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The interaction term in the Boltzmann equation for an ionized gas is expressed as the sum of two terms:
a term of the usual form for close encounters and a diffusion term for distant encounters. $ince distant
encounters, producing small deflections, are more important than close encounters, consid'eration' of only
the diffusion term gives a reasonably good approximation in most cases and approaches exactness as the
temperature increases or the density decreases. It is shown that in evaluating the coefBcients in this diffusion
term, the integral must be cut off at the Debye shielding distance, not at the mean interionic distance.

The integro-differential equation obtained with the use of this diffusion term permits a more precise
solution of the Boltzmann equation than is feasible with the Chapman-Cowling theory. %'hile one pair of
coeScients in this equation has been neglected, the remaining coefBcients have all been evaluated, and the
resultant equation solved numerically for the velocity distribution function in a gas of electrons and singly
ionized atoms subject to a weak electrical 6eld. Special techniques were required for this numerical inte-
gration, since solutions of the differential equation proved to be unstable in both directions. For high
temperatures and low densities the computed electrical conductivity is about 60 percent of the value given
by Cowling's second approximation.

INTRODUCTION

~)UANTITATIUE analyses of non-uniform gases
have naturally been developed along lines relevant

to laboratory experiments. The theory of Enskog and
of Chapman, systematically expounded by Chapman
and Cowling, ' is primarily concerned with the properties
of gases composed predominantly of neutral atoms.
While this theory has been applied' ' to the conduc-
tivity of a completely ionized gas (a gas containing no
neutral atoms), the theory is in fact not well suited to
handle inverse-square forces between the particles in a
gas, and the accuracy of the results obtained is uncer-
tain. In view of the great astrophysical importance of
completely ionized gases, as, for example, in stellar
interiors, stellar envelopes, and interstellar matter, a
reconsideration of this problem has been undertaken.

A new approach to this subject is provided through
the work of Chandrasekhar4 on stellar dynamics. This
work is based on the fact that when particles interact
according to inverse-square forces, the velocity distri-
bution function is aftected primarily by the many small
deQections produced by relatively distant encounters.
There will be many such encounters during the time a
particle travels over its mean free path, and the change
in the particle velocity can be computed in the same
way as is the change of the position of a particle in

Brownian motion. On the assumption that the large
deQections produced by the relatively close encounters
may be neglected, Chandrasekhar therefore employs a
diffusion equation for the velocity distribution function,
similar to the equations describing the spatial distribu-
tion function in Brownian motion. A similar but incom-
plete approach was made somewhat earlier by Landau. '
As we shall see below, the appropriate generalized
diGusion equation may be solved numerically when a
completely ionized gas is subject to a small electric
6eld or a small temperature gradient.

In Part I, prepared by L. Spitzer, the basic prin-
ciples of the present paper are developed. Part II,
prepared by R. S. Cohen, applies this analysis to a
singly ionized gas in a weak electric 6eld, and evaluates
certain coe%cients in the appropriate integro-diGer-
ential equation. In Part III, prepared by P. McR.
Routly, the numerical solution of the resultant equation
is brieRy summarized. The final formulas for the elec-
trical conductivity are given in Part IV.

I. GENERAL PRINCIPLES

The velocity distribution function f, for particles of
type r, interacting with particles of diferent types s, is
determined by Boltzmann's equation (reference 1, Eq.
(8 1i))
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and Cowling, except that e„.is used for the component
of velocity of an rth particle in direction i; it should
be noted that F„is the force per unit mass on a particle
of type r. The quantity (B,f„/Bt), gives the change in
f„produced by encounters of r particles with particles
of type s.

(~.f./&&), = l ~I (f,'f, ' ff.)gb—dbdedv„(2)
J 0

where g is the relative velocity
~

v„—v,
~

of the two types
of particle before the encounter, b is the so-called
impact parameter, —the distance of closest approach if
no interaction forces were present, —and e is the angle
between the orbital plane and the plane containing the
velocities of the two particles before encounter. The
corresponding quantities in Chandrasekhar's' analysis
of stellar dynamics are V, D, and 0. The quantities
f„' and f,' are the values of f, and f, for velocities such
that a particle of type r will be left after the encounter
within the volume element degv„dv, .

When the force between two particles varies as the
inverse square of their mutual separation, Eq. (2) is no
longer appropriate. As has been shown by Jeans, ' the
cumulative effect of the weak deQections resulting from
the relatively distant encounters is more important
than the effect of occasional large defiections (relatively
close encounters). To illustrate this eBect, one niay
compute the cumulative squared value of the deflection
angle y produced during the time ht by all those
encounters for which the impact parameter b is less
than some upper limit b1. For collisions of electrons
with heavy ions, whose space density is n; per cubic
centimeter, it may be shown that

(
(Q sin'y)A„=krgn;bo'At in' 1+—I

—,(3)
a&~~ g $ 'J ].+b &/bp

where bo is the value of b for which x equals w/2, and
, is given by

bo Z;e'/g'm—— (4)

where m, is the electron mass. Values computed from

S. Chandrasekhar, Prince ples of Stellar Dynamics (University
oI Chicago Press, Chicago, Illinois, 1942), Chapter II.' J.H. Jeans, Astronomy and Cosmogony (Cambridge University
Press, London, 1929), p. 318.

l. Evaluation of 8,f,/Bf for Inverse-Square Forces

In the classical theory of non-uniform gases, the
assumption is made that only the relatively close
encounters are important, and that the forces between
particles at greater distances have no eGect. On this
basis, (B,f„/Bt)dwgvgv, is the sum of two terms, one
representing the number of encounters which place
particles of type r in the volume element of velocity
space dvgv„dv„ the other, the number ta,king particles
out of this volume element. Thus we have (reference 1,
Sections 3.5 and 3.52)

TABLE I. Cumulative mean-square deQection produced
by encounters with b&bI.

Impact
parameter bi/bo 0 4 10 10s 104 10s

Mean-square
deRection in
arbitrary units 0.00 0.19 0.81 1.89 3.63 8.21 1/.4 35.8

Eq. (3) are given in Table I. It is evident from Table I
that the relatively distant encounters outweigh the
closer ones. For encounters between charged particles
of comparable masses, the formula for sin'x, considered
by Chandrasekhar, ' becomes much more complicated,
but the general behavior shown in Table I is not altered.

While Eq. (2) could possibly be salvaged in this case,
this equation is not appropriate for inverse-square
forces, and obscures the true physical situation. %'hen
B.f„/Bt is produced by many small deQections, the total
deQection produced in an interval of time is similar to
the total distance travelled by a particle in Brownian
motion, and the change of f„by such small collisions is
described by a diGusion equation of the Fokker-Planck
type. ' In fact, the value of 8,f,/R resulting from the
relatively distant encounters depends almost entirely
on the first and second derivatives of f„, not on values
of f„over the entire range of velocities.

If occasional large deflections were entirely negligible,
B,f„/Bt would be entirely given by a diffusion equation.
Actually, Table I shows this is not the case. If we de6ne
as a close encounter one for which b is less than some
critical value b„ then the error introduced by the
neglect of these encounters will be appreciable for low
values of b„/bo but will gradually decrease as b /bo
increases.

The effects produced by the close encounters are
best described by an equation of the form (2), with b

integrated only up to b, . The relatively distant encoun-
ters are best described by the Fokker-Planck equation. '
Thus we have finally

(B,f„/Bt), = j(f„f,) &—(f,f,)—
with

(5)

and

pao (2~ bc

J(ff,)=
~

(f,f, f„'f,')gbdbd—edv„(6)
a vs=0 &=0~ b=O

a2

where, in general, for any quantity x, (x,) is defined by

oo 2x ~b~
(x,)= gf.dh, ] de xbdb;

0 0»c
evidently (x,)d1 represents the mean value of x resulting

A thorough survey of such processes has been given by S.
Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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from all encounters with particles of type s during the
time interval dt. The definition of J(f,f,) differs from
that given by Chapman and Cowling (reference 1,
Kq. 7.112) in that only the close encounters are con-

sidered, the eBect of the distant encounters entering
into K(f f,)

The terms of third and higher order in Av have been
neglected in Eq. (7). It is readily shown that these
terms are relatively small if b, much exceeds bo. Thus
Eqs. (5), (6), and (7) should give moderately high

accuracy in the evaluation of B,f„/Bt
To obtain the velocity distribution function in a 6rst

approximation J(f„f,) may be neglected. This will

involve an appreciable error, as shown in Table I, but
should at least provide a considerably more accurate
determination of f, than has hitherto been available.
It is probably best in this case not to neglect the close
encounters altogether, and we shall therefore let b, equal
zero in the computation of I( (ff,) To obt.ain a higher
approximation, a finite b, could be retained, and J(f„f,)
could be introduced as a small perturbation to the
solution found below.

Accordingly„we derive an equation for f„on the
assumption that (B.f„/Bt), in Eq. (1) may be set equal
to E(ff,) —We sha.ll assume that the gas is in a
steady state with no systematic motion, but with an
electrical held E and a temperature gradient VT.
Following Chapman and Cowling (reference 1, Sec-
tion 7.1), we shaH write

f f (())+f (0—

where f„(0) is the Maxwellian velocity distribution
function, and obtain, finally (by use of expressions

(8.3(), )()) of reference 1),

m„v,' 5 eZ„
f (o& P.v f (0)

2kT 2 TBx; kT

+g +(f0)f,(N)+Q, 1t(f„(())f,o))=0 (]0)

The electrical 6eld E; and the electrostatic charge e are
in e.s.u. ; thus for electrons Z„ is —1. Quantities in-

volving the square of f(') have been neglected in Eq.
(10). When Kq. (10) is applied to an electron gas, we

shall omit all subscripts from quantities referring to
electrons, such as f(0), f"', nt, and v.

2. The Cut-Off Parameter b

The quantities (hv,;,) and (hv;, ,hv, , ,) in Eq. (7) are
expressible in terms of integrals over encounters with
diferent values of b. As is well known, these integrals
diverge logarithmically, and the integration must be
terminated at some maximum b to give a 6nite result.
According to Cowling, ' Chandrasekhar, 4 Spitzer9 and
others, b should be set equal to the interionic distance,
but according to Persico, " Landau' and others, b

9 L. Spitzer, Jr., M. N. R. A. S. 100, 396 (1940)."E.Persico, M. N. R. A. S. 86, 294 (1926),

(hv)'= (e'/tn')~ ~~K(t) E(t')dtdt' (12)

where K(t) is the electrical field acting on the particle.
If now At becomes large and both sides are averaged
over all complexions of the gas, the integrand of Eq.
(12) is seen to involve. the autocorrelation coefficient
of the electrical field E(t). If each electron is assumed
to move in a straight line, this autocorrelation coeK-
cient can be evaluated exactly; averaging also over a
Maxwellian velocity distribution for the electrons, we
have, in an obvious notation,

(K(t) 'E(t+ v))), = gs ~n e'j/ I
&

I (13)

where n, is the particle density of electrons, and where

J'= m/2kT. —
Finally we obtain for Kq. (12)

(14)

((hv)') = (1 6r&),n' ej/n') tin(vm/v)). (15)

Since the integral of the autocorrelation coeKcient
over dv. diverges at both limits of integration, we have
replaced the limits 0 and ~ by vj and 72, respectively.
Apart from the argument of the logarithm, Eq. (15)
agrees exactly with the ((Av)') found by Chandrasekhar"

"D.Bohm and L. H. Aller, Astrophys. J. 105, 131 (1947).
'~ S. Chandrasekhar and J. von ¹umann, Astrophys. J. 95,

489 (1942); 97, 1 (1943)."Reference 6. The sum of the two Eqs. (5.724) gives ((hv)')dt;
(G+H)/v~ equals 2j/m& when v~ is small.

should equal the Debye distance, h, at which the
electron-ion plasma shields any particular charge; this
cut-oG has also been discussed and used by Bohm and
Aller. "For a gas composed of electrons with a particle
density n, and of ions with an average charge Z;e

k'= kT/4)rn, e'(1+8;) (11)

The factor 1+Z; in the denominator takes into account
shielding by heavy ions is well as by electrons.

We shall show that h is almost certainly the proper
cut-oB distance. Let us consider the mean square value
of the velocity change An for a single electron during
the time At. We shall consider that the electrons and
ions all move in straight lines, a legitimate assumption
for the distant encounters. Under these assumptions
we shall then show that for a particle initially at rest
((Av)') is given by an equation of the form (3), even for
values of b arbitrarily large compared to the interionic
distance. It follows that some further assumption is
needed to give a hnite result, and the introduction of
shielding gives h as the natural value of b to be used.

To obtain this result we consider the general statistics
of the electrostatic field, a subject similar to that
already treated by Chandrasekhar and von Neumann. "
If Av is the change in velocity experienced by an
electron of charge —e and mass m during the time
interval At, then
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for a particle at rest. It is evident from the derivation
that Eq. (15) is valid for particles whose distance of
closest approach exceeds the interionic distance, and
the correct upper limit for v must be about the period
of a plasma oscillation. The divergence for low ~i is
the natural result of extending the assumption of
straight-line motion to the very close encounters;
evidently rl should be about bp/v.

A simple physical argument shows the reasonableness
of this result. The eGects produced by electrons beyond
the interionic distance may be attributed to statistical
fIuctuations in the electron density; i.e., the electron
density is greater on one side than on the other. For
electrons outside a sphere of radius r, the effective
number of electrons which contribute to the force at the
center of the sphere will be proportional to e,r', and
the fluctuations in this number will vary as n, &r&,

yielding a net electrical field at the center which is
proportional to en, &r &, but which is random in direction.
This Geld will not change appreciably in direction for a
time somewhat less than r/v, but after a time somewhat
greater than r/v wiH be in a new random direction.
Greater fields last a shorter time, while fields produced

by more distant electrons are smaller. Thus this field

from electrons outside a sphere of radius r will be
primarily responsible for the value of the autocorrela-
tion coeflicient of E when t equals r/v. It follows that
this autocorrelation coefFicient is proportional. to
(elt, &r &)' or to e'"r4/vt, in agreement with Eq. (13).

While the proof has been carried through only for
electrons at rest, it seems most improbable that the
results will be qualitatively diGerent for electrons in
motion. We shall therefore set b equal to h in all
integrals for the diBusion coeKcients, and these coef5-
cients will then contain as a factor ln(h/bp). While the
quantity h/bp will in fact vary with velocity, the effect
of such variations is no greater than that of other
neglected terms. For the interaction of electrons with
particles of average charge Z,e we may write

ln(h/bp) = in(qC')

where C' is the mean square electron velocity and

(16)

'4 R. E. Marshak, Ann. N. Y. Acad. Sci. 41, 49 {1941).

q—= (m/2e'Z;)LhT/xrt. (1+Z;)7&. (17)

At high temperatures one must consider the wave
character of the electrons, an eBect pointed out in this
connection by Marshak. "An electron passing through
a circular aperture of radius a will be spread out by
diB'raction through angles of about X/2va, where X is
the electron wave-length h/mv. If this angle exceeds
the classical deflection angle for an electron passing by
at a distance f2; from an ion of charge Z;e, the deQections
produced by the most distant encounters will be
materially increased. The ratio of the quantum me-
chanical to the classical deflection is 2Z,ac/v, where a
is the fine-structure constant 1/137. If Z, is unity,

this ratio equals one for a velocity of 4.4X10' cm/sec. ,
corresponding to an electron temperature of about
4X10' degrees. For lower temperatures one may con-
clude that the classical formulas are valid. The correc-
tions introduced by quantum mechanics will not be
large except at temperatures substantially above 10'
degrees.

h(v) =f(v, t—)v' sin8.

By standard methods it follows that

K(ff) = L~ f(»—t)7/~t

(18)

a2

(h(v)(x,x,)) i, (19)
BXsBXg'

where x, stands for the changes in the three coordinates;
i.e., for 8 v, 68, and hp as z goes from 1 to 3.

To apply Eq. (19), the coeflicients (x;) must be
expressed in terms of the velocity shifts in rectangular
coordinates, since it is these which can be evaluated by
the theory of binary encounters. We consider rectang-
ular axes $, lt and f', where $ is in the direction of the
velocity v before the encounter, while p and P are in
the directions of increasing 8 and p, respectively. Thus
the lt, i axes are tangent to the circles of constant 8
and constant qb at the point v. We let 6», 6„, and At.

represent the velocity displacements in these local
rectangular coordinates.

The complicated general relations between Av, 68,
and Ap on the one hand and 6», 6„,and A~ on the other
simplify when these quantities are averaged over all
collisions. When a small electrical field is present, for
example, then (reference 1, Section 8.31) f"&( )vvaries
as cos8, where 8 is the angle between v and E. In such a
case it is evident from the symmetry of the problem
that the coefficients (hr), (hrh~) and (hid „)all vanish.

We shall also show that under these conditions (hp)
equals (5,'). Consider encounters between particles of
velocity v and those of velocity v&. We shall keep the
angle between these velocities fixed, but shall vary the
angle 0 between the fundamental plane, containing v
and vl, and the $, rt plane fixed by the direction of v
and E. Let hp be the change of v perpendicular to the
original value of v and lying in the fundamental plane,
and let b,g be the change of v perpendicular to the

3. Diffusion Equation in Syherical Coordinates

Before Eq. (10) can be solved, K(ff) must be ex-
pressed in spherical coordinates. The derivation of the
Fokker-Planck equation by Chandrasekhar is readily
carried over to the spherical case, provided we substi-
tute for the particle density f the quantity h,

'
defined by
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A~=A~ sino" —hg coso~. (21)

As 0 varies, 6p and 60 per encounter remain unchanged
since the relative velocity g, the impact parameter b,
etc. , are all unaffected. It follows that (hq') will equal

(d, r2) provided. that (sin20) and (cos20) are both zero.
Since j'" will have components varying only as cosO,
these averages are in fact zero, and the result follows.
Similar results hold when a small temperature gradient
is present.

The relations we require then reduce to the simple
form

fundamental plane. Evidently,

Av=6r cosO~+5g sme (20)

energy, we may write (reference 1, Sections 7.31 and
8.31)

j'"(v) =j"&(v)D(jv) cos8. (24)

The function j &v&(
v) is the Maxwellian distribution

function, given by the equation

j"'(v) = (nj '/7r &) exp( —
g v'), (25)

where n, is the number of electrons per cm' and j is
defined by Eq. (14). For subsequent convenience, we
define D to be a function of the dimensionless variable
jv. The quantity 8 is again the polar angle measured
from an axis parallel to the electric field E.

For an electron-proton gas, Z is —1 for electrons,
and if no tempera. ture gradient is assumed, Eq. (10)
becomes, in the present notation,

(a,) (a,~„) cot8
(«)= — + &6„'),

'V 8 28

&(»)') =(~r')

((»)(~8))=(~&~.)/v

&(«)')=&~')/ '.

(22)

(ref &v&/m)Ev cos8+K(fj„)+K(ff)=0 (26. )

I. Electron-Proton Interaction

The proton interaction term K(ff„) is found from
Eq. (23). We assume the protons are at rest; all the
terms in Eq. (23) for K(jj„) then cancel out or vanish
except one, and we have

If we substitute relations (22) into Eq. (19), we have,
after some rearrangement,

1 8 && Bj)
sin 8(h ')

2v' sin8 88 & 88)
(2'I)

1 8 t 1 1
K(ff) =——v~j (h$)+ —(dk )— —(v (6&2))

~ av i v 2v 8.
1 8 1

——jsin8 Q„)———(~„')
e sin888 2u 88

1 8 — 8j- 1 8 8j—P(gr2)—— —sin8&h ')—
28 88 Bv 2v sln8 88 88

1 8 l9—f i 8s(hnrh, )+ (vf sin8(hrh„)) —.(23)
e' sin8 88 Bv

Equation (23) will give K(j„&"'j,'"'), provided that on
the right-hand side f, '"' replaces jwherever this occurs
explicitly, and the averages of A~, h~, etc. , are evaluated
over j,& & rather than over j.

When this analysis was first carried out, it was

thought that the cross-product term (h&A„) would have
no eGect on the velocity distribution function, and this
term has been ignored throughout the remainder of
this paper. It now appears that this term may be
appreciable; to evaluate this term, however, an exten-
sion of Chandrasekhar's analysis of two-body encoun-
ters does not sufBce, and a new approach to the sta-
tistics of such encounters is required.

II. DERIVATION OF EQUATION

When the average energy imparted to the electrons
between encounters is small compared with their kinetic

The diffusion coefficient &6„„') may be taken from
Chandrasekhar. " If now we substitute Eq. (9) and
(24) into (27), and carry out the differentiation with
respect to 8, we have

K(ffv) = &&3Lj&0&D(jv) cos8j/2v',

where we have written

L= (8v e'n, /3m') in(&&&C—')

2. Electron-Electron Interaction

(28)

(29)

Derivation of K(fj) from Eq. (23) is more lengthy.
Adopting the terminology of Chandrasekhar, "we de-
note as "test" particles, with a velocity e, those electrons
whose change of velocity is being considered, and as
"field" particles, with velocity v&, those of all velocities
whose perturbing eGect on the test particles is being
investigated. The velocities of the field particles fall in
the two ranges 0&v~(e and @&ed & ~.

There are nine terms in Eq. (23), each involving one
diBusion coeKcient. The first, second, third, and sixth
terms, upon use of (24), will each yield one part due to
interaction of j'"(v&), the spherically symmetric compo-
nent of the field particles' velocity distribution, with
the asymmetric component, D(jv), of the test distribu-
tion, and a second part due to the corresponding inter-

"See reference 6, Kq. (5.724}; the quantity ZAe&'/dh equals
{hP)+{6,„') and is thus twice {6„').For electron-proton inter-
action x0 is large and B(x0}equals unity.

"See reference 6, paragraph 2.3.
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action of D(jsi) with the symmetric component ft»&(i&)

of the test distribution. The second of these parts
each, in turn, consists of integrals over ds& of D(jvi),
multiplied by functions of e~. The fifth and seventh
terms each yield one part only, and the eighth and
ninth terms are neglected.

The fourth term can apparently not be evaluated
directly by any simple extension of Chandrasekhar's
analysis. To evaluate this term by an indirect method,
we multiply Eq. (23) by cos8 sin8d8 and integrate over
all 8. If we first subtract a term f(I&,r)/», adding this
same quantity to the first term, then the fourth term
becomes P/v, w—here

P= f sin8d8{cos8(hr) —sin8(h») I,
Jg

(30)

which will be evaluated separately.

12 I&;(x)
Pi= Lj +x{Io(~)—I»(x) }

5~~
(33)

2 I»(x) 3I»(x) 2x
qi Lj — ———+—{Io(~)—Io(x)}; (34)

se 5

4 2I»(x)
r, = Lg —I»—(~—)+I»(x)

gran x'
(35)

the quantities x and I (x) are defined by

(36)

I„(x)—= )I y"D(y) exp( —y')dy.
0

(3&)

~~ See reference 6, Chapter II, Section 2.3. We use, in place
of his gravitational factor, 6'mP, the electrical analog, e'/m'. In
place of his q, Eq. (17) is used."See reference 6, pp. 63 and 'B.

3. Evaluation of the Diffusion CoefBcients

We follow Chandrasekhar's general method, "but we
replace his spherically symmetric distribution f'»& by
the modified function f"&(1+Dcos8), in accordance
with Eqs. (9) and (24). The integrals obtained are all
straightforward. If we let

(Dr )=p»+pi cos8,
(6» )=qo+qi cos8,
(h()=r, +ri cos8,

we have, first, Chandrasekhar's results

p» ——(3LjG(x)/x);
qp ——(3LjH(x)/2x);
ro = —6LgG(x);

where G(x) and II(x) are functions defined by Chandra-
sekhar. '» The terms pi, qi, and ri may be expressed in
the form

The integral P which arises from the fourth term of
Eq. (23) can be interpreted as 2/m times the rate of
transfer of momentum per second from the test particles
of velocity v in a unit volume of velocity space to field
particles of all velocities; the momentum in the direc-
tion of the electrical field is considered, and the rate of
momentum transfer is averaged over the polar angle 8
between v and E. This rate of momentum transfer can
be expressed in terms of D(jv), D(jsi) and the value of
(Ar) found for a spherical distribution of field particles.
To obtain this result we note that no momentum
transfer arises from the interactions of f'" (s) and f '»&(s, ),
and also that the interactions of f&'&(s) and f&"(i») are
assumed small and are neglected. The interaction of
fo&(i&) with f&»&(i&i) can be computed by finding the rate
of momentum change for a single test particle on
interaction with a spherically symmetrical distribution
of field particles, and then integrating this rate over 8.
Similarly, the interaction of f'»&(v) with f~ &(vi) can be
obtained by, considering the rate of momentum change
for a single field particle interacting with a spherically
symmetrical distribution of test particles of velocity v,

and then integrating over both 8~ and ~~. Since these
rates involve (hr) only, we can thus evaluate P without
evaluating (Ar) explicitly. These calculations are much
simplified by the fact, first noted by Chandrasekhar, "
that a test particle loses no momentum on interaction
with a spherically symmetrical distribution of field

particles if the velocities of the field particles exceed
that of the test particle. We obtain

2

1

P=4Lj'f&'& D(x)G(x)+ —[Ip(~)—Ip(—x)1 . (38)

4. Final Equation for D(x)

If now Eqs. (28), (30)—(35), and (38) are substituted
into Eq. (26), suitably integrated over cos8sin8d8, we
obtain a final equation for D(x). Before writing this
equation we first express the infinite integral I»(~ ) in
closed form. We multiply Eq. (26) by 2»rv' cos8 sin8dsd8

and integrate over all 8 and i&. The three terms in (26)
then give the total change of momentum arising from
the electric field, electron-proton interactions, and
electron-electron interactions, respectively. The last
term, involving E(ff), must give zero on integration,
since the mutual electronic interactions cannot change
the total momentum of the electrons; the actual
cancellation of all the component parts of this term, on
integration, provided a check on the detailed form for

X(ff) The secon.d term yields I»(~), and the integra-
tion of the first term, representing the eBect of the
electrical field, is simple; we find, after some straight-
forward substitution,

I»(ao) = D(x) exp( —x')dx= (3x&A)/8 (39)
40

'9 See reference 4, p. 260.
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TABLE II. Values of velocity distribution function D(x).

x D{a)/A

0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.22
0.24
0.26
0.28
0.30
0.32

0.01487
0.01840
0.02237
0.02676
0.03159
0.03685
0.042S4
0.04865
0.05517
0.06208
0.06940
0.08517
0,1024
0.1210
0.1409
0.1621
0.1844

0.34 0.2079
0.36 0.2324
0.38 0.2579
0.40 0.2844
0.44 0.3401
0.48 0.3994
0.52 0.4620
0.56 0.5278
0.60 0.5967
0.64 0.6687
0.68 0.7438
0.72 0.8219
0.76 0.9033
0.80 0.9876
0.88 1.166
0.96 1.359
1.04 1.566

1.12 1.790
1.20 2.031
1.28 2.291
1.36 2.573
1.44 2.878
1.52 3.208
1.60 3.567
1.76 4.380
1.92 5.343
2.08 6.484
2.24 7.842
2.40 9.437
2.56 11.34
2.72 13.54
2.88 16.13
3.04 19.05
3.20 22.40

where

A =— mE/[2' 'e—'e. 1n(qC') $. (40)

If Eqs. (39) and (40) are used, the final equation for
D(x) becomes

D"(x)+P(x)D'(x)+Q(x)D(x) =R(x)+S(x), (41)

where

2x'e'(x)
P(x) = —2x——+-

x A

1+C (x)—22C'(x)
Q(x) =—2

x2 A

—2.4x'+1.6x —2.4x6
R(x) = A,

(42)

(43)

(44)

16 $ 1+x'+x'l
S(x)= xI,(x)—2i iI,(x)

z&A & 5x' )

t
2—3x+2x )

+x'~ ll.( ) (45)
5 )

The quantity C(x) is the usual error function, while

A(x) is defined by
A—=C (x)-xe'(x).

5. Behavior of D(x) for Small and Large x

(46)

%hen x is small, C and C ' may be expressed as power
series, and the system of Eqs. (41) to (45) admits a
special series solution in ascending powers of x, which

we shall denote by D,&(x). For large x, on the other
hand, 4' may be set equal to zero, while C equals unity,
and we have a special series solution D,p(x) in descend-

ing powers of x. Both these series are asymptotic, and
will diverge after a certain number of terms.

To obtain general solutions for D(x) in each of these

regions, solutions of the homogeneous equation, with

2'(x) set equal to zero, must be added. As will be
evident from the analysis in the next section, such
solutions are of two sorts. When x is small, for example,
one of these solutions goes to infinity as exp(a/x&),
yielding an infinite conductivity, and obviously cannot
represent a physical solution. The other goes to zero
more rapidly than D ~(x), and therefore becomes
negligible as x decreases. Similarly, for large x one of
the solutions cannot represent reality, while the other
goes to zero more rapidly than the leading term of
D,p(x). Hence the boundary conditions on Eq. (41) to
(45) are that D(x) approach Do~(x) and D,p(x), respec-
tively, as x approaches zero or inanity.

For a Lorentz gas, ~ in which electron-electron inter-
actions are entirely neglected and the protons are again
assumed at rest, E(ff) may be ignored in Eq. (26). In
this case we obtain the usus, l result

D(x)= Ax4.

III. SOLUTION OF EQUATION

(47)

D(x) =g(x) U(x)+h(x) V(x)
'0 H. A. Lorentz, Proc. Amst. Acad. 7, 438 (1905).

(50)

We wish to find the solution to Eq. (41) which is of
physical interest and which therefore agrees with the
asymptotic series D,&(x) and D,p(x) at zero and infinity,
respectively. This solution will be denoted by the
superscript c. The complexity of Eq. (41) is such that
a closed analytical solution cannot be expected. It might
appear that Eq. (41) could be solved by direct numerical
integration, since starting values for small x are known
from the asymptotic series and the integrals in S(x)
could be evaluated as the integration proceeded. Actu-
ally such a direct integration is not possible. The
integration of Eq. (41) is in fact unstable for both
increasing and decreasing x; i.e., a small deviation from
the correct solution increases so very rapidly in the
course of integration that any trace of the correct
solution soon disappears. This behavior is associated
with the singularity of Q(x), which varies as 1/x for
small x. A similar instability is introduced by the
dominant term in Q(x) for large x. To obtain D'(x)
the approach described below was developed.

1. Decomposition of Basic Equation

To overcome the difhculties associated with the
instability of the basic equation, we let

P(x)=Pp(x)+DP(x); Q(x)=Qp(x)+AQ(x), (4g)

where Pp(x) and Qp(x) are chosen to represent the
leading parts of P(x) and Q(x) and also to permit
analytical solution of the following simplified reduced
form of Eq. (41),

D' (x)+Pp(x)D (x)+Qp(x)D(x) =0. (49)

In general, Eq. (49) has two solutions, which we shall
denote by U(x) and V(x). We now write
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0.' =—6x&. (54)

The numerical values of these functions and their
derivatives were computed by interpolation with the
aid of B.A.A.S. Tables. "

(ii). Range 0.80(x(3.ZO

The corresponding quantities in this range carry the
subscript 2 and have the following expressions.

I'pp(x) = —2x, Qpp(x) = —4,

U, (x) =xe",

V (x)=1—2xe*' t e-"dyp

(55)

(56)

(57)

2. Description of Integration

As a first step, a starting value of gi(x) at x=0.10
was obtained by integration of the appropriate equation
for gi(x) from x=0, where gi(x) vanishes, to x=0.10.
In this integration the asymptotic series D & was used
to compute gi'. The "correct" value of gi(x) at 0.10 is
denoted by gi'(0. 10). In the same way, the accurate
determination of gp'(3. 20) was carried out, with D, ( )px
used to compute g2'.

The starting value hi'(0. 10) cannot be determined so

simply. In general there will be one value of hi(0. 10),
which, together with gi'(0. 10), will yield on numerical
integration the calculated value of gp(x) at x=3.20;
i.e., gp'(3. 20). This will be the correct solution. In order

«'Our sincere thanks are due to Dr. %'. G. Bickley of the
Imperial College of Science and Technology, London, England,
who very kindly sent us the proof sheets of these very complete
Bessel function tables, prepared by the Committee for the Calcu-
lation of Tables of the Bntish Association for the Advancement
of Science.

where g(x) and h(x) are functions to be determined.
The simultaneous difFerential equations for g(x) and

h(x), which are easily obtained by the standard methods
of variation of parameters, may then be solved numeri-

cally without any basic difBculty.
Because the leading terms of I'(x) and Q(x) are

diferent in the cases of small and large x, it was
necessary to consider separately the two ranges of x,
0.10&x&0.80 and 0.80&x&3.20. The formulas used
in each specific range are given below.

(p). Range 0 IO(.x(O 8O.
All quantities peculiar to this particular range will

carry the subscript 1. The functions I'p&(x) and Qpi(x)
are defined as follows:

I'o (x) = 2/x, Qo (x) = (—3 i/2x') —2/x', (51)

Equation (49) then has the solutions

Ui(x) =x lIp(u/x&),

Vi(x) = x—
&Ep(a/x&), (53)

where

TABLE III. Constant in electrical conductivity formula.

Lorentz gas
Reference 1, first approximation
Cowling, second approximation
Present work

1.000
0.295
0.578
0.490

Ip(~) = 1.470A.

Ip(~ ) =4.562A.

(59)

(60)

This computed value of Ip(~) may be compared with
the exact value, which according to Eq. (39) equals
3n.1A/8, or 0.66467A.

IV. VALUES OF THE ELECTRICAL CONDUCTIVITY

The electrical conductivity 0 is simply the total
current flowing per cm' divided by the electrical field
strength E. Electrons with velocities between v and
e+de and with directions between 8 and 8+d8 and
between @ and p+~ will contribute do to the conduc-
tivity per unit volume of physical space, where

do =(—f(p) eo cos8/E]s' sin8d pd8a4. (61)

to obtain this correct solution, advantage was taken of
the linear properties of the above equations. Two
arbitrary starting values of hi(x) at x=0.10 yield two
linearly independent solutions, each with the correct
starting value of gi(x) at x=0.10. The linear combina-
tion of these two solutions, which at x=3.20 gives
gp'(3. 20), is then the correct solution.

The starting interval used in the integration was 0.01
and was doubled after every ten steps. Central diGer-
ence formulas were employed throughout. From the
difference tables it was possible to guess ahead the
values of S(x) and of the appropriate combination of
D(x) and D'(x); then first approximations to g(x) and

h(x) at the next integration point could be obtained.
These values were then used to obtain more accurate
values of S(x), etc. , and ultimately second approxima-
tions to g(x) and h(x). This cyclic process was carried
out at each integration point, in some cases as many as
four times, until the values of g(x) and h(x) arising
from the last two cycles agreed to five significant figures.

The resulting values of D'(x) over the entire range
from 0.10 to 3.20 are given in Table II. The maximum
error in any of these values should not exceed unity in

the last digit, except perhaps for the last ten values,
where errors as great as two in the last digit are possible.

The integrals I„(x) were found in the course of
numerical integration up to x equal to 3.20. As x
increases further these integrals also increase slightly

by amounts which obviously depend on the values of
D(x) for x greater than 3.20. The special solution D, ( p)x
was not sufficiently accurate, and a term in Vp(x) was

added to yield the approximate general solution in this
range. The following values were obtained.

Ip(pp )=0.66464A. (58)
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Kinetic
temperature

(oK)

1.04

106

10s

TABLE IV. Values" of ln(qC') and ln(q'C ).

Electron density ne (cm s)

$01810i2

3.2

16.3

12.4

23.2

9.36

16.3

12.4

23.2

17.0

30.1

21.6

17.0 7.78 3.2

30.1 9.36

7.7821.6

37.0

26.2

12.4

23.2

12.4

$024

9.36

7.78
qC'= (3/7riege') (kT/2) t

while for q' we have~

(65)

The values of y obtained from various theories are
given in Table III below. The value given here, readily
obtained on combining Eqs. (59) and (64), is some 15
percent smaller than that found by Cowling' in his
second approximation.

In addition, the constant q used here is greater than
that used by Cowling, since, as was shown in Part I,
the cut-oG distance should be equated to the Debye
shielding radius h, rather than the interionic distance.
Ke shall denote Cowling's value, based on the interionic
distance, by q'. If the usual formula for C' is taken,
and the ionic charge Z; is set equal to unity, Eq. (17)
yields

& For each pair of values of n~ and T, the upper figure gives ln(gC~),
the lower„ ln(g'C~); the logarithms are to the base e. q'C'= 4kT/n, V (66)

The minus sign results from the negative electronic
charge. According to Eqs. (9) and (24), f(w) is the sum

of a spherically symmetric term f&'&(r), which clearly
makes no net contribution to the conductivity, and
the term f" &(w) D(j s) cos8. If we substitute this term

for f(e), integrate over v, 8, and P, and substitute from

Kq. (40) for A we obtain

o = L2m/3~icy~ In(F2)7LIS(~)7/A. (62)

It is convenient to express r in terms of the conduc-

tivity in a Lorentz gas, multiplied by some constant y.
Since I&(~)/A for a I.orentz gas equals three, as may
be seen by combining Eqs. (37) and (48), we have

where
a =2y(2/3n. )AC'/Le' ln(qC') 7, (63)

v= P~(")7/3A (64)

It may be remarked that the mutual electronic inter-

actions do not change the conductivity directly, since

the total change of momentum in such interactions is
zero. Nevertheless, they alter D(x) and in this way
modify the eGect which electron-proton collisions have
in impeding the current.

Since ln(qC') appears in Eq. (63) for the conductivity,
values of 1n(qC') are given in Table IV, together with
values of 1n(q'C') for comparison. For high densities
and low kinetic temperatures, q falls below q'; the
analysis leading to Kq. (65) breaks down, and q' may
be used. For still higher values of n, t/T, no values are
given in the table; the present theory breaks down

completely under such conditions and, moreover, the
electron gas tends to become degenerate. It is evident
from Table IV that for low densities and high temper-
atures the change in the cut-oG distance has a greater
eGect on the conductivity than does the change in the
value of y. For these conditions the resultant electrical
conductivity is about 60 percent of the value obtained

by Cowling.
It is hoped to extend these results in the near future

to ionized gases with diferent average ionic charges,
and also to compute thermal conductivities. Further
analysis is needed, however, to evaluate the cross-
product terms in Kq. (23) which have been neglected
in the present work.

~ See reference 1, Section 10.33. Ln(q'C') equals one-half the
function AI(2) introduced by Chapman and Cowling.


