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This paper describes and gives the results of a calculation of the scattering of 100-Mev electrons from a
heavy nucleus with atomic number Z=82.2. For 100-Mev electrons the reduced de Broglie wave-length is
about one-fourth of the radius of a lead nucleus and appreciable deviations from pure Coulomb scattering
are to be expected. Three different models of the nucleus are considered. In the primary case, the nucleus
is assumed to have a uniform charge distribution within its radius. The scattering for this model is calcu-
lated by the exact phase-shift method. In the two other models the effects on the scattering of varying the
radius and non-uniform charge distributions are investigated. The last two calculations are carried out by
perturbation on the first.

I. INTRODUCTION

T is expected that high energy electron beams, of 100
- - Mev and higher, will soon be readily available from
linear accelerators. It is the purpose of this paper to
carry out some exploratory calculations to indicate the
eR'ectiveness of this tool in the investigation of the
properties of the nucleus; in particular, the eGects of
the charge distribution within the nucleus and the
radius of the nucleus are considered.

At the high energies the non-zero size of the nucleus
will cause deviations from Coulomb scattering. Some
calculations have already been performed along these
lines by Rose. ' However, these calculations were carried
out using the Born approximation and it is known"
that for heavy elements the Born approximation is not
valid.

In this paper the exact phase-shift method as applied
to the Dirac equation was used. The difI'erential elastic
cross section was calculated for the scattering of 100-
Mev electrons from lead, Z=82 (more accurately,
g=82.2 was used in order to be able to use the results
of Bartlett and Watson).

Three diferent cases were considered. In the primary
case we assume the nucleus to have a uniform charge
distribution within a radius u of the nucleus. The ra-
dius a was taken from the paper of Fernbach, Serber,
and Taylor' and was in this case a=8.09X10—"cm.
For 100-Mev electrons, this radius gives a value of
k@=4.10, k being the momentum divided by k. That is,
the de Broglie wave-length of the electron is about one-
fourth of the radius of the nucleus. The scattering with
this model of the nucleus was calculated exactly.

The scattering efkcts with two slightly diGerent
models of the nucleus were calculated by perturbation
on the first case. These two variations were: (1) The
radius was left unchanged, the charge density was
allowed to increase by 43 percent in going from the
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center to the outer edge of the nucleus. This charge
distribution is similar to that proposed by Feenberg'
and was taken as p= pp(1+g(r/a)'), where g=0.43. (2)
The charge distribution was left uniform, but the
radius was decreased by 6ve percent. This was done to
indicate the sensitivity of the scattering to the radius.

The potential due to a uniform charge distribution
can be shown to be, for r &a,

Vo(r) = (Ze/2a) I 3—(r/a)'} . (1)
For a charge distribution, p= pp[1+g(r/a)'], the po-
tential is

Ze 1 10+3g 1 5 (ry '
V,(r) =—1+-

u 2 10+6g 2 5+3g Ea)

3 g fr~'
45+3g EuJ

(2)

and that due to a slightly decreased radius a', a/a'= 1+p

where the density is still uniform,

V,(r) = (Ze/2u') t 3—(r/a')'I r &u'

V,(r) =Ze/r;

The potential is very insensitive to the charge dis-
tribution, as can be seen by considering the two extreme
cases of a uniform charge distribution and one in which
the charge is concentrated on the surface.

Since for all charge distribution the value of the
potential at r=a is Ze/a, and the potential must in-
crease monotonically as we go in toward the origin,
a good way to compare the strengths of diBerent poten-
tials is to compare the value of the potentials at r =0,
V(0).

Thus for a uniform charge distribution, Vp(0)
=1.5Ze/u. For a surface charge, V(0)=Ze/a. For a
potential due to p= ppL1+g(r/u)'] and taking g=0.43,
V,(0)=1.45Ze/u. This is only a change of five percent
from Vp(0) for the uniform charge distribution, al-
though the density varies by almost 50 percent, showing
the insensitivity of the potential to the charge dis-
tribution.

~ E. Feenberg, Phys. Rev. 59, 593 (1941).
355



GEO ROE PA RZ E N

V(0)=44r p(r) r dr.

Thus if p= pau(r/44), then

Ze
V(0)=— N(x) x dx

~ ~0
44(x) x'dx. (5)

In general, we might note the useful relation which
will give V(0) directly from the charge distribution.

at the point r=u, beyond which the potential is pure
Coulomb. Thus we need to determine the regular
solution of the wave equation for r&a, and both regular
and irregular Coulomb wave functions for r& a.

The Coulomb wave functions were given by Gordon. '
Instead of using the functions g~(r), f~(r), it is more
convenient to use the function S~(r), defined by I,
Eq. (35), and which has the asymptotic form, S&(r)
—+exp[i(kr+ q In2kr —

n (I+1)n+ a ~)].
%e may write the regular Coulomb wave function as

II. METHOD OF CALCULATING CROSS SECTION
FROM PHASE SHIFTS where x=kr,

s~, a=exp(ig4) f~(x; p4) (10)

If the scattering potential falls oG at infinity like
Ze'/r, th—en the radial part of the wave function will

have the asymptotic form given by' I, Eq. (3),

I'(w+1+iq)
f'4(*; a) = exp(-', qn) exp(i-', p(ir) (2x) &&

I'(2p&+ 1)

exp( ix) —F(p&+iq+1, 2p(+1; 2ix), (11)g~(r)4cos[kr+q In2kr —n(i+ 1)4r+ a4)
7'~ 4O

where q=Ze'/kv, v=speed of electron. In terms of the
phase shifts a ~, the cross section a(8) for an unpolarized
incident beam can be written as, '

(6)
and

p4 ——[(I+1)'—a') &, q =Ze'/kv, a =Ze'/hc

F(a, P; x) is the confluent hypergeometric function' and

(7)

and

+I exp(2ia 4,)}P~(cos8) (Sa)

f4(8)=(1/i2k) g {exp(2ia 4 g)

and

a(8) = lfi(8)I'+ If4(8)I'
where

f,(8)= (1/i2k) P {(1+1)exp(2ia, )
L=o

I+1+iq' I'(p4 —iq)
exp(2ig4) = exp( —in p~) (12)

pi —iq F(pi+iq)

where q'= (Ze'/l'iv) [1—(v/c)') &.

f~(x; p~) has the asymptotic form 1 ~exp[i(kr
+q In2kr)]. Thus S~, a~exp[i(kr+q in2kr+ v~)) and so
the Coulomb phase shifts are given by

a4' ——F4+-,'(I+ 1)n. (13)

The irregular solutions is obtained from (10) by
simply replacing p& by —

p&,

Pi = sln8dP4/d(cos8).
and

S=exp(i~ ,
')f (*; n), —(14)

In summing (8), which is a divergent series, one must
6rst subtract out the scattering amplitude due to a
pure Coulomb 6eld. Let O.i' be the phase shifts for the
Coulomb potential Za /r; then we can —rewrite (8) as

f (8)=f (8)+(1/'2k) 2
l 0

X {(1+1)[exp(2ia r) —exp(2ia ~'))

+i[exp(2ia 4 ~) —exp(2ia 4 4')]}P4(cos8) (9a)

f4(8) =f4'(8)+ (1/42k) Z
b 1

X {[exp(2ia 4,) exp(2ia —4, ))
—[exp(2ia 4)

—exp(2ia ~'))}P4'(cos8) (9b)

where fi', f4' are the Coulomb scattering amplitude.
The problem is now to calculate the phase shifts sr~

which appear in (4a) and (4b). This is done by matching

6 For some of the results used here the reader is referred to a
previous paper, G. Parzen, Phys. Rev. SO, 261 (1950), hereafter
denoted by I.

~
¹ F. Mott, Proc. Roy. Soc. A124, 426 {1929).

I+1+iq' I'(—p~
—iq)

exp(2iv&') = exp(iirp~) (15).
iq ~( p&+iq)

This procedure for obtaining the irregular solution
breaks down in the non-relativistic theory since there
p~

——1+1 as o.—+0 and the hypergeometric function
F(4n, P; x) becomes infinite when P is a negative integer.
Because of this there is no easily seen transition from
some of our calculations to the corresponding non-
relativistic calculations.

Thus, in contrast with the non-relativistic case g~ and
g&' do not dilfer by ir/2, but approach each other for high
l. In fact, we have after using the relation

I'(—Z) = —ir/I'(Z+1) sinirZ,

exp[2i(4l4' —g~)) = —exp(244rp~)

X i (spn4riq4)/ in s(p4~r+iq), (17)

from which we can calculate g~' —g~.

%. Gordon, Zeits. f. Physik 4S, 11 {1928).
I G. N. %'atson, Theory of Besse/ Functions (The Macmillan

Company, Near York, 1945), second edition, p. 100.
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Having the above properties of the Coulomb func-
tions, we can now match at r= a to determine the phase
shifts. Let f~(r), g~(r) be the regular solutions for r& a;
let f~, rz, g~, n and fir, g, i, r be the regular and irregular
Coulomb solutions.

Then at the point r=a, H=Q C x"/n!
m=0

(27)

Note that if b is real, then B is a real function. This
is the case in the non-relativistic theory. But in our case,
y=2pi+1, a= p~+zq+1, so 2b= —q+z.

Putting

fi=Cfi, rz+Df~, r
gi= Cg~, z+Dgt, r.

we find,
C„~i [——1/(n+y)] { nC—„ i+2bC„} (28)

g& would then have the asymptotic form,

g~C cos(kr+q ln2kr+q~)
+D cos(kr+q ln2kr+ it~')
—const. cos(kr+q ln2kr+q~+5~) (19)

and C0=1.
The C„are complex. writing C„=n„+zP„, we get the

recurrence relations for the real quantities n„, P„,

n +i={1/(n+y)]{ na —i qa„—P„}— (2.9a)
where

tanb~ = sin(rzi' —g~)/L —(C/D)+ cos(zi~' —g~) ].
From (18), we find for C/D,

C/D= —(gi, r vifr r—)/(g~rz vlf, i, r—z),

where P.+i= (n+1)~./(n+v), (3o)

P ~i=L1/(n+y)]{ nP—„z qP—„+a }, (29b)
(2o)

and no=i, i4=0.
From (29) we can also show that we have the simple

recurrence relation

xi=(c/fi) I =' (22)

The above equations determine 8~ which is the phase
shift in addition to the Coulomb phase shift. The phase
shift defined in (6) is given then by

which can be used as a check.
It is only necessary to sum the series to calculate S~,.

the function S ~~ can be derived from S~. For

S ~ i=exp(ig ~ z)f' ~ i(x; p ~ i), (31)
«= «'+&~

III. COMPUTATIONAL PROCEDURE

(23) and f~ depends on 1 only through p~=
I
(1+1)'—rzz]&.

Thus,
|'-~z= h

The quantities to be calculated are the regular and
irregular Coulomb functions and the interior regular
solution, all at r= a. These functions are all calculated
by finding a suitable series and summing it. Because
the parameter involved in these series, which is ka, is
of the order of 4, the series involved converge rather
slowly and require from 12 to 20 terms to sum.

In calculating the Coulomb wave functions, the con-
fluent hypergeometric function F(a, P;x) which ap-
pears converges too slowly requiring about 25 to 30
terms. It is more convenient to treat the function, "

d t V Eq )3+1 V iq—s=l z ———Isdx&kk)hxkk) (33)

S ( z
——exp{i(zz, ,—zz,)] S,. (32)

Relation (32) holds for both regular and irregular
Coulomb functions.

The solutions for r&a are obtained by solving the
differential equation for S&(r) by series. Thus, by I,
Eq. (37),

H(y, b; x) =exp( ix)F(n, y—; 2ix), (2&) and for a uniform charge distribution we can write

where

( d d

I
u +(y u—) a—

}
F—=0-,

& du' du ) (25) and

Putting

where b=z(2n y)—
Since F(n, y; u) satisfies the differential equation

VE/k'= A Bx-
A = —-,'(Ze/ka) (E/k)

B= ,'(Ze'/ka) (E/k) ~ 1/—(ka)'.

(34)

then H(y, b; x)=exp( —ix) F(a, y; 2ix) satisfies the
equation, S=P a„x", 8=& a.x„,

where b=i (2n —y).

(26)
we get

a (nz+s) =i(1 A)a i+iBa —o+(i+1)a
iA'a i+iB'a o (3—5)

where A'= A/E, and B'= B/E;
"A. N. Lowen and %'. Harenstein, J. Math. Phys. 21, 264

(1942). s=l if l&0, s= —l if l &0.
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Again writing a„=n +iP„, we get for l&0,

1—A+A' (B B—')
p p o,

' EYrt y+
n+2(h+ 1)

Here we can choose for the trial potential V,(r), the
potential Vo(r) due to a uniform charge distribution.
Further, instead of the wave functions of Vo(r), we can
put in (41), as a good approximation, the wave func-
tions of a free particle. The integral then only involves

J3+8' Bessel functions and can be evaluated more easily.
Thus (41) becomes

n+2(t+1)

and Po=o, ~o=1
The ratio y~ is given by,

at x= ka. (37)

and

8(—bP——',(8+1){6(+[I/(8+1)]'h(~gI, (42)

6)= —k I 2 (V—Vo) jIo(kr) roCr.

k.,
= t-J.'(t)ch. (43)

The application of (42) requires the evaluation of
Also here it is not necessary to sum the series to integrals of the form

determine y ~~. Because the potential is an even func-
tion of x, one can show that for high enough energies

Y—I—1 =)1/'rt

v~'= { (&—1)/(E+1))'v~

(38)

Relation (38) is not exactly true but numerical calcu-
lation of y ~ and y 2 showed it to be good to four
6gures.

IV. PERTURBATION METHOD

In some cases, for m even, the indefinite integral can
be done. However, it is generally simpler to use a re-
cursion formula which will be developed now. This will

give k~~, in terms of k„,
Using the Bessel function relation,

J.(t) = (t/2n) (J~g+J~g),
If the potential. is changed somewhat in the region

r & a, but remains —Ze'/r for r larger than a, then in the
phase-shift method of the previous sections the only
quantity which must be recalculated is p&.

To obtain an approximate method for calculating y~
for a potential V(r) which differs slightly from the
uniform charge potential Vo(r), consider the potential
U(r) constructed as follows:

U(r)= V(r); r&a
U(r) =0; r) a.

we get from (43)

k.,
= (1/2n) {1.„„+l.~, „I, (44)

where

I„, = t"+'J t J„g t .dh.

0

L, =i~~, +~I t"+'(cJ '/ct)ct.
0

(46)
If Eq. (33) is solved for Sg(r), and thus f~ and gi,

then the ratio y~ g&/f~ at r=a ——is the same for the
potential U(r) as for the potential V(r), both poten-
tials being identical for r& u.

Now the potential U(r) will cause a certain phase
shift which is connected to p& by the relation I, Eq. (64),

Integration by parts yields

I L~, +x™+IJo(x) —(nh+1)k„,

Comparison of the expressions for k„as obtained from
(47) and (44) gives the recursion formula for I.„,(8+1) & j&(ka) tanh& n&(ka)—

(40)
(E 1i j&+p(ka) ta—nb& n&+&(—ka)

2n+ m+1 2n
1.„+,„= L„,„x"J„'(x). —(48)

2m —m —1 2n —m —1
Thus to determine the y~ for the potential V(r), one

can equally well determine the phase shifts b~ of the
potential U(r) The phase .shift B~ of U(r) can be ap-
proximated by means of the variational result of paper I.
There we showed that, I, Eq. (60),

Relation (48) together with (44) gives a recursion
relation for k„,

The recursion chain may be interrupted if we happen
to arrive at a value of n for which 2m= m+1.

The integral (45) for low values of n can usually be
calculated easily in our case since we have Bessel func-
tions of half-odd integer orders which involve only
sines and cosines. For higher n, the recursion formula
can be applied. The one disadvantage in the above
procedure is that cancellation occurs in applying the

ce

br= —
~

I 2(V—V,)
2k 0

o k qo fo

&+1 (8+1& E—1

Now, using the relation CJ„/Ch= ,'{J,—J„-+,I we

get for i.„, from (45)
(39)



SCA TTERI NG OF 100—MEV ELECTRONS 359

from a lea
TAszE I. Phase shifts for the scatter' f 100-M lring o - ev e ectrons

a ead nucleus with a uniform charge distribution. b~ is the
phase shift with the Coulomb phase shift subtracted.

0
i
2
3

6
7

—.5339
.2064 —7t.

.2507 —7r

.0678 —vr

.0115—7l-

,0013—7t.

.0001—7t-

bfy=aft —air'

—.5307
.2091 —7t

.2572 —m

.0711—7l-

.0124—7F

.0015—7l-

.0001—m.

recursion formula and one must start t 'thr ou wi a great
many figures in order to get a signi6cant answer for
large values of n.

a Z8
8( -+ ——

( V(r) dr inka ——o—(.
bC ~p Ac

(49)

In the case of the uniform charge distribution, this
gives an asymptotic value of Bp= —0.91.Our calculated
value of hp= —0.534 agrees favorably with this as the

eviation of 5p from its asymptotic value should be of
the order of 1/ku=0. 244.

Our curve, Fig. 1, for the scattering due to a uni-

ormly charged nucleus agrees qualitatively with what
one would expect from the Born approximation, though
it dift'ers greatly quantitatively. The two minima in the
curve shouM be at 66' and 142' according to the Born
approximation but are actually at about 70' and 120'.
The only feature not indicated by the Born approxima-
tion is the increase in the forward scattering as com-
pared with pure Coulomb scattering at the angles of 15'
and 30'. This increased forward scattering is due to the
constructive interference of the higher ord t' 1ig er or er partial
waves and would be a small eftect at lower energies
where the higher order phase shifts are small.

The e6'ects of varying the density or the radius of
t e nucleus are almost identical although, for the cases
chosen here„ in opposite directions. Thus these two
eGects will tend to mask each other. However, the
probable deviation of the charge distribution of the
nucleus from a uniform one is equivalent to only a five
percent change in the radius in a6'ecting the scattering.

e scattering at the larger angles, where the diBrac-
tion efkcts are most marked, is particularly sensitive to
the above two factors. The large percentage deviation

V. DISCUSSION OF RESULTS

The behavior of the phase shifts at high energies is
quite diGerent from that met in non-relativistic scatter-
ing. As was pointed out in paper I, the phase shift

&, or a given /, does not approach zero when k—+~ . By
a slight modihcation of the argument presented in I,
we can show that for the potentials considered in this
paper, which go like 1/r at infinity bnt have no pole at
the origin, 5~ approaches the value,

TAM.E II. Differential cross sections as a function
of 1/k2=3889X10 ~

section. cr0 is the. crp s e cross section in the case of a uniformly char ed
nucleus; o-~ refers to the case in which the den

'

the char e densit is
o e case in which the radius is decreased sli htl b

g
'

y is uniform. The results at the angles 75', 105',
sig y ut

and 135' are not as accurate as the results at the other an les since
the Coulomb scattering amplitude at these 1

by interpolation.
a ese ang es were gotten

0
15
30
45
60
75
90

105
120
135
150

347.8
27.39
7.001
2.768
1.3
0.710
0.37
0.207
0.10
0.042

420.8
39.78
5.421
0.576
0.40
0.541
0.28
0.046
0.069
0.062

(aa —ao) /ao
in y

0
0.68
7.1

14
17

19

(ap —ao) /ao
1Q %

0—1.1—7.8—12—14

—21

jo eo Igo /SO Ipa

5 c q tt q r ) n ) 8 n g le.

Fio. 1. T
Z=82.2 .

he scattering of 100-Mev electrons from a l da ea nuc eus
( = . ). co is the scattering with a uniform charge distribution.

=3.889X 19 cm'.
o., is the scattering with a pure Coulomb field U ts 1/k'e . ni are

(1941).
"J.H. Bartlett, Jr. and T. A. Welton Ph R 59 281ys. ev. , 1

shown in Table II at 120' occurs there since 120'
happens to be the position of the second minimum of
our scattering curve.

Some discussion of other quantities which will aGect
the scattering is given in the paper of Rose. ' The screen-
ing o the orbital electrons would not be expected to
have any eEect except at small angles. Actual numerical
calculations were carried out by Bartlett and YVelton. "
For an element like mercury; they found the screening
to be important at less than 60' for 100-kev electrons
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and at less than 15' for 230-kev electrons; at 100 Mev
we can expect the angle within which screening is im-

portant to be very small.
Radiative sects in the scattering as predicted by

quantum electrodynamics may be large enough to mask
the eGect due to non-uniform charge density or to a
slight change in the radius of the nucleus. Calculations
for a pure Coulomb Geld based on Schwinger's" results
would indicate this to be the case. However, since these
results are based on the Born approximation, and give
the deviation due to radiative effects from the Born
approximation expression for the scattering, not from
the actual scattering, their reliability in the case of
heavy elements is doubtful. The order of magnitude
given by them is probably still correct.

In our calculation, where we have assumed a con-

+ J. Schwinger, Phys. Rev. 75, 898 (1949).

tinuous charge distribution within the nucleus, we have
obtained a result which should approximate rather
well the coherent elastic scattering of the electrons by
the Z protons in the nucleus. The incoherent scattering"
by the individual protons we expect to be much smaller
than the coherent scattering by the nucleus as a whole.
If we think of each proton as contributing to the entire
scattering amplitude, which is proportional to Ze, an
amount proportional to e', then the coherent scattering
will be of the order of Z times larger than the incoherent
scattering.
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L. I. SchiG for suggesting this problem and for advice
and many discussions. I would also like to thank Mrs.
Sabra Driscoll for her excellent aid with the computa-
tions.

"L.I. SchiG, Microwave Lab. , Stanford University Report No.
102 (November, 1949, unpublished).
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The Disintegration of Ti"
M. TzR-PoGossrAN, C. S. Coox, F. T. PoRTER, K. H. MORGANsTERN, AND J. HUDIs*

I'hysics Department, 8'ashington University, f St. Louis, Missouri

(Received May 22, 1950)

The positron and photo-electron spectra of 3.05-hr. Ti4' have been studied. At least 96 percent of the
positron transitions are to the ground state of Sc' with a maximum positron kinetic energy of 1.022+0.01
Mev. Less than four percent of the positron transitions are to an excited level of Sc~ at 450 kev. In addition,
certain longer-lived activities are found in the chemically separated titanium fraction produced by both
deuteron and proton bombardment of scandium oxide. Two of the activities are shown to be P~ and Sc46 im-
purities.

I. INTRODUCTION

OTH deuteron and proton bombardment of scan-
dium have been reported' to result in a radio-

active isotope of titanium having a half-life of 3.05 hr.
This activity has been assigned to the isotope Ti4'.
Its positron spectrum, as obtained from a histogram re-
sulting from cloud-chamber studies, has indicated an
end-point energy of about 1.2 Mev.

Subsequent work' has confirmed the half-life orig-
inally reported for this isotope.

In the most recent table of radioactive isotopes by
Seaborg and Perlman' a private communication is

quoted from Dessauer indicating the presence of a
second longer-lived isotope of titanium which can be
produced by proton bombardment of scandium, and
which is also assigned to the isotope Ti4'. In further
correspondence with the present authors, Dessauer4

* Chemistry Department, %ashington University.
f Assisted by the joint program of the ONR and AEC.
' Allen, Pool, Kurbatov, and Quill, Phys. Rev. 60, 425 (1941).
'Huber, Lienhard, and KaNer, Helv. Phys. Acta. 16, 226

(1943); 17, 195 (1944).' G. T. Seaborg and I. Perlman, Rev. Mod. Phys. 20, 585 {1948).' G. Dessauer {private communication).

has indicated that the 21-day half-life reported in the
compilation of Seaborg and Perlman' is a typographical
error. What he actually found in the titanium fraction
after irradiating scandium with 7-Mev protons were two
half-lives, 3.1 hr. and 3.1 days. At some time the 3.1
days was erroneously copied as 21 days.

It would thus appear that a beta-spectrometer study
of the radioactive isotopes of titanium produced by
either deuteron or proton bombardment of scandium
could perhaps lead to interesting results.

In addition to the study of the disintegration schemes,
the shape of the positron spectrum can also be of
interest. Using the half-life and energy values reported
in the literature Konopinski5 has calculated a ft-value
for the 3.05-hr. Ti" corresponding to an allowed transi-
tion. Most recent evidence ~' indicates that simple
allowed spectra should produce linear Fermi-Kurie
plots. Since no gamma-rays had been reported, ' it was

' E. J, Konopinski, Rev. Mod. Phys. 15, 209 (1943).' Langer, MoGat, and Price, Phys. Rev. 76, 1725 (1949).
~ G. E. Owen and C. S. Cook, Phys. Rev. 76, 1726 (1949).' Lidofsky, Macklin, and %'u, Phys. Rev. 76, 1888 (1949).' Langer, Motz, and Price, Phys. Rev. 77, 798 (1950).


