+y3) (y3+y4)

X {y4+yi)D(1234). (35b)

Now, with the help of the symmetrization procedure indicated in
Eq. (7), one can write down the coe%cients A in terms of the A ~.

From the nature of the A ~ one can also deduce certain identities
among the A' s, and these are indicated in Eqs. {36) to (41}.

A (1234)=A g (1234)+A g (1243)+A ] (1324)
=A""(1243} (36)

A""(1234}=A 2'"(1234)+A 2'"(1243)+A &33"(1324)
=A'"'(2143), (37)

A ' {1,234) =As " (2134)+Ac "2(2314}+Ai2' '{2143) {38)

A ""(1234)=A i""{1234)+A 1'"'{1324)+A i""{1243)
= —A""(1234) (39)

A""(1234)=A y""(1234}+Aj""(1243}+Ay""{1324}, (40}

A'"'(1234) =A g2"'(1234) +A g "'(1243)+A g""{4132)
=A 4'"{1234). {41)

To apply these relations to G„„p, it is helpful to consider a
piece G»y '(1234) of this tensor:

G„y&,~'(1234) =A""(1234)k ' k, ' kg ' k "
+A 2'2'(1234}k„&2&k &'&k),&')k,"&+A '2'{1243}kg(2&ky('&k&, &»kg(2)

+A (2143)k &ky k) & k~ +A (1234)k ky k&l k~
+A 2'2 (1243)k„&2&k„&'&kg&4)k~&2&+ A 2"'(2143)k„&2&k„(»kg&4&k &»

+A'"'(2134)k„&2&k„&')kg&') k, (3&+A 2"'{1234){ k„(2)k„&3&kg&»k &»

—kg (3&ky&'&k&, &2&ky&'&g+A2"'(2314) { k & )ky&3)k&, ('&k~&2&

(3)k (»k&,(2)k &2)j+A23&&(3124)tk (2)k (3)k) (&)k (3)

—k &3&ky&'&kg&'&k, &'&/+A""{1234)k &')ky&')k&, &'&k~&'&

+A (1234) fkp ky& kg ky +kg ky kg ky' j (42)

A look at Eqs. (20)—(28) suggests that G„,)l, '(1234) be rearranged

8
A g""(1234)=— dry&{y2+y3+y4) {r,+y2+y3 —y, )

X {y&+y2+y4 —y3) D{1234), (32c)

A & "(1234)= —A j 2'(1234) =— dr(y&+y2+y3 y4)
K

X I(y+y)l y y+(1—y){1—y) j
+(y&+y, ) [y,(1—y,)+y, (1—y, )j ) D(1234), (33a}

A i""{1234)=— d~(yi+y2 —y3 —y4)

X I (yi+y4}{y~y4+(1 —y1) (1—y4) j
+{y~+ya}[y4(1—yi)+yi(1 —y4)]}D(1234}, {33b)

4
A ~""(»34)= —— d~ IL(y2+y3)(y3+y4)

K

+(y&+y2)(yi+y4) )Lyiy3+(1 —yi)(i —y3) g
+t.{yi+y4) (y3+y4)+(yi+y2) (y2+y3) j

XQj.(1—y3)+y3{1—yj)j I D(1234), (34a)

4
d~{L(1—y)(1 —y)+y y j

K

X{:(1—y}(1—y}+yy j
+t:(1-y }y.+(1-y }yj

X E(1—y2) y~+(1 —y~) y2j I D{1234) (34b)



NON —LINEAR IN TERACTICNS

indices of the g&'). The superscripts on the A's define their func-
tional form LEqs. (30) to i41)].

A calculation based on Eq. (46) of the cross section for the
scattering of light by light is being prepared for publication.

as follows:

Gqv), ~ (1234) A 143(1234}g~v)&,~&1}(1234)

+A'"'(1234)gpv)„&'){1234)

+A""(2134)gv„)„(')(2134)+A2121(1234)g vg, &4) {1234)
+A 2'2'(1243) g„v~),&4){1243)g

—A'"'(3124)g) vq '"(3214)j+a(1234)k„(' k '
k)&,

' k &"

+e(1243)k„&2)kv&')k), &4)k,&')+a{2143)k„&')k &')kg&4)k, &')

+u(2134) k„&')kv&')k)t&')k & )+b{2314)
X{k„&')k&3)kg&')k &') —k &3)k &')k),&')k &2))

V. LOW ENERGY APPROXIMATION

where

a{1234)= I (k&3)k&4))A""(1234)
1

(k&3)k&4))

+{k&')k&4))A""(2143)+(k&') k&')) A "'(1234)j, (44a)

b(2314) = P(k&2)k&4))A~31'(2314)
(k&&)k(4))

+(k&')k&4))A""{1234)+(k&3)k&4))A""(3124}]. {44b)

The major part of the polarization tensor has now been ex-
pressed in terms of the tensors g„„g~&') derived from field strengths.
The remainder

g 2111 g 2121 g 2311 g 2123 0

r & 43 —g 3412—g 4 321 —4/9&&4

Qr341 —+ 2418 —4 3412— 14/45&&4

(47)

Hence

4
G„„&„(1234)=—(g„„&,.&"(1234) +g„&,„,&'&(1324)

9A;4a{1234)k &')k, &»kg&')k, &3)+b(2314)(k„&')k„&3)k),&»k, &»

24 perm—k '"k (»k) '"k '")+b(2413)(k '"k &"4&2)k '"—k &')k &')k (')k &'))

+b(4312) (kp" kv ' k),"ke ' —kg&')kv&')k), &')k&&'))

+b{2341){k '"kv")k),&"k~&')—k„")k (')k),&')k &')) (45)

is still gauge-invariant and must satisfy Eq. (12) with appropriate
B and C terms. It is therefore identically zero. The reason for this
result is the fact that each head in Eq. (45) contains only three
different momenta. The third-rank tensor that results from con-
traction, as in Eq. (12), with the fourth momentum then does not
contain this fourth momentum. The third-rank tensors that result
from the application of Eq. (12) to terms other than heads, terms
that contain a Kronecker delta, will always contain the momentum
vector with which they were multiplied. Hence the heads in Eq.
(45) must satisfy Eq. (12) alone, and this means that every term
in Eq. (45) vanishes, As a check on the calculation, u(1234) and
b(2314) were computed explicitly as functions of null-vector
momenta; they were indeed found to vanish identically.

The vacuum polarization tensor can therefore be written

1
Gyv), y(1234) = r —A~'"(1234)gpv), y&')(1234)

24 perm

+—A "4'(1234)g„„)„&2)(1234)
1

14
+g „&,"'(1423))— (g &, "'(1234)

45~4

+g„&,„,&'&(1324) +g„.„&,
&'& (1423)), (48)

a2
S"'=—i— — ~~d' [5x(F„,(x)F„,(x))'

1g0 (Q&;&&t)2J

—14(F„„(x)F„&,(x)F&,.(x)F.„(x))], (49)

and the eGective lagrangian density

I.(x) = [5(F„„(x)F„„(x))'
180 k&,

.
f&4

—14F„„(x)F„&,(x)Fg.(x)F,„(x)]. (50)

This last quantity, when expressed in terms of electric
and magnetic field intensities (D and B) becomes
identical with the result of Euler's calculation

1 1

1 1

+(2)(4)A(1234)g~g{1234)(46)1

The sum over permutations here refers to simultaneous permuta-
tions of the labels of the momentum variables and of the tensor

If the interacting fields vary so slowly in space and
time that the Fourier transforms have appreciable
values only for momenta whose absolute value is much
smaller that the mass of the pair 6eld, the function
D(1234) in Eq. (27) may be approximated by unity.
The evaluation of the integrals Eqs. (30) to (35) then

(43) becomes trivial. In particular, the integrals are inde-

pendent of the momenta. The values of the six basic
ones, Eqs. (36) to (41) are

L,(x) = —(2&r2/45)1&;&&4)[(Dr —Br)'+ 7(D B)'] (5(y)
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