
PHYSICAL REVIEW VOLUME 80, NUM BER 2 OCTOBER 15, 1950

Variation of Amplitude-Dependent Internal Friction in Single Crystals of Copper
with Frequency and Temperature*
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The amplitude-dependent internal friction which originates in the motion of dislocations in single
crystals of copper is studied as a function of frequency and temperature. Quantities are introduced which
express the dependence of internal friction and of Young's modulus on strain amplitude and it is shown
that these quantities are signiacant measures of the properties of a crystal. Measurements made between
—60'C and +33'C show that the observed internal friction can be expressed as the product of a function
of temperature and a function of amplitude alone. The data also indicate that the internal friction and
elastic modulus are frequency independent when the structure sensitivity of the material is taken into
account. The results are considered in terms of two viewpoints: a mechanism of relaxation by which dissipa-
tion is controlled through a rate process, and s~mple hysteresis, by which the stress-strain loop is independent
of the rate of traversal. It is shown that the latter mechanism gives much better agreement with the experi-
mental facts. Finally, simple hysteresis is interpreted in terms of the dislocation theory.

motion of these dislocations that is responsible for the
dissipation observed by Read. Although great interest
has recently been shown in the internal friction due to
dislocations in zinc crystals' (probably because zinc
contains only a single parallel set of slip planes) the dis-
sipation in copper involves a considerably simpler situ-
ation. Inasmuch as the previous vibrational history has
no eGect on the copper crystals, it is reasonable to
suppose that the vibrations cannot alter the distribution
and number of dislocations; therefore, the dissipative
mechanism is simply the oscillatory motion of disloca
lions, already present in the lattice, about their equi-
libriurn positions. The present research is a contribu-
tion toward an understanding of this process. The
significant factors here investigated are the effects of
temperature and frequency on the manner in which both
internal friction and elastic modulus vary with the
strain amplitude.

I. INTRODUCTION

HE internal friction of solid materials is usually
studied by observing the behavior of a properly

shaped specimen body which is vibrating in one of its
normal modes. A coe8Rcient of internal friction, 6, can
be defined by the formula

a=w"j2w", (&)

where m" is the energy dissipated per unit volume per
cycle of vibration and m' is the total vibrational energy
per unit volume. There are numerous sources of dis-
sipation in solids among these is the internal stress
produced by cold-work. In a study of single crystals of
copper and zinc in forced longitudinal vibration in the
frequency range 30 to 100 kc/sec. , Read' reports a
characteristic amplitude-dependent internal friction
which he relates to the internal stress by observing that
the dissipation is increased by cold-work and decreased
to a minimum by annealing at a high temperature. It is
found that the internal friction increases and Young's
modulus of the material decreases with increasing
strain amplitude of vibration in both zinc and copper
crystals. There is, however, a striking difference
between the behavior of these two metals; in contrast
to the behavior of zinc, the internal friction of copper
crystals does not depend on the previous vibrational
history of the material, nor is a persistent temporal
variation of this quantity observed, following heat
treatment or cold-work.

The internal stress associated with cold-work has long
been related to the presence of linear lattice imper-
fections known as dislocations. It is the stress-induced

II. EXPERIMENTAL METHOD

The method, which permits the measurement of both
the internal friction and jL'oung's modulus, E, of the
specimen, is essentially that developed by Cooke and
Brown' and Read, ' so modified as to permit observa-
tions at various temperatures and on specimens in
which the variation of 5 and E with strain amplitude is
appreciable even at small strain amplitudes. The speci-
men, in the form of a right circular cylinder 5.3 mm in

diameter and a few cm long, forms one part of a com-

posite piezoelectric oscillator constructed by cementing
to one end of the specimen an X-cut cylinder of crys-
talline quartz of identical cross section. This composite
oscillator forms one arm of an alternating-current
bridge, and measurements of the equivalent impedance
of the composite oscillator near one of its resonant fre-
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f'= (~*/~')'(2L') ' (3)

E,.=Young's modulus, p; =density of a cylinder,
I.,=length of a cylinder, and the subscripts 1 and 2

refer to the specimen and quartz cylinders respectively.
The resistance and reactance near resonance are given

by the expressions

R= Kfo(Mgdg+M262), (4)

where E is a constant which must be obtained by ex-
periment, M=M~+M2, and 8f is the departure of the
frequency of the applied potential difference from the
resonant frequency, fo. The quantities h~ and A2, called
the "decrements" of the specimen and quartz cylinders
respectively, are defined by the formula

quencies yield the elastic and dissipative properties of
the specimen.

It is found, as previously remarked, that 6 and E of
the specimen material depend on the vibrational strain
amplitude, which varies along the specimen cylinder.
Therefore, the specimen cylinder is electively inhomo-

geneous. The mell-known results of the analysis in the
case of homogeneous specimens are presented in the
foBowing section. It is then shown that under certain
assumptions, the validity of which are demonstrated
experimentally, a simple extension of these results cor-
rectly describes the inhomogeneous specimen.

Homogeneous Specimen; E and 4 Constant

The impedance, Z, of the composite oscillator near
one of its resonant frequencies, fo, can be written in the
form 1/Z=icvc'+1/Z, where co is the angular fre-

quency of the applied potential difference and the form
of Z is precisely that of an electrical. series resonant
circuit, Z =8+iX. The resonant frequencies, for
which X=O, are the solutions for fo of the equation

My' tan(7rfo/fq)+M2f2 tan(sfo/fq) = 0, (2)

where M;=mass of a cylinder,

supplied to the oscillator in a cycle of vibration to the
energy dissipated in the oscillator during the same time
interval.

At any frequency near resonance, the composite oscil-
lator can be replaced by a capacity and resistance con-
nected in parallel. This eBective resistance, (R, of the
composite oscillator is given by:

6t = (R'+ X')/R

The quantity (R is measured experimentally; at exact
resonance I.=E. When the reactance, X, is eliminated
from Eq. (g) with the aid of Eq. (5), the following ex-

pression for the factor X results:

K' = [(6t/R) —1j
[4m' M'(bf)'j

Accordingly, a measurement of R at a known frequency
departure, Bf, from resonance yields the value of the
quantity X; a separate measurement of the properties
of the quartz crystal alone yields f~ and 62 and this
information together with measured values of fo and R
yields the elastic and dissipative properties of the
specimen, after application of Eqs. (2), (3), and (4).

Homogeneous Specimen; E and ~ Variable with
Vibration Amplitude

Modification of the foregoing theory necessary to
obtain a description of the behavior of an inhomo-

geneous specimen is most easily obtained with the aid.

of an auxiliary concept; namely, that of a fictitiou
specimen which is homogeneous, but whose elastic and
dissipative coeKcients vary with the nzaxinzuns strain
amplitude in the specimen cylinder. For such a speci-
men the observed quantities are the resistance at

5.0

6,= W;d/2W';", (6)
40

where lV," denotes the total energy dissipated per cycle
of vibration and 8' the total vibrational energy, in a
cylinder.

In the experiments here reported the lengths of the
quartz and specimen cylinders are so adjusted that,
when vibrating in the neighborhood of a resonant
frequency, very nearly integral numbers of half-waves
of vibration appear in both the quartz and specimen
cylinders. Under these circumstances the variation of
the maximum strain amplitude in the specimen cylinder
with frequency is given by ~~ where

a& '= 2X 10'K(pi/Rg) P/(R'+X') (7)

3.0
R

2D

lO
-20 - 1.0 0

f-&0 (cyclestsec )

IO 20

and b is the r.m.s. voltage applied to the quartz. This
formula is obtained by equating the electrical energy

FIG. 1. Comparison of the observed resonance curve with that
computed from the theory of the 6ctitious specimen.
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resonance, E, and the resonant frequency, measured as
a function of applied voltage. Quantities Eq and A~,

which characterize the fictitious specimen at each am-

plitude of vibration, are calculated from the measured

quantities f& and R exactly as in the earlier case, once

the value of E is known. The maximum strain ampli-
tude at resonance is related to h and It. by Eq. (7), with

X set equal to zero. The relation 5E~/E&=2'&/f&
connects the fractional changes, in the quantities f~ and

F~, between zero amplitude and the strain amplitude
of a given measurement.

In order to obtain the quantity K, Eq. (9) must be
reinterpreted, for the variation, bf, in frequency near
resonance is accompanied by a rapid decrease in the

amplitude of vibration. Corresponding to a decrease in

amplitude there is a change in h~ and E~ and hence in

R and fo Le.t the applied potential difference, at which

the measurement to determine E is made, be denoted

by h and the corresponding (off resonance) resistance
be denoted by R. Then the value to be inserted in Eq.
(9) in place of E is the resistance E' which would be
measured if the composite oscillator were vibrating at
resonance with the actual off resonance amplitude; that
is, if the oscillator were vibrating at resonance under a
reduced voltage, say 8'. When the strain amplitude off
resonance under a potential h, obtained from Eq. (7)
after elimination of the quantity (R'+X') by means of

Eq. (8), is equated to the strain amplitude at resonance
under a potential 8' the following expression is obtained

ft.'1/h'= tst 1/h.

This expression makes it possible to obtain 8' and E.'

from the observed variation of resistance at resonance
with applied voltage. It is necessary merely to plot the
ratio, square root of the resistance at resonance divided

by voltage at resonance, obtained from the data, as a
function of voltage at resonance; h' is then the value
of voltage at resonance at which this ratio equals
tRi/8.

Now consider the quantity hf in Eq. (9); it must now

be re-interpreted as the frequency departure, not from

the observed resonant frequency of the oscillator, but
from the resonant frequency that the oscillator would

have if the elastic modulus of the specimen retained the
value characteristic of the vibration amplitude at
resonance under an applied voltage 8'. Since 8' is

already determined, the desired frequency is obtained
directly from the experimental curve of resonant fre-

quency versus applied voltage.

The Resonance Curve

The behavior of the 6ctitious specimen is charac-
terized by its "resonance curve, " here de6ned as the
variation of (R with frequency in the neighborhood of
resonance. In accordance with Eq. (9) and the argument
of the preceding section, a single determination of E,
corresponding to a single value of 8f, together with the
data for variation of resonant frequency and of re-

sistance at resonance with applied voltage, sufhce

uniquely to determine the entire course of the resonance
curve characteristic of the hctitious specimen. Such a
curve, corresponding to an applied voltage b=0.3 volt,
is shown in Fig. 1 together with the observed variation
of (R with frequency for an actual specimen. Here E.
is the value of (R at resonance and the ordinates of the
curve are the ratios tit/R. The value of E employed in

the computation is obtained from a resonance curve
taken at an applied potential sufFiciently small that A~

and Ej are very nearly constant over the entire range
of strain amplitude present in the specimen, so that
only the theory of the homogeneous oscillator is in-

volved. Accordingly the close agreement between theory
and observation demonstrated in Fig. 1 is obtained
without the benefit of a single adjustable parameter.

The concordance exhibited in Fig. 1 means that the
behavior of the actual specimen cannot be distinguished
from that of a fictitious specimen whose elastic and dis-

sipative coefficients vary with the maximum strain am-

plitude in the specimen cylinder in precisely the same
manner as the quantities denoted by the symbols 6&

and Ej are observed to vary when these are computed,
from observations with the formulae of the theory. The
sole remaining step in the argument is to relate the
quanties A~ and Ei so dehned to the physical properties
of the actual specimen.

Relation of E& and A& to Properties of the
Specimen Material

The form of the resonance curve of the 6ctitious
specimen is a consequence of the fact that near resonance
it vibrates in a single normal mode. In the actual speci-

men, the excitation of higher harmonics is to be ex-

pected whenever the dissipative coefficient varies with

the strain amplitude, since such a behavior can only
arise from a nonlinear dissipative term in the differential

equation of motion of the bar. Accordingly, the physical
significance of the agreement between the behavior of
the hctitious specimen and the actual specimen is that,
under the circumstances of measurement, higher har-
monics appear to a negligible extent and hence that the
specimen cylinder is, in fact, vibrating very nearly in a
single normal mode.

The stress, 0., and strain, e, in the 6ctitious specimen
can be written as

o =o~„sin(7rx/L~) cosset =o cosset, (11)

o= (A coscvt+B since) sin(~x/L~), (12)

where u is the angular frequency of the applied voltage.
Here A and B are constants, for a given value of 0~,
which are related to Ej and h~ by the formulas

1/Eg= A/og, (13)

kg= n.EgB/og .

Consider next an elementary length of the actual

specimen cylinder located at a point x on the axis.
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%'hen higher modes are neglected, the stress and strain
at this point can be written as

0 =o~ coscot,

e= a coscot+ b sin~t. (16)

Here u and b are functions of 0 and therefore of x. The
local elastic modulus, E, of the material can be dined
by

1/E= a/a (17)

and it follows from the definition of 6, Eq. (1), that

A=sEb/a .

Now, whatever the nature of the variations of a and
b with x, these quantities can be represented in the
interval 0 &x &1.&, by Fourier series of the forms

a=+ a„sin(esx/1. ))

lo 20

(Strain Amplitude) X 10

FIG. 2. Both 6& and BE&/E& are proportional to the square of the
strain amplitude at low strain amplitudes.

where the assumption, justified experimentally, that
the spatial variation of E is small of the order of 0.01
percent of its value, has been made.

III. EXPERIMENTAL DETAILS

Construction of the Comyosite Oscillator

The adhesive employed in the construction of oscil-
lators on which measurements at room temperature are
to be made is a thin film of phenyl salicylate (salol), a
substance which melts at 43'C and supercools in the
liquid state to room temperature. Because of this latter
property it is possible to freeze the salol at room tem-
peratures and in this way to prevent a diQ'erential

thermal contraction at the quartz-specimen interface
during cooling.

Strain due to differential thermal expansion at the
interface has thus far defeated attempts to apply the
composite-oscillator method of measuring the variation
of internal friction with temperature. ' In the present
experiments this difhculty has been resolved by the use
of a liquid adhesive in oscillators on which measure-
ments below room temperature are to be made; the
adhesive is a thin 6lm of Dow Corning 50 centistoke
silicone, DC200. This substance remains Quid to tern-

peratures near that of solid C02.
A special apparatus is required to assemble an oscil-

lator in which the adhesive is a liquid. The assembly
procedure is as follows. Initially the component cylin-
ders rest each upon four ball bearings which lie in

parallel horizontal grooves cut in the base of the
apparatus. The upper ends of a pair of fine wire loops,
on which the oscillator is later supported, are cemented
to a pair of parallel horizontal rods mounted above and
parallel to the axis of the specimen. These rods are
geared together, so that the loops can be shortened
evenly by a rotational torque applied to one of them
only. The lower parts of the loops are positioned very

A=ay and B=bg. (20)

Lastly, A and 8 are evaluated in terms of Ej and b, i by
Kqs. (13) and (14) and a and b in terms of E and 5
by Eqs. (17) and (18). Accordingly, Eqs. (20) are
equivalent to the formulas

and similarly for b, with the usual Fourier inversions.

The requirement that the vibration of the actual speci-
men is, very nearly, in a normal mode is equivalent to
replacing a and b in Eq. (16) by the first terms only of
the Fourier expansions, and it then follows by com-

parison of the resulting expression for c with Eq. (12)
that

80

O
X

60

o 50

301

g,= (2/L, ) I a sin'(~x/1. ,)d*, (21)
2 4 6 8 lo l2

SE, &Ei X l05

~Ll
1/Eg (2/2, )Jl (1/E) sin'(n. x/L——g) dx, (22)

0

FIG. 3. Combination of the curves of Fig. 2 shows that the decre-
ment is a linear function of BE1/E~ at small amplitudes.

' See C. A. Wert, reference 4; T. A. Read, private communica-
tion.
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accurately beneath the respective centers of gravity of
the two cylinders. A thin 61m of adhesive covers the
end of the quartz cylinder proximal to the specimen.
The two cylinders are forced together by a spring
loaded pin, which is released from its retracted position

by rotating a screw. Lastly, the pin is again retracted
and the oscillator is elevated by rotating the geared
rods, until the quartz lies in proper position between
the electrodes. The latter are mounted in a frame con-
structed of Lucite. An oscillator so constructed and
suspended, remains intact for several days.

The Cryostat

The cryostatic space is a horizontal glass tube two
inches in diameter and three feet long with metal
Qanges and gasketed plates on the ends to permit evacu-
ation. The working Quid of the cryostat is acetone
which is circulated in coils through a slush of solid CO2
in trichloroethylene and around the cryostatic space.
Temperature is measured with a calibrated copper-
constantan thermocouple.

Preparation of Specimens

Single crystals of copper are grown in graphite
crucibles by the Bridgman method, in an oxygen-free
atmosphere. Specimens are annealed at 600'C for four
hours in vacuum to remove strains induced by cutting
and lapping them to the desired length. Prior to certain
measurements the crystals are subjected to a measur-
able amount of cold-work produced by application of a
known longitudinal compressive stress.

Specimen Material

The specimen material is commercial copper rod.
Spectrographic analysis reveals the presence of the fol-
lowing percentages of impurities: Al and Fe, 0.01 to
0.001; Pb, 0.0001; Ag, 0.003; traces of Ca, Mg, and Si.

TABLE I. Dissipative characteristics of specimens A and B at
room temperature.

Specimen A
Specimen B

aP X1O&

14.0
29.4

Cgxio 9

0.26
1.61

3.4
4.0

values of h1' contain unspecifiable contributions
ascribable to the adhesive and to the state of the surface
of the specimen. The former are less than 10—' when the
adhesive is salol, and close to 10 4 when the liquid
adhesive is used. Variations of 61' between 10 ' and
5&&10 ' can be produced by etching the surface of the
specimen. Experiment proves, however, that the mag-
nitudes of both of these spurious contributions to the
internal friction are independent of strain antptitude

Cr = (ddt/de)„') „„o. (23)

The quantity C1 is the most significant for the de-
scription of the dissipative property of single crystals
vibrating at low strain amplitudes, for the following
reasons:

(a) C&, which by definition is a measure of a property
of the specimen cylinder, is closely related to the
measure of the corresponding property of the specimen
material. Thus, if

6=5'+Ce~'

I 00

The Quantity C~

When A~ and bE~/E~ are plotted as functions of e& ',
graphs of the type shown in Fig. 2 are obtained. It thus
appears that, at low amplitudes, both quantities vary
linearly with the square of the maximum strain am-
plitude. The slope of the line which represents the vari-
ation of 61 with e1 ' is here denoted by C1, thus

IV. EXPERIMENTAL RESULTS

The data reported here are based on an extended
series of experiments on five diGerent copper crystals.
The orientations of the cylinder axes of these crystals
with respect to the crystal lattice are various, hence
their lengths, which correspond to the same resonant
frequency, vary between 3.5 and 5 cm.

Characteristics of the Variation of Young's Modulus
and Decrement with Strain Amplitude

The purpose of this section is to point out certain
general aspects of the variation of E~ and d 1, with strain
amplitude which characterize the behavior of single
crystal specimens, within the ranges explored in the
present experiments.

The Quantsty 6&

This quantity is dehned as the limiting value of 6&
as the strain amplitude approaches zero. All measured

90

80

70—

~ 60
6

O
50

40—

50—

20
0

I I

3 4 5
Strain Amplitude X l0

Pro. 4. Variation of internal friction with strain amplitude and
temperature.
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TAaxx II. Variation of dissipative properties with
temperature.

TAsLE III. Results of measurements of internal friction at two
frequencies.

CgX10 9

Specimen A
298.0 0.260
293.5 0.250
286.0 0.235
270.0 0.200
260.0 0.180
248.0 0.158
240.0 0.145
233.0 0.137
222.0 0.120
215.5 0.110

3.7
3.5
3.5
3.5
3.4

3.4
3.5
3.4
3.3

T, 'A

306.0
289.5
268.0
257.5
244.0
239.0
232.0
224.0

Ci X10-'

Specimen B
1.58
1.44
1.17
1.04
0.90
0.87
0.75
0.685

4.0
3.9
3.95
3.8
3.9
4.1
3.95
3.8

No.

1
2
3
4
5
6
7
8
9

10

0.69
1.2
9.10

31.0
14.8
14.0
12.7
50.7
29.4
69.4

0.00074
0.003
0.018
0.090
0.104
0.26
0.90
0.92
1.61
2.20

1.8
2.9

3.0
3.4
3.3
3.5
4.0
3.5

39 kc/sec.
~1'X 20t CtX20

0.81
1.6
9.85

30.8
13.9
18.6
16.6
36.7
28.1

119.0

0.00128
0.004
0.015
0.064
0.080
0.388
1.34
0.50
1.16
4.3

78 kc/sec.
h~'X2Ã CiX20~

1.6
2.6

3.05
3.7
3.5
3.4
4.4
3.9

where e = a „/E is the local strain amplitude, then from
Eq. (21) it follows that AP= 5' and C&= 4C.

(h) C&, unlike 6&, is free of error introduced by the
adhesive and the state of the specimen surface; it is a
measure of the dissipative property of the crystal lattice
itself. Furthermore, it is an extraordinarily sensitive
measure of this property; various values of C2 observed
in the course of these experiments difFer by the factor
4000, while the corresponding values of 62O difFer only
by the factor 140.

The Quantity r&

Corresponding values of Aq and bE~/E~ obtained
from Fig. 2, are plotted as ordinates and abscissae,
respectively, in Fig. 3. The slope of the straight line
obtained at small strain amplitudes is here denoted by
r2, j thus

r, = [ddt/d(bE)/Eg) j„„o. (25)

An analysis similar to the one which related C2 to C
shows that r&= r, where r is the property of the material
defined by an equation similar to Eq. (25) in which the
subscript "1"is deleted throughout.

The values of r» observed in these experiments lie
between 1.5 and 4.4. The quantity r2 varies approxi-
mately monotonically with C2, it is always less than
three for annealed crystals and always greater than
three for crystals that have been subjected to cold-work.

Variation of Internal Friction with Temperature

Complete studies were made of the variation of
internal friction with strain amplitude in two specimens,
over the temperature interval +33'C to —60'C. Both
specimens were cut from the same crystal cylinder, but
the two were subjected to difFerent amounts of cold
work in order to obtain specimens characterized by
widely difFerent dissipative properties. The latter are
given in Table I which summarizes measurements made
at room temperature on composite oscillators con-
structed with salol adhesive.

The observed variation of h2 with temperature and
maximum strain amplitude, for specimen 8, is shown
in Fig. 4. Computed values of C» and r2 for the two
specimens are given in Table II.

where
F(T, er )——=Fg(T)F2(e& ),

F~(T)=Pe et

(26)

(27)

and the value of I' is chosen to be the same for both
specimens. The value of 0 has the same value, 700'A,
for both specimens within the accuracy of these experi-
ments, as is evident from Fig. 5, in which the natural
logarithm of F~(T) is plotted as a function of 1/T. It is
clear from the form of Eq. (26) that the quantity C&

differs from F~(T) by a constant factor.
It is worth noting specifically that the quantity r& is

indepertdertt of temperature.

Variation of Internal Friction with Frequency

Measurements of the quantities 52', C2, and r2 were
made upon various specimens at the fundamental fre-
quency (39 kc/sec. ) and the second harmonic frequency
(78 kc/sec. ). All such measurements were made at room
temperature, on composite oscillators constructed with
salol adhesive. Data are recorded in Table III; the first
three measurements represent annealed specimens, the

2 2

x Specimen A

o Specimen 8

2.0—

C

l.6—

i.4—
3.5 4.0

I/T X IO

FIG. 5. The logarithm of F&(T) varies inversely with the absolute
temperature.

An analysis of curves such as those of Fig. 4 reveals
the following: If due allowance be made for the uncer-
tainty in the value of 52 by the addition of a suitable
constant amount to the ordinates of each curve, then
the entire family of curves for each specimen may be
represented over the entire range of variation of tem-
perature and strain amplitude by a function F(T, e&„)
which has the form
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remaining entries are for specimens which had been
subjected to cold-work. The maximum compressive
stress employed was 365 p.s.i.

The following general remarks summarize the results
of this table. (o) Although both the quantities Aio and
C~ increase with the degree of cold-work, there is no
simple relationship between them. (b) In all but one
case the changes in 0 ~' and C» between the fundamental
and second harmonic are in the same direction. (c) Both
C~ and Al' vary with frequency in an apparently random
manner. It is particularly noteworthy that the speci-
mens A and 8 which, as shown in the last section, obey
almost identical laws of temperature dependence, vary
with frequency in opposite directions. The data for
these two specimens appear in Table III as numbers 6
and 9, respectively. (d) Since the experimental error in
almost all measurements of r~ is about +0.2, it appears
that r& is independent of frequency within the accuracy
of these experiments, over the entire range of values of
C~ and A~' studied. Figure 6 illustrates this result for
one of the measurements (No. 8) quoted in the table.

It is well known that the state of internal stress is
very sensitive to previous history and to Aaws in the
crystal which result from accidents of growth; this
"structure sensitivity" is reflected in the measured
va, lues of internal friction. It is in these terms that the
apparently random results for the relative values of
internal friction at the first two modes of vibration may
be explained. In the fundamental mode of vibration, the
maximum stress is located at the center of the specimen
cylinder and the measurements obtained are primarily
a result of the behavior of this part of the lattice. At the
second harmonic stress loops are at ~ and 4 the length
of the cylinder. Since the two measurements involve
diBerent parts of a highly structure-sensitive crystal
lattice, it is not surprising that the frequency dependence
of C~ and of A~' cannot be deduced from them. This
argument does not apply to the quantity r& which is
not very sensitive to history since it varies very slowly
with C~. The observation that rj, is independent of
frequency may therefore be regarded as one of the
important results of these experiments.

V. DISCUSSION

A phenomenological discussion of two general dis-
sipative mechanisms is presented in this section; the
experimental results make it possible to select one of
these to represent the behavior of the crystals inves-
tigated. The significance of the mechanism selected is
then discussed in terms of dislocations. Since the dis-
sipative and elastic properties of the specimen as a
whole have been related to the properties of the material
in an earlier section, it is necessary to consider only the
behavior of an element of material under a stress, o.,
which varies sinusoidally in time and produces a strain, E.

In the presence of a source of dissipation (in the
present case, dislocations) the strain may be written

as the sum of two terms
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FIG. 6. The quantity r& is independent of frequency.

elastic modulus E will be equal to E& if and only if the
strain e2 is purely dissipative, i.e., contributes only to
the factor b in Eq. (16) so that a= o /E&.

It is useful to distinguish two types of dissipative
mechanisms. The first, a mechanism of relaxation is
defined in terms of a stress-strain curve which depends
on the rate of application of the stress. It is therefore
characterized by the occurrence of creep at constant
stress, or in vibration, by a stress-strain ellipse whose
parameters depend on the frequency. The second
mechanism, simple hysteresis, is defined in terms of a
stress-strain loop that is independent of the rate of
traversal. Under cyclic stress the strain may dier, for
the same value of stress, during loading and unloading,
but all values are independent of the frequency of the
cycle. Inasmuch as all dissipative mechanisms studied
to date fall into the category of relaxation (e.g., anelas-
ticity' is a special case of relaxation) it seems natural to
start by considering this mechanism.

The Mechanism of Relaxation

One example of relaxation is the behavior known as
pure plastic/tow in which the fundamental equation for
e2 is

deg/dt = (1/r) f(o),

where e& is the purely elastic strain and ~2, the con-
tribution resulting from the presence of the dissipative
process. Clearly,

ei =0/E~|' (28)

where E& is the true Young's modulus of the material, to
be distinguished from the measured value, E. If 0 is
given by Eq. (15), then e, or at least its fundamental
Fourier component, is given by Eq. (16), and E and 6
by Eqs. (17) and (18), respectively. The measured
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where 7. has the dimensions of time. This will generally
be the equation of a rate process involving a Boltzmann
factor which may be absorbed into the quantity ~, as
follows:

(30)

where H is the heat of activation of the process. In view

of the strong temperature dependence of the measured
internal friction, the introduction of a heat of activation
is not unreasonable. A special case of Kq. (29) is the
Newtonian viscosity law, for which the equation
becomes linear. It is readily shown that for pure plastic
Qow the strain e~ is purely dissipative so that the
measured Young's modulus is the true modulus, and
therefore is independent of strain amplitude and of the
value of the decrement. Furthermore the decrement
varies inversely as the frequency and inversely as ~,
therefore as exp( —H/RT).

The concept of pure plastic Qow is readily generalized
as follows. Suppose that Eq. (29) is obeyed micro

scopicolly with the internal stress a; substituted for the
externally applied stress, 0. The value of cr; is de-

pendent not only on 0. but also on previous history,
including the instantaneous value of the non-elastic
strain e& that has already occurred. In this case the
relaxation equation becomes

de2/dt= (1/r)F(~, a2). (31)

It can be shown that in this more general case the
strain will have a component in phase with o., so that
an amplitude dependent

Young�'s

modulus will in

general be observed.
The observed temperature dependence of internal

friction as given by Kq. (27), suggests that the decre-
ment varies very nearly inversely as v., corresponding
to the case of pure plastic Qow, with a heat of activation
equal to 1400 cal./mole. On the other hand, it is dif-

6cult to reconcile this temperature dependence with the
experimental result that 8Eq/E~ is of the same order of
magnitude as the decrement; i.e., that r is of the order
unity.

The relaxation interpretation also fails to explain the
frequency and temperature independence of r. As is
shown in the Appendix, the expected variation is pro-
portional to co7., in conQict with the experimental
results.

It is possible to generalize to more complex relaxation
mechanisms than that of Eq. (31),but such a generaliza-

tion does not seem to lead to a resolution of the conQict
between the theoretical predictions and the experi-
mental results.

Mechanism of Simple Hysteresis

From the de6nition of simple hysteresis it is immedi-

ately predicted that all observable quantities are
independent of frequency, if this is the mechanism that
applies to the dissipative process under investigation.
The experimentally observed frequency independence

of the quantity r& is in agreement with this prediction.
The fact that the ratio of C~ at the fundamental to its
value at the second harmonic is observed to lie on both
sides of unity indicates that C& may actually be inde-
pendent of frequency, when the explanation presented
for the randomness of these data is taken into account.

The assumption that only fundamental Fourier com-
ponents of strain are important means that the best
possible ellipse is matched to the actual stress-strain
loop. The effective modulus under periodic conditions,
obtained from the slope of the major axis of this ellipse,
is clearly less than the true modulus.

The slope of the stress-strain loop diGers in the parts
of the cycle where stress is increasing (loading) from its
value when stress is being released (unloading); for
example

A2/d~= gg(0)(loading),
= g2 (0)(unloading).

Fourier analysis of this strain and the application of
Eqs. (17) and (18) leads to the result

pa/2
5= 2E ' [gy(o„cos8)—g2((T~ cos8)]

Xcos8 sin8d8, (32)

1 1 2
[g~(0 cos8)+g~(&r cos8)7 sin'8d8. (33)

E Eg x'~0

The experiments indicate that g~(a) and g2(0) are
expressible in power series in which odd powers of 0 do
not appear. The constant terms leads to a decrement at
zero amplitude and a deviation of the measured elastic
modulus at zero amplitude from the true modulus; it is
from the term in 0' that the quantities C and r result.
If the function g;(0) is written

(34)
then

where e =0 /E is the strain amplitude. The most
striking result is the prediction that r must lie between
0 and 4, in excellent agreement with experimental
results. Only one observation (No. 9 of Table III, 78 kc)
shows a value of r greater than 4.0 and the experi-
mental error in this single case was suKciently large
to permit a true value of r=4. Numerous other data
observed at room temperature and 39 kc, which are not
tabulated here, always show values of r in the predicted
range and closest to 4.0 for the most highly cold-worked
crystals. This agreement with experiment indicates
that the dissipative mechanism may be described, phe-
nomenologically, in terms of simple hysteresis.

The following is a possible explanation for the observed
dissipative mechanism in terms of the motion of dis-
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locations. The activation energy for the release of dis-
locations from points at which they are restrained is
suKciently high so that at the high frequencies of these
experiments negligible relaxation occurs. Instead, a
distribution exists such that at each value of the stress
a certain fraction of the dislocations wiH snap loose and
move rapidly to another potential minimum, thereby
contributing to the non-elastic strain. In terms of this
description it is not surprising that corresponding
measurements at lower frequencies' are of a diBerent
nature; e.g., no amplitude-dependent eGects are ob-
served. The strain caused by the time-dependent
release of dislocations, a relaxation mechanism, can be
expected to predominate over the time independent
strain of simple hysteresis at sufFiciently low frequencies.
The present interpetation provides a link between the
behavior of dislocations in two ranges of conditions
which have hitherto been investigated independently of
each other.

The large observed temperature dependence of
internal friction may be explained in terms of disloca-
tions when an auxiliary concept is introduced. Cottrelp
has shown that a force of attraction exists between a
solute (impurity) atom and certain preferred sites along
a dislocation. Since the dislocations are anchored by
impurity atoms located at these sites, the number of
dislocations tom loose by an applied stress, and there-
fore the internal friction, is determined by the extent to

A. H. Cottrell, Rep. Conf. on Strength of Solids (Phys. Soc.
I.ondon, 1948), p. 30.

which these favorable sites are occupied. The extent
of occupation, in turn, is determined by a Boltzmann
factor exp( —V/kT), where V is the interaction energy
between solute atom and dislocation, and is therefore
a sensitive function of temperature.
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Read for valuable information about the apparatus
and his own experiments, to Dr. C. Zener for helpful
conversations, and to Dr. S. L. Quimhy for his guidance
throughout the course of this work.

APPENDIX

Calculation of the Frequency and Temperature DePendence of r from
a Mechanism of Relaxation.

The observed temperature dependence of internal friction shows
that if the dissipative mechanism is relaxation the behavior does
not deviate greatly from pure plastic Sow (Eq. (29)), so that the
more general Eq. (31) can be expanded in a Taylor series

dc /dt = (1/'r) IF(0, 0)+tg(BF/86 ).2 =o+
The fact that the observed decrement varies parabolically with
strain amplitude at low amplitudes means that the above equation
relating e2 and its time derivative to o has only linear and cubic
terms; thus

ding/dt = (1/v) Ic&0'+c&H+ 62(cg+c40 ) I .
If now the stress ~r is sinusoidal, the internal friction and elastic
modulus are obtained from the components of d~2/dt in phase and
out of phase with the stress and from these quantities it is found
that r is proportional to cur.

The unusually high internal friction of spectroscopically pure
copper observed by J. VV. Marx and J. S. Koehler, Phys. Rev.
75, 1309A (1949), supports this interpretation.


