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On the Scattering Theory of the Dirac Equation*
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It is shown that for sufficiently strong potentials, the Born approximation is not valid even at very high
energies. A variational principle is derived for the phase shifts and applied to a simple case. Two exact
expressions for the phase shifts are also found.

I. INTRODUCTION
" 'N the course of an investigation on the problem of the
~ ~ scattering of high energy electrons from heavy
nuclei, a number of results in the scattering theory of
the Dirac equation were obtained. In the following

paragraph, the limitations of the Born approximation
in the Dirac theory are investigated. It is shown that
for suSciently strong potentials the Born approximation
is not valid at very high energies. This is done by inter-
preting the Born approximation in terms of the phase
shifts and then investigating the behavior of the phase
shifts at high energies.

A variational principle is derived for the phase shifts.
A simple application of the variational principle gives a
result for the phase shift which is more accurate than
the Born approximation. In addition, two exact ex-
pressions for the phase shifts are found.

II. DEFINITION OF THE PHASE SHIFTS

The 8& defined by Eqs. (3) are the phase shifts; they
are zero if V(r)=—0. If the potential goes like se'/r at
infinity, then there is the additional logarithmic term
just as in the Schroedinger theory.

In terms of these phase shifts, one can write down
the cross section for an unpolarized incoming beam of
electrons as'

~«) = If~(8) I
'+

I f4(8) I

'

1
f3(8) =- E (l+1)

2j

e'"-'-' —1
Pi(cos8) (5)

and

The phase shift method was first applied to the Dirac
equation by Mott' in calculating the Coulomb scattering
of fast electrons. We shall write the Dirac equation for
an electron moving in an electric field only as' Here

f4(8) = Pi'(c 8o)s.

PP = sin8dP~(cos8)/d(cos8),

(6)

(&+V)0=&4 &= (I p+P) — (1)

In (1) we have used relativistic units, 5=m= 1=e.
As with the non-relativistic Schroedinger equation,

we can decompose the wave function into spherical
harmonics. ' Let us denote the radial parts of the wave
function by f&(r)/r and g&(r)//r; these functions satisfy
the di8erential equations,

(d/dr)f~= —(l+1/r)f~+(8 V—1)g~, (2-a)—

and the 8 & & arealsodefined by Eqs. (2) and (3), where
l is replaced by —1—i.

In the non-relativistic limit, 8~= 8 ~ ~, so that in (5)
and (6), fs(8) becomes the usual Schroedinger scat-
tering amplitude,

1 -fe 2&t

fg(8) =- Q (2l+1) P~(cos8),
2i

(d/dr)g& —(E, V+1)f——~+(t+1/r)g&. —(2-b) and f4(8)=0. —

If V(r), the potential, goes to zero faster than 1/r
at ~, then the functions @ and f& have the asymptotic
forTIls)

gr +(E+1)&costLkr ', (l+1)m+8( j, —-
f~(P. 1)& sinLkr ——,'(l+1)m+—8)j.
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III. THE VALIDITY OF THE BORN APPROXIMATION
IN THE DIRAC THEORY

It has already been noted that the Born approxima-
tion does not give good results in the Coulomb scat-
tering from heavy elements, even at very high energies. 4'
We shall show that this is a general property of the
Dirac equation; if the potential is suKciently strong, s

then no matter how high the energy of the scattered
particle, the Born approximation will not be valid. This

' Bartlett and Watson, Proc. Am. Acad. 74, 53 (1940}.
'W. McKinley and H. Feshbach, Phys. Rev. 74, 1'?59 (1948}.

A criterion for "suf8ciently strong" is given later.
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is in contrast to the Schroedinger equation, where the
Born approximation will always be valid if we take the

energy of the incident particle large enough.
To investigate the validity of the Born approximation

we shall 6rst express it in terms of conditions on the
phase shifts. In the non-relativistic theory one can show

that the Born approximation is equivalent to the
assumption that the phase shifts are given by,

(e'a' 1)/2i=——0
~

2. V(r) pro(kr) r' dr, (7)
Jo

4s. Ir—r'I

The solution of (2), giving the scattering due to the

potential V(r), is then

I
et jcl r—r'I

f=akpe'ko'
4or

I
r —r'I

V(r') P(r') dr', (10)

where y is the operator, —~ grad. We can bring the

operator (E ey' —P) outside the—integral sign by
first integrating by parts and then noting that

ei&l r—r'I eiklr —r'I

8x' Ir-r'I 8x Ir-r'I

Thus we get,

P=akpe+" —[E—e.y —Pj

where j&(kr) is the spherical Bessel function. r We shall

find a similar expression in the Dirac theory.
The Born approximation has been treated by others, '

but we shall derive a somewhat diGerent form of it
which will be more useful for later work. I.et us rewrite

(1) as
(E+a y+P)k= Vk

and operate on both sides of the equation by

(E ~ y P);—

then because of the properties of the Dirac matrices

we get
(7'+fo')4 = (E ay—P) —V4, (8)

where k=(E' —1)& is the momentum. Now let us

suppose we have an incoming plane wave represented

by akp exp(ikp r), where akp is a spinor. The plane wave

has a momentum kp and energy E= (k'+1) &. The solu-

tion of (8) is obtained by the usual procedure of using

the Green's function

eiklr —r'I

/~a) pe'"'o+ f(8 po) (13)

and

f(8, po) =——(E—P—a k) ~t e '" 'U(r) P(r) dr, (14)
4m

where k is the momentum vector in the direction 0, y
relative to the direction of kp. Here, of course, f(8, y)
represents four functions, f;(8, pp), i = 1, 2, 3, 4.

Equation (14) is a general expression for the scat-
tering amplitude. To obtain the Born approximation
from it, we replace P(r) by its zero-order approximation
aloe' ";thus in the Born approximation,

where

f(8, v)=p(E P —ak—) ako f-, (8, p), (15)

2
f r (8 po)

. e
—ik r. V(r) e'ko r dr . (16)

4m

and is the usual Born approximation for the non-

relativistic Schroedinger equation.
From (15),we can obtain the differential cross section,

a(8 p)= If(8, v) I'=2'If (8, v) I',

to check this expression for the scattering amplitude.
Thus

Now
or= ,' akp* -[E P rr —k]'—akp If. , I'. (17)

[E P ek]'= 2E (—E —P n. k)— —

since P'=1, Prr+nP=O and (rr k)'=k' Thus

(18)

rrkp*[E —P—rr kj'akp ——2E[E+(1/E)+vp kj; (19)

since akpPPakp= —1/E, and akp cakp= vp, the initial

velocity of the particle. Writing pk cos8 for vp k in (19)
and substituting into (17) we get for the cross section'

1
o (8, po) = (1—spP sin'-'8)

I f„, I
'.

1—so2

Returning now to expression (15) for the scattering
amplitude f(8, vo); we wish to derive an expression for
the phase shifts from it. This we will do by comparison

of Eq. (15) with the expression for f(8) in terms of
the phase shifts; namely, Eqs. (5) and (6).

In Eq. (14), let us introduce the explicit forms for the
matrices a, g, and akp,

1 0

. 0 —1

The asymptotic form of (12), which will yield the scat-
tering amplitude, is

eikr

eijcl r—r'l

V(r') P(r') dr'. (12)
4orl r—r'I

0 1 0 —i
0'~ = ) Og=

1 0 i 0 0 —1

(21)

' Reference 2, p. 77.' T, Sexi, Zeits, f. Physik Sl, 178 (1933).
' A similar result was obtained by time perturbation by M. E.

Rose, Phys. Rev. 73, 279 (1948).
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and
k—/(E+1)

0
Ck0 =

0

We have assumed the plane wave moving in the +s
direction and polarized with spin in the +s direction.
Then Eq. (15) gives for f&(8) and f4(8),

f~(8) = 2(E+1){1+(k/(E+1))'c»8 } f...(8), (22-a)

f4(8) = 2(E+1) (k/(E+1))' sin8 f„., (8). (22-b)

One may note that (22) has the correct non-rela-
tivistic limit. In this limit, k~0 to order w/c, E +1 to-
order (n/c)' and thus f&(8)~f„., (8) and f~ &0 to o—rder
(s/c)'.

Now compare expressions (22-a) and (5) for f3(8)
Using the orthogonal property of Legendre poly-
nomials, we get

e2ihf

(l+1) +l
2i

similar manner. As the functions Pq'(c os8) form an
orthogonal set,

I

I'I'. I'I, 'dx=8)$ .
J—1

Eqs. (22-b) and (6) give,

l(l+. 1),
2l+1

e'"-'-' —e'"' k 2l+1 E+1 t' k

2i l(l+ 1) 2 2 (E+1I

X l sin8 f„., (8) P~(cos8)d(cos8). (28)

(1—x')& P('(x) P('(x)
—1

2l (l+ 1)/(2l+1) (2l —1), l' =$—1

=w —2l(l+1)/(2l+1)(2l+3), l =l+1 (29)

Again, substituting (24) for f„,(8) and now using the
integral,

2l+1 E+1 t. l' k
1+

2 2 ~0 EE+1)

f„., (8) P~(cos8) sin8d8. (23)

Now the expansion for f ., (8) in terms of P~(cos8) 'is

given by the Schroedinger theory as

we get

.0, I'/ 3&1.

E+1 ( {~~+~-~~} ('0)
EE+1)

Equations (27) and (30) can be solved simultaneously

(24) for 8~ and h ~ ~, thus,
1

f ., (8) =- P (21+1).hi P~(cos8),
$ l=o

&&= —kjl 2 V(r) jP(kr) r'dr.
0

Use of the Born approximation in the Dirac theory
is equivalent to calculating the phase shifts by means
of Eqs. (31).In the non-relativistic limit, E~1, and we

get 8 ~ &
——8~and (e'~' —1)/2i=h~asinthe Schroedinger

theory.
However, in the high energy limit, we get a result

quite difkrent from that expected in the Schroedinger
theory. The phase shifts do not approach zero. If we
assume the potential not to have a pole at r=0, then
in h~ we can replace j~(kr) by its asymptotic form,
sin(kr —~2lvr)/kr. Equations (31) and (7) give,

h~ is, as noted above, the non-relativistic Born approxi-
mation for (e'*"—1)/2i.

Substituting (24) into (23), and using the relation

" P,.(x) P,(x) xdx.
2(l+1)/(2l+1) (2l+3), l' = l+1

1'Wl+1 (26)

I'=l —1,.2l/(2l —1)(2l+ 1),

(e'"' 1)/2l = ~(—E+1){A~+(k/(E+1))'A~+q}, (31-a)

(25) (e'"-'-' —1)/2f =-', (E+1){6,+(k/(E+1))'5, ,}.(31 b)

we get

)+1 ~2u5l

+
21+1 2j 2l+1 2i

E+1
t

k y
'- l l+1

~i+ &i+ &dpi (27)
2 (E+1) 2l+1 2l+1

Equation (27) is one relation for 8& and 8
& z ', a second

such relation will be obtained by treating f4(8) in a

f
V(r) dr.

k-moo
(32)

That is to say, for a given axed energy, no matter
how high, then for increasing l the phase shifts, of
course, approach zero. But if we hold l axed, then with
increasing energy, the phase shift approaches a definite
constant, independent of l, given by (32).

Let us call the phase shift at in6nite energy 8„.We
will show in the next section, that if the potential V(r)
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has no pole at r =0, then 8„ is actually given by

ll„=—
) V(r) dr (33)

and

f)= —is(E—1)'(S)—8)) (35-b)

where 8& is the conjugate of S). S&(r) then has the
asymptotic form, because of Eqs. (3),

and not only in the Born approximation.
Now (32) agrees with (33) to first order in V, as the

Born approximation should. However if J'0"V dr is
large, then the Born approximation can be considerably
in error. A criterion for the validity of the Born approxi-
mation is then (in ordinary c.g.s. units), (37-a)

S)(r) ~ si{k~—1{{+1)++5)) (36)
r-+~

Also, by substituting (35) in Eqs. (2) for g{ and f)
we can obtain the differential equations for S~,

d
t V y (l+1 iVp

S)=
I

ik i E —I{S—&+ I
——18

dr E k ) E r k)
~S„~ = (1/kc) ~" V(r) ««1.

0

(34) d f' V q Pl+1 iVy—S,=l —'k+'—& IS)+( +—IS) (37-b)
dr 4 k ) E r k)

As a practical example, consider a square well based
on the mercury nucleus. I.et the range of the well be
the radius a of the nucleus, and its depth be given by
ZP/a. Then for this wall, 6„=0.6, which is not small.
However for a square well based on hydrogen, b„would
be small and the Born approximation would be valid for
such a well.

The difference in the behavior of the Born approxima-
tion in the Dirac and Schroedinger theories can be
understood qualitatively in the following manner. The
Born approximation gives good results if the potential
is weak, that is, if the wave function of the scattered
particle is almost that of a free particle. Now in the
Schroedinger theory, as we increase the energy of the
particle, the potential becomes effectively weaker, since
the particle spends less time near the scatterer. Thus,
even for strong potentials, we can And energies high
enough that the potential is effectively weak. However
in the relativistic Dirac theory, this is not the case. For
if the energy is already such that the particle is moving
with almost the speed of light, increasing the energy
now will not appreciably shorten the time spent by the
particle in the neighborhood of the scatterer. Thus, if
the Born approximation is not valid at energies of, for
example, j.0 mc', it will not be valid at any higher
energies.

The above argument should hold for any relativistic
equation. The phase shifts for the Klein-Gordon equa-
tion also exhibit the same properties as the Dirac phase
shifts at high energies, indicating the non-validity of
the Born approximation for sufFiciently strong poten-
tials in the case of the Klein-Gordon equation.

IV. THE PHASE SHIFTS AT INFINITE ENERGIES

In this section we deal with the behavior of the phase
shifts at high energies and establish the result used in
the previous section. It is convenient to introduce here a
transformation used by Gordon" in ending the energy
levels of the hydrogen atom.

Let S)(r) and 8)(r) be defined by

g) = -,' (&+1)'(S)+8{), (35-a)
' %'. Gordon, Zcits. f. Physik 48, ii (1928).

As both f{ g{=0at——r=0, S,=S) Oat ——r=0.
For purposes of later comparison between the Dirae

and Schroedinger equations, we now show that the
Schroedinger equation can be put in a form almost
identical with that of Eqs. (37).

For the moment, let g()r)/r denote the radial part
of the wave function in the Schroedinger theory; then
g&(r) satisfies the equation

d2 l(l+ 1)—g)+ k' —2 V(r)— (38)
dr2

g) ——0.
r2

In order to proceed in a manner analogous to that in
the Dirac theory, we rewrite (38) as two first-order
equations. We introduce a function f)(r) defined by

d l+1
kf)(r) =—g)——

dr r
(39)

gl 2 (Sl+Sl) )

f) i ,'(S) —S))-———
S&(r) has the asymptotic form

S,~exp[i(kr ——',(l+1)s+ l),)g

and can be shown to obey the equation,

d l iVq t'i+1 Vq—S&=~ ik ——(S,+~ —i—[8„k) &r k&

(41-a)

(41-b)

(42-a)

d f iVq /1+1 iV q—S)=
(

ik+
~

—S)+ I +—(S). (42-b)
dr E k) E r k)

Also, as f)=g)=0 at r=0, the S{=8{=0at r=0.

If the singularity of V(r) at r=0 is not stronger than
1/r, then f)——0 at r=0 Equat. ion (38) becomes now

d f 2Vy l+1
f =~ k———

lg
— f (40)

dr ) k j r

Equations (39) and (40) are two first-order equations
involving two functions, and are equivalent to Eq. (38).

Again we introduce the complex function S{(r),now
dehned by
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It will be noted that Eqs. (37) in the Dirac theory
become identical with Eqs. (42) in the Schroedinger
theory if we put 8= 1 in (37). Equations (37) and (42)
then make very clear the connection between the Dirac
and Schroedinger equations. Also, any results we obtain
in the Dirac theory using Eqs. (37) will likewise hold
in the Schroedinger theory if we put E= j..

Returning now to the problem of calculating ft„, in

Eq. (35), let

or'

Thus,

(V/k) F«+o(1/k)

(in ordinary c.g.s. units).

8„=—(1/hc)) V(r) dr
0

(48)

(49)

S&(e) =e'«'5&0(r), (43) V. A VARIATIONAL PRINCIPLE FOR THE
PHASE SHIFTS

where S&0(r) is the free particle wave function, a solution
of (37) with V=—0. Thus asymptotically, as r—+~,
y(r)~e~. Also, if V(r) has no pole at r=O, S&/S&0 is
regular at r= 0, so that q (r) and d q/dr are also regular
at r=0.

By substituting (43) in (37), s&(r) satisfies the equa-
tion,

d V /+1—~=—&+i (8'/S ')I 1-e-"""']
dr k r

In this section we derive a variational principle for
the phase shifts. Let the integral I be de6ned by,

1 t" d d p V
S& 8&—8&—S&—+2is&8&I k ——Z

I

2i ~p dr dr k )

t 1+1 iVq /1+1 iV q
+I —I8P—

I
+—

I
S, dr, (50)

k) E r k)
and let

V d iV
(8&—/S—& )e ' "+, (44) J—

~ S& —8&—
I

tk+ E—
I

8—
&

k dr E k )

where g is the complex conjugate y.
Now if we assume V(r) has no pole at r =0, then since

de&/dr is regular at r=0, the (1+1)/r term must be
canceled. Thus we must have

q+@=2Re(q)=0, at r=0. (45)

Take the conjugate of (44) and add it to (42); this
gives after integration,

00 oo

l(a+ @)
~p k

r "1+1 S)p
+ —

~ L1—e "r+&&]—dr+cc'
2~p r s)p

Then we have

(3+1 iUi
+—

I S& dr. (51)
r k)

I= i ', (J—J-), — (52)

where J is the complex conjugate of J. From (52) we
observe that the integral I is real and that I=O for the
true wave function. Let us now introduce the trial
junction S,(r) in I and J with the restrictions,

S&(r) =0, at r=0,

S&(r) & exp/i(kr+», )]=expi[kr —(i+21)m+l' ~],&.(53)

r&(
——h&

—
2 (i+ 1)s..

"V8' Forming the hrst variation of J, we get after inte-

+ — ——e ~«+r&. dr+cc . (46) grating by parts
&. 2kS,o

(/+1 iVy
S, a8,—

I

—IS, ~S, d.. (54)ki/+1
I
I e i(r+ip&] —h(r)

dS, / iV

dr E k )Note that xz(s&+ &)]0 g& so that (46) is an expres ~J&=Sg ~S, +
i

— »~-
I

ik+ E—'

sion for the phase shift. Now in the limit k~~, the
second integral —+0 at least as fast as 1/k. For let

h(r) has no pole at r= 0. When r—+~, y+ s&
—& a constant

and h(r)~const. /r. So h(r) is a smooth function. On the
other hand S&'/S&'—&e "'" for large k and r, and oscil-
lates rapidly. Thus the integral Jz"h(r) ~ 8&0/SP dr~
as least as fast as 1/k for high k.

Similarly the third integral in (46) &0 like 1/k' for
high k.

But at infinity, 58&—— imp& exp—(—ikr) and making
use of Eq. (37) for S, Eq. (54) becomes

t."I
&
/+1 iVq

bJ, = ihr&, ', 5— —
I
-+—I8,'

~1+1 iUq
+

I

——
IS P dr. (55)

k) 'I
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The last part is real and drops out in calculating 8I~
which is the imaginary part of bJ&. Thus we get our
variational principle,

b {I+~,j=o. (56)

QO

bi b, = ———
I (V—Vg)

k~p

1
X S~S~+—(SP+8~') «. (59)

2E

That is, if 8~ is the true phase shift, then as J=O for
the true wave function,

b~
——extremum of {I,+b, j . (57)

Thus for any trial function S&, obeying restrictions
(53), we can calculate I, and write, to first order,

(58)

We might also point out that by simply putting E= 1
in (50) and (56) we obtain a variational principle for
the non-relativistic phase shift, where S is now the non-
relativistic function defined in Section IV.

The simplest trial function to use in the solution S,(r)
for some potential V&(r) and with the known phase
shift b, . Putting S,(r) into (50) and (56) and using Eq.
(37) for S,(r), obtain

potential, where the phase shift may be large even at
high energies, the variational results (60) and (61) are
considerably better than the Born approximation.

As other writers" have already pointed out in con-
nection with the Schroedinger theory, the variational
principle for the phase shift provides neither an upper
nor a lower bound. Thus it has the disadvantage that
adding more parameters to the trial function does not
necessarily give better results for the phase shift.

and

where

gi=(E+Vp+1)*' kr j &(Pkr),

f& (E+V——e—1)» kr jr~i(Pkr),

(63-a)

(63-b)

VpE
t
Vpy''

p= 1+2 ——+I —!Ek)

VI. SOME NUMERICAL RESULTS FOR THE PHASE
SHIFTS OF A SQUARE WELL

In order to illustrate the behavior of the phase shifts
in the Dirac theory, we shall. do a numerical calculation
for a square well of depth Vp and range a. We shall
calculate the phase shifts exactly and also by use of the
variational formula (61), and compare the results.

For a constant potential —Vp, the solution of Kqs.
(2) for f~ and g~ are

By matching this solution at r= a to the free particleIf we reintroduce the functions f& and g&, according
to Eq. (41), then we can write (59) as

8+1
b&

—b& = —
i

2 (V—Vg)
~p

((E+1)/(E—1))'ji(ka) —vi ji+i(ka)
tan6) —— (64)

((E+ 1)/(E—1))»22((ka) —y) n)~, (ka)

( k q2 f2
+{E+1 (E+1] E—1

dr (60).
where

/E+ V2+1'» j,(Pka)
!Vi=g~/fije. =

{
» E+Vp 1) j&+i(Pka)—

For the special case V&(r) —=0, b& =0, the solutions for
Eq. (2) can be shown to be,

g»=(E+1)».kr j((kr), fg (E 1)» kr j)+——2(kr), —

and n2(kr) is the spherical Bessel function,

22((x)= (pr/22:)» (—1)'+'J i *(x)

and

Tlius,

g, ,=(E+1)» kr j,( r)k

f 2 i ———(E 1)» kr j( i(kr). —

The phase shift at infinite energy can be found
directly from (64) by substituting the asymptotic forms
of the Bessel functions. We get

6(=—k t 2.V(r) jP(kr) r'dr. (62)

The variational result (61) is identical with the Born
approximation except that (e2@&—1)/2i is replaced by
bi. However (61) gives the correct limit for the phase
shifts when E +~, b„=—J'p" V dr. Thus f—or a strong

bi= ,'(E+1){22+(k/(E-+1))262+,}, (61-a)

b ) i ———,'(E+1){62+(k/(E+1))25) i}. (61-b)

where the hg are as defined in Section III,

which agrees with our more general result.
For our numerical calculation, we put Vp= 21.8 Mev,

which is approximately the Coulomb potential at the
center of a uniformly charged lead nucleus, and let
@=8.09)&10 "cm which is about the radius of a lead
nucleus. As our scattered particles we take 100-Mev
electrons.

%ith these figures 8„=0.9 radian, a rather large
phase shift. Table I lists the exact phase shifts and
those calculated by the variational result, (61). bp has

"L.Hulthbn, Arkiv. f. Mat. , Astr. o. Fys. 3SA, No. 25 (1948).
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very nearly its asymptotic value of 8 =0.9. The phase
shifts start out rather large, but decrease very rapidly
with increasing /. The variational result gives good
agreement for the 6rst few b~ and for the high b~. The
agreement is worse for the intermediate b~. Exact 8 8 by relation (61)

TABLE I. Phase shifts for a 100-Mev electron scattered from
a potential well, depth 21.8 Mev and range 8.09X10 "cm, ac-
cording to the Dirac equation. The exact phase shifts are compared
with those obtained by the variational result (61).

VII. TWO EXACT EXPRESSIONS FOR THE
PHASE SHIFTS

%e shall now derive two exact expressions for the
phase shift. If we multiply both sides of Eq. (35-a) by
expL —i(kr ——,'(l+1)e)] and note that

0.857
0.823
0.723
0.273
0.0471
0.0055
0.00054

0.864
0.844
0.525
0,179
0.0369
0.0050
0.00049

e
—""—S,= (e—'~ "S—()+ike *'Si

dr dr
(65)

~
—i fkr —$(l+1)x]

then by integrating and using the property 5&=0 at r=0
we get

and then making use of the simpler integrand to do the
integration.

A second exact expression for the phase shift in the
Dirac theory can be derived which is more analogous
to the non-relativistic expression,

sinb~ ———
~l 2 V(r) j&(kr).gi r.dr.

Let us differentiate Eq. (2-b) and eliminate df&/dr by+
i g t d 66 means of (2-a); then we get the second-order equation

1 k ~ ~ 7k&

The expression (66) for the phase shift differs from
usual expressions for the phase shift, and is simpler
in that instead of involving the product of two wave
functions one of the wave functions is replaced by what
is essentially its asymptotic form, the elementary func-
tion exp[—i(kr —-', (l+ 1)7r)].

Relation (66) will also hold in the Schroedinger
theory if we put E= l. It is simpler to discuss (66) in
this non-relativistic limit. If we substitute for S~ in

(66), the solutions for V(r) —=0, we get the approximate
expressions for the phase shift,

cosLkr ——,
' (l+ 1)e ]

sinb( ——k
~

2 V(r).
J0 kr

j i(kr) r" dr. (67)-
Equation (67) resembles the Born approximation for
the phase shift: (e'@&—1)/2i is replaced by sinb&, which
is not too important in the Schroedinger theory since b~

is not large, and one of the spherical Bessel functions is
replaced by its asymptotic form. Equation (67) does
not give the phase shift correct to the 6rst order in the
potential, for then the term in the integrand of (66)
involving (l+1)/r would. require that 8&(r) should be
correct to first order in the potential. Also, one would
not usually expect (67) to be better than the Born
approximation as the asymptotic form of j&(kr) is a
worse approximation to the true wave function near
r =0 than is ji(kr).

However, the advantage of (66) would lie in using
wave functions which are better approximations to the
true wave function than are the free particle functions,

d' t l(l+1) q dV
gi+

~

k' — ~gi = (2E—V) V gi+ f. i
—(68).

dr' & r' dr

Let fie(r) and gie(r) be the solutions of (2) for zero
potential. By (68), gee(r) satisfies,

d' ( l(l+1) q

gP+( k' — fgP 0=
dr' E r' ) (69)

sinb~= —(1/2k) 2 V(r) Igi'gi+f~'fiI dr. (71)

Substituting the free particle wave functions given in
Section VI, we get,

sinb&= 2(E+1)&Jr 2—V(r) r j &(kr) g&(r)
0

(
+I —

I j i+i(kr) f~(r) «(72-a)
EE+1]

Now multiply (68) by gie, (69) by g&, subtract and
integrate. Then, using the asymptotic forms of g~ and

gi p

—(E+1) k sinbi

dV
gie(r) (2E—V) V g~+ f~ dr (70)~ .

J0 dr

If we now integrate the term involving dV/dr by
parts, and eliminate df~/dr and dg&/dr by means of (2),
we obtain finally
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sin8 ~ q= —$(E+1)& ' 2 V(r) r j~(kr).g~(r)

(E—iy &

} g~ ~(kr).f ~ ~(r) dr (7.2-b)is+»
The zeroth approximation to the wave functions will

cause Eqs. (67) to yield a first-order approximation
which will agree with the Born approximation in the

Dirac theory except that (e'a&—1)/2i is replaced by
slI18~.

A result similar to relation (66) will hold for poten-
tials that go like Ze'/r at infinity. We simply replaced in
(66), the free particle solutions gP and fP by the
Coulomb solutions and the potential V(r) by the
deviation from the pure Coulomb potential Ze'/r.

I would like to express my gratitude to Professor L. I.
Schi6 for suggesting this problem and for advice and
many discussions.
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The Evaluation of the Collision Matrix
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Dyson's systematic approach to the reduction of the Heisenberg S-Matrix into a sum of "graph" terms
can be simplihed. A notation is introduced and an algebraic theorem is proved, which allow one to handle
the reduction problem quite easily and in the same manner for any type of 6eld.

I. INTRODUCTION

HE Feynman technique' for calculating transition
probabilities is now so widely used that a full

and satisfactory understanding of it by a wider circle is
desirable. An important step in this direction has been
Dyson's' direct derivation of the method from a simple
expression for the S-matrix. One feels, however, that
the pedagogica/ value of Dyson's proof is slightly marred
by certain omissions and obscurities; moreover, some
of the algebraic considerations seem more involved than
should be necessary. The purpose of this note is to
supply a simple and straightforward proof. The case of
the electron-positron 6eld interacting with a quantized
electromagnetic field is suKciently general to allow us
to demonstrate all of the features of the method.

Let then f(x) be the Dirac field operator at the
space-time point x, g t the hermitian-conjugate of
f, f=ftp the adjoint, and A„(x) the u-th component
of the electromagnetic potential. The S-matrix for the
system can be written:

S=1+Sl+S2+ ~ ~ ~

where S, the term of the n-th order in the electron
charge e is expressed by a multiple integral over a
product of field factors |f, f, A LEq. (18) below]. Our
problem is the reduction of 5 to a sum of terms 8 le
Feynman. To this end we notice that our fields f and
A are linear combinations of creation and destruction
operators. For example, f(x)=P„a„g,(x) where the
f,'s are the normalized representatives of the states of

' R. P. Feynman, Phys. Rev. 76, 749 (1949).
~ F. J. Dyson, Phys. Rev. 75, 486 (1949).

a free Dirac particle, and a, is a destruction (creation)
operator if r is a positive (negative) energy state.
Collecting all the positive energy states together into a
term u(x) and the negative states into a term 8(x) we
can write:

P(x)=u(x)+V(x), P(x)=u(x)+s(x), (2)

where u (u) destroys (creates) electrons, and v (8)
destroys (creates) positrons. ' Similarly, we can write

A„(x)=a„(x)+a„t(x), (2')

where a„(a„t) destroys (creates) photons. ' Substituting
such expressions into a product of 6elds, we can expand
each product into a sum of products in which each
factor is either a creation or a destruction operator.

Following an idea of Houriet and Kind, ' we then pro-
ceed to rearrange such a product so as to carry all crea-
tion operators to the left of all destruction operators,
writing for instance: u(x)v(y)= o(y)u(x)—, u(x)u(y)
= Iu(x), u(y) }—u(y)u(x) where the anticommutator

{u, u }=uu+ uu is a c-number. Thus one may transform
a product of n creation and destruction operators into
the "ordered" product of the same factors, plus extra
terms in which some pairs of factors have been replaced
by their commutators or anticommutators while the
remaining factors are "ordered" in the above sense.
The advantage of this is that when we take the matrix
element of an ordered product between a anal and an

' We set N=utP, v=etP or 8=Pvt; the asymmetry in the de6ni-
tion of cc and 8 shall not cause any trouble here.

a„t is the hermitian conjugate of a„(of —a„ if p, 4). As
regards the treatment of timelike photons, see Section IV.

~ A. Houriet and A. Kind, Helv. Phys. Acta 22, 319 (1949).


