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The integration over S is straightforward and yields

16Z~e'
(ko) —

k,
'S ', d Q(, ){&'(f )—Eo(0 )&(| )},

where f =S I 2mv/ko=2v/ko.
If Q(v, m) is to contain radiative correction e~, one must

include the possibility for the emission of a photon, besides the
pair. The dependence of the cross section on the energy of this
photon is uninteresting, and even a classical effect when the
photon has a low energy. Q(v, m) should therefore be the cross
section for pair creation including possible emission of a photon.
As Q(v, m) must fall o6 for high energies v (as is generally found
for such cross sections in quantum electrodynamics), the main
contributions to tr(ko) will come from small values of v/m. We

can therefore expand the bracket { } with respect to g, obtaining

dv k v y 1
a(ko) =8Z'e~ —ln——ln- —ln———Q(v, m)

v 2m 2 2
=A ln(ko/2m)+B,

where

A =8Z'e' J Qiv, m)dv/v,

dv v y 1
B=8~e2 —ln—+ln—+—Q(v, m),

v m 2 2

lny =0.577

The only change caused by the radiative corrections will therefore
consist in a change of A and B of the order of 1/137, which is
quite negligible.
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The high energy n —d inelastic scattering problem is formulated in such a way that the amplitudes for
n —n and n —p scattering at the same energy appear explicitly. The formulation depends on: (1) the large
radius of the deuteron compared with the range of nuclear forces and high energy scattering amplitudes;
(2) the high velocity of the incident neutron compared to the zero point motion of the deuteron. The method
does not depend on the weakness of nuclear forces compared to the kinetic energy of the neutron and is
therefore not equivalent to the Born approximation.

I. INTRODUCTION
"

N a previous paper' the author discussed the elastic
scattering of 90- to 350-Mev neutrons by deuterons

and pointed out that because elastic scattering may well
represent a considerable fraction of the total n—d cross
section, it is dangerous to assume that the latter is
equal to the sum of the free n nand —e—p cross sec-
tions. This is because binding and interference effects
play a large role in elastic scattering. They do not play
so important a part in the inelastic scattering, however,
and it is possible that experiments which concentrate
on the latter rather than on the total n—d cross section
may yet reveal the magnitude of the n—n interaction
at high energies. Because of the similar properties of
mirror nuclei it appears certain that e-e and p—p
forces are equal for low relative energies. So many
surprises have appeared in high energy scattering ex-
periments, however, that it is desirable, if possible, to
measure the high energy n—n interaction independently.

It is the purpose of this 6rst of two papers to for-
mulate the n—d inelastic scattering problem in such a
manner that from its measurement one can attempt to
deduce the value of the free neutron-neutron cross

' C. F. Chew, Phys. Rev. 74, 809 (1948).
~Hadley, Kelly, Leith, Segrh, %'iegand, and York, Phys. Rev.

75, 351 (1949); O. Chamberlain and C. Wiegand, Phys. Rev. 79,
81 {1950).

section. The actual attempted deduction from Berkeley
experiments will be carried out in the second paper. A
secondary feature of this 6rst part is the demonstration
of a phenomenological approach to high energy nuclear
reactions in light nuclei, using as a basis the experi-
mentally measured values of nucleon-nucleon cross
sections. It is hoped that this general method may
eventually be extended to nuclei more complex than
the deuteron.

The fundamental assumptions will be twofold: (1)
the "collision" time in high energy n—d scattering is so
short compared to the period of the deuteron that the
change in the wave function of the latter during the
collision can be described by an "impulse" approxima-
tion; (2) the deuteron has such a diB'use structure com-

pared to the range of nuclear forces that the wave
function of the incident neutron at one of the two scat-
tering centers within the deuteron is not appreciably
perturbed by the presence of the other center. Outgoing
waves from both centers are present and must be added
together, but individually they wiB be assumed to be
the same as would be produced by a single neutron or
proton. In this way the three-body problem is reduced
to a superposition of the two-body problems.

It should be noted that these assumptions are not
completely equivalent to the Born approximation,
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which has been used previously in this problem. '4 It
will not be assumed here that the perturbation of the
incident wave is small (which is true only at energies
still unobtainable with accelerators) but only that the
two perturbing centers act independently and "sud-
denly. " The two-body scattering amplitudes can be
treated as empirical quantities, and the calculations
described in Sections III and IV simply have to do with
the "quantum kinematics" of a three-body problem in
which each of the three particles has spin one-half and
two of the three are identical.

II. THE IMPULSE APPROXIMATION

The formulation of the approximation outlined in
Section I is to be applied here to the non-relativistic
case although the inclusion of relativistic eGects should
not be dificult. Before taking on all of the complications
of the actual neutron-deuteron problem, it is instructive
to consider a simpli6ed situation in which the proton
is bound to a fixed short-range force, U(rv), which can
accommodate one bound state yp(r„) and which inter-
acts with the incident neutron through a potential,
V(r„—r„). The interaction of the neutron with U will
be ignored. The Schrodinger equation for this problem is

5'/2m'~„—hP/2mB rv+—U(rv)+ V(r„—r„)j
X%(r„,r )=Ep@(r„,r ), (1)

where Ep )'p'kp'/2m —8, k——p being the wave number of
the incident neutron and 8 the binding energy of the
proton. A solution is desired of the form

e(r- rv) =(1/2~)'e'kp'"p (r,)+%',(r„, rv), (2)

where +,(r„, r„) will contain various kinds of outgoing
waves which represent elastic scattering, inelastic scat-
tering, and pick-up processes. ' Substitution into the
wave equation and some rather conventional manipu-
lations' allow one to derive an integral equation for
4,(r„, r„) into which the appropriate boundary con-
ditions are incorporated. The asymptotic form of this
equation for large r, large rv, and large

~

r —
rv~ is

2fpz fe»ps'

,
dk„ppk„(r ) J JI dr„'dr„'spk„*(r„')

Xe '"n'"'V(r„' —r ')+(r„', r '), (3)

where ~„(r„)is the continuum eigenfunction for the
proton in the potential field U(r„), which is normalized
at infinity to (1/2pr)&e'k&'~. The magnitude of k„ is
determined by the energy equation, PPk„'/2m =Ep—)pPkv'/2m. This is the part of the outgoing wave which
corresponds to inelastic scattering with emission of the
proton.

For the wave function which appears in the integrand

g Ta You Wu and J. Ashkin, Phys. Rev. 73, 986 {1948).' F. DeHoftman, Phys. Rev. 76, 216 (1950).
~ G. F. Chew and M. L, Goldberger, Phys. Rev. 77, 470 {1950).' See, for example, G. Breit, Phys. Rev. 71, 215 {1947).

of (3) the following approximation will now be made:

+(r„, rv)=+, (r„, r„)=J dkvgP(k„)lgkPkv , v(r rv) (4)

where

gp(kv) =(1/2~)') «ve *""'"pp(rv)

and pkp, k& &(r, r„)is the wave'function which represents
the scattering of a neutron of momentum ko by a free
proton of momentum k„. 4', (r„, r„) clearly represents
the scattering of a neutron of momentum ko by a free
proton wave packet which has the same momentum
distribution as the bound proton function A. The author
believes that the replacement of 4 by 0' corresponds
to assuming that for the "duration" of the proton's
interaction with the neutron the proton does not
interact with the force field U(r„). The only effect of
the latter is assumed to be the generation of the
momentum distribution gp(k„), at a time much earlier
than the arrival time of the neutron. It seems reasonable
that if the range of the I—p force is p and the neutron
velocity vo, then the criterion for the validity of this
approximation is essentially that the "collision time, "
p/vp, be short compared to the period of the deuteron.
(This ratio is, for instance, 1/10 for 90-Mev neutrons. )
An attempt is now being made to verify this assertion
by actually calculating the error made, and a discussion
of the limitations of the impulse approximation in
general will be given in a forthcoming paper by %ick
and the author.

Two additional remarks about the approximate
function 4, may be added. In the erst place it is always
at least as good as the Born approximation, since in the
limit of a very weak m—p force

4'.~(1/2 pr) e'"""ppp(r„).

Second, it will always represent correctly the limiting
case of a very low binding energy of the proton, since in
that case gp(k„) becomes a delta-function and one
automatically gets free n—p scattering. Even without
the supporting argument above, therefore, 4', might be
looked on as an interpolation between these two limits.

Substitution of 4, into (3) leads to a simple result,
particularly if one employs the R matrix notation. ' In
this notation, the matrix

(k.', k„'~ R„„~k„, k„)

z

p 8 s k ' r '+kJ' r

(2pr)& &

X V(r„'—r ')Q„, k,"&(r„', rv') (3)

describes free neutron-proton scattering from the initial
wave numbers k„and k~ to the anal wave numbers
k„' and k„'. Since the wave function Q„,kv""(r„, r„)

~ C. Mgller, Kgl. Danske, Vid. 23, No. 1 {1945).
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may be factored, i.e.

Q„,& „"&(r„,r„)= (1/2pr) &e ti~"+"o& &"+'~&

X opto.—&,& "o(r„—r„),

one can also write (5) in the form

(k.', k„'~R.,~k„, k,)
= h(k„'+k, '—k„—l „)(k'~r„„(k),

where k=-,'(k„—k,), k'=-,'(k„'—k~'), and

(k'~ r„„~k) = o t d—re—'""V(r) ppa" &'(r).

(6)

(&)

(g)

To find the cross section for free n—p scattering into any
wave number interval, dh', the formula

e„Pk'= 2&r/&pop )
(k'~ r„,

~
k)

~

'b(E„'+E,' E„E,)—dk'—
is to be used, in which eo is the initial relative velocity,
E„=f&'k„'/2np, etc., and where all energies and momenta
are to be expressed in terms of k', via the momentum
conservation condition.

Similarly one can describe the inelastic scattering by
an R matrix. From Eq. (3) it is seen that, if

(k., k, iR;.ikp, 0)

i~ ~
—dr„droop& ~*(r„)e '""'"V(r„r„)%'(r—„,r„), (9)

then the cross section for emission of the proton into
de, „while the neutron emerges in dk„ is

o'; dlr dk = 2&r/hoo) (k, k ~R ~kp, 0)
~

Xb(E +Er Eo)dk dk~ —(10)

with no condition of momentum conservation. Re-
placing 4' by 0'„ it follows from the definition (5) that

(k„, kgb R;„[ ko, o)

=)") dk„'dk, 'y „*(k,')(k„,k,'~R„„~kp, k„')go(k„')

t
k„—h„' ko—h„')

ig.(k:), (»b)
2 2 )

y „(k~') = (1/2 or) tJ dr„e '"o"~y&*~(r„), —

and in (11b), k~o=k„+ko' —kp.
Equation (11a) is the formal expression of the impulse

approximation as applied to inelastic scattering. Re-
placement of yc„o(k&,') by gp*(k„') would give the
expression for elastic scattering. ' One further step is
desirable to complete the phenomenological theory;
the n—p scattering amplitude should be taken outside
the integral. This is possible if one of two conditions is
satisfied. (1) If s„~varies only a little over the important

range of k„ it is legitimate to replace it by the value it
takes where yc„o(k~') is singular, which will always be
at k„'=k„. (2) If r„o depends only on the dhgerence of
initial and final relative momenta, rather than on the
individual values, then it is independent of k„. For
—',(k„—k„')——',(kp —koo) =k„—ko in virtue of momentum
conservation. There are experimental and theoretical
reasons for expecting one or both of these conditions to
be well satisfied in the n—d problem. They will be dis-
cussed later in the actual calculation.

It is asserted therefore that the scattering amplitude
for the three-body problem may be approximated by
the product of two factors, each of which has to do with
a two-body problem:

(k.—k„kp —(k„+k„—ko) )
(k„,k, fR,„fl „O)=i

2 2

XJ
dk„'y „*(k,')gp(k„+k, '—kp). (12)

This factorization allows one to hope that the results
of the three-body scattering experiment may be
analyzable in terms of two-body scattering at the same
energy.

It is interesting that the form (12) is exactly that
deduced by Fermi' from somewhat diferent arguments
to describe the scattering of slow neutrons by molecu-
larly bound protons. The equivalence is more obvious
if the integrand of the second factor of (12) is written
in configuration space:

J
d4'gan*(4')gp(k-+4' —ko)

dr, e» &,*(r,)e *". "—"e&—o(r )

In Fermi's case, r„„is a constant, proportional to the
so-called scattering length. In the forthcoming general
discussion of the impulse approximation, the relation of
these two problems will be made clear.

III. APPLICATION OF THE METHOD TO THF
NEUTRON-DEUTERON PROBLEM

The arguments of the preceding section will be
generalized now to apply to the case of inelastic neutron-
deuteron scattering. The additional complications are
fourfold. In the first place, the initial binding center is
not infinitely heavy. It is well known that this can be
accounted for by a center-of-mass transformation in
conventional treatments. The approach used here
likewise encounters no difhculty. In the second place,
the incident neutron interacts both with the proton and
with the proton's binding center, i.e., the other neutron.
This will introduce into the expressions analogous to
(3) and (9) two sources of scattering which are propor-

g E. Fermi, Ricerca Scient. VII-II, 13 {f936).
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tional to LV»(r~ —rp)+ V„„(r~—ro)]%(r~, ro, rp) if r~ is
the coordinate of the incident neutron and r2 that of
the initially bound neutron. The approximation now is
to assume that when r& is close to r~ the wave function
has the form

dk+k«Go(k„ko)e'""~o kp"P(r), r„),

where

Go(k„ko) = (1/2s.)'" ~ drPro
t

Xo—i(kp ppk+p p)p~. (r r )

pkp —k&q= b(kp+ko)gol
2 )

&po(rp —ro) being the deuteron wave function and go
its Faurier transform. On the other hand, when r~ is
close to r2, a superposition of neutron-neutron scat-
tering functions will be used. The essence of this ap-
proximation is thus to ignore the perturbation of the
wave function at one of the two scattering centers
which is induced by the other center. Its validity rests
on the smallness of the high energy two-body scattering
amplitudes in comparison to the dimensions of the
deuteron.

A little farethought will reveal that a straightforward
application of the procedure outlined in Section II with
this approximate function will give a recipe for cal-
culating inelastic n—d scattering which is not quite self-
consistent. Forgetting the Pauli principle and spin, for
a moment, and labeling the final momentum of the
incident neutron by ki and that of the initially bound
neutron by ko, the formula analogous to (11a) will be

(k„k„k„lR,„lk„O)

Pt'f
,

tdkp'dk&'dkpodk&oGkp, »~(kp', k&')

X l (k„k,'l R„„lk„k,')S(k, '—k,o)

+(k~, ko'lR„. lko, koo)b(kp' —k, ') lGo(k„', koo), (13)

where Gkp, ko(kp', ko') is the Fourier transform of the
final continuum deuteron wave function. The incon-
sistency becomes apparent if we formally insert the
additional factors b(k~ —k~') and b(ko —kP) and inte-
grate over Ai' and dk&'. This does not change the value
of the integral but it allows the following rather obvious

interpretation: One starts with a wave function, ex-
pressed in momentum space, which is b(k~' —ko)

XGo(kp', ko') and which represents a free neutron with
mornenturn ko and a deuteron at rest in its ground
state. The matrix R p+R „operates on this state (the
integration over kP, ko', kp'), producing a scattered
wave which must then be resolved into its component
parts. The resolution is carried out by computing the
overlap of the outgoing wave with Gko, kp(ko', kp')
Xb(k&' k~—), a function which takes into account the
interaction between the two particles of which originally
the deuteron was composed but not the interaction
between the incident particle and either of the other
two. The interaction with the proton is presumably
already included in the matrix R„„and that with the
neutron is in R„„,but in each of the two terms the
interaction of one of the three pairs of particles in the
final state is omitted. Now it is obvious that one pair
must be omitted if one is to avoid solution of a three-
body problem, and in the spirit of the approximation
which is being made such an omission is consistent.
However for reasons of common sense, it seems that the
following recipe is more appropriate than that expressed
by (13): In resolving the scattered wave generated

by R„„, compute the overlap integral with eAht. r
Gk&, kp(k&' —kp')b(k&' —k&) or Gkg, ko(kg', k2 )b(kp —kp)
according to whether

l
k„—ko

l
or

l
k~—ko

l
is the

smaller. In other words, take into account that inter-
action which is the stronger. Because of conservation of
energy and momentum

l
k„—ko

l
and

l kq —ko l
cannot

bo/h be small. If they are nearly equal then they must
be sufFiciently large that both pairs of interactions are
negligible. In resolving the wave generated by R„„a
similar choice shouM be made, based on the relative
magnitudes of

l k,—k,
l

and
l k,—k~l.

The final two additional complications possessed by
the actual e—d problem are the spin degrees of freedom
and the identity of the two neutrons. Spin variables
must be included in the arguments of initial and final
wave functions and also in the matrices R„„and R„~,
and summations aver spin must be added to the inte-
grations over momenta. The Pauli principle is satisfied

by antisymmetrizing the scattering matrix in the
neutron variables.

If the combined momentum and spin variables k;, 0;
of a particle i be designated by $; and a summation over
$, understood to include integration over continuous
momentum variables, then according to the above
arguments the complete unsymmetrized matrix for n—d
inelastic scattering is to be written as follows

(S, b, ~.IR;.lb, b ) = 2 2 l~«~«.*(&.', &',, &')(&', &,'IR..I&', S:)~ «*«

+&«~«o «p(4' b' b')(6' b'IR-Ih' b')&«p'«p'l&o(b' b' 4') (14)

In this formula,

&o(bo, b', 4o) = b«io. «oG«o (bo, 4o),

where b represents the momentum and spin of the
incident neutron, and G«p is the wave function (in
spin-momentum space) of a deuteron at rest with a
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well-defined spin. The other symbol requiring definition
1s

fftlrp tp($1 1 $2 t $p ) Bl i pig(y rp(k2 y kp~)

if }kp—k, l(lkp —kgl

~ry 8y'R1 82(kl 1 b )
if } kp —k„l &

l
kp —kgl

etc. , where, for example Gr~. pp($~', $p') is the continuum
wave function of two neutrons, normalized on the
energy shell to pre, harp', tp plus outgoing waves.

This recipe is quite complicated, but from the con-
ventional point of view, in which one assumes that he
knows the nature of the two-body interactions, the
recipe can in principle be carried out. It contains
nothing but the solutions of two-body problems. How-

ever, the integrations indicated would be hopelessly
tedious if one could not neglect the variation of the E.
matrices and take them outside the integrals. The latter
simplification is certainly essential if we wish to reverse
the usual procedure and deduce two-body R matrices
from the experimentally observed three-body scattering.
It is dificult to make a general argument justifying this
approximation which will apply to all terms. It turns
out, however, that for all important terms, one or both
of the criteria stated at the end of Section II are reason-

ably well satisfied.
The formulation of (14) is general enough to include

any kind of two-body forces, but the very generality
conceals most of the physically interesting features of
the problem. Therefore it is now proposed to restrict
attention to central forces so that spin is independently
conserved in the scattering. Tensor forces very likely
are important in high energy phenomena; but past
experience indicates that most conclusions about scat-
tering, which can be reached from consideration of
central forces only, except those which specifically have
to do with interchange of spin and orbital angular
momentum, also turn out to be true with tensor forces.
In the hope that future work will confirm this feature
for the present case, and because something is to be
learned even if the assumption is incorrect, the re-
mainder of this first paper, and all of the second one,
will refer to central forces only. It will be evident,

however, that the forces need not be derivable from

static potentials.

IV- THE CENTRAL FORCE PROBLEM

With no coupling between spin and orbital angular

momentum, the total spin and also the z-component of

spin will be constants of the motion. Therefore, instead

of considering all six possible initial spin functions and

eight possible final spin functions, it suKces to consider

two initial states, one quartet and one doublet, and

three final, one quartet, and two doublet. These spin

states have been discussed by Ashkin and Ku' and we

depart from their scheme in only one respect. Whereas

the initial doublet state for a given z-component of

total spin is unique because of the requirement of sym-

metry in the spins of the two particles making up the
deuteron, the final doublet state for the same z-com-

ponent is twofold degenerate. Ashkin and Wu resolved
the degeneracy according to the spin symmetry of the
two particles which originally formed the deuteron.
Here the degeneracy will be resolved according to the
spin symmetry of the two neutrons.

There are three essential scattering amplitudes to
compute and these will be designated as follows, de-

parting from the general notation of formula (14).
(k&, k&, k

l
'E; s

l kp, 0) will be the non-antisymmetrized
matrix for inelastic scattering in a quartet state. The
latter is symmetric in the spins of the two neutrons, as
indicated by the superscript 5. Now 4R;„~ must contain
the factor 5(k&+kp+k„—kp), so let the co-factor of this
delta-function be designated by (k», k„l'r;„slkp, o),
where k»=-', (k&—k&). Then the cross section for quartet
inelastic scattering is given by

'~;.dkPkgp= 2~/hppl (kgp, k„l 'r, „s
l
kp, 0)

—(k»». l'r, slko, 0) I'
&(b(E)+Ep+E„—Ep)dkgkgp, (15)

where

Eg+E2 = h'/4m (kp —k )'+ h'/elk»',

since k&+%2——ko —k~, and

E = h'/2rsk„', Ep h'/2rlk ' 8—— —

The choice of final variables to be k„and k~2 is made
because the proton momentum is the experimental
quantity most likely to be measured.

For the doublet case there will be two distinct
matrices, corresponding to final states symmetric and
antisymmetric in the neutron spins. These will be
designated by 'R,„and 'R;„", respectively. Following
the same convention as above, the doublet cross section
will then be

'(rdk;P„k»
=2~/hv Il (pk)p, k, l'r, „ lkp, 0)

(k„k~lPr. slk, 0)lP
+ l(l „,k, l

pr, „&ll „o)
+(kp„k, l'r;."lkp, o) l'I

Xb(E~+Ep+E~ Ep)dkgk». (16)—

The average cross section for unpolarized scattering
would be given by two-thirds of (15) plus one-third of
(16), the respective statistical weights of the quartet
and doublet states.

The recipe stated in Section III permits an unam-

biguous calculation of the three required inelastic
matrices in terms of the four two-body matrices which
describe n pand m~—scattering in triplet and in singlet
states. In all cases, the two-body matrices will be taken
outside the momentum integrals and evaluated at the
final observed values of the momenta. To save space,
the following shorthand notation for the two-body
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matrices will be used:

k0+k21

2 )

k0+k2q

)
%0+kp)

k0+k, q
)

k12/r„„'f —
/

=r„*.
2

The superscripts t and s refer to triplet and singlet
two-body interactions. This notation is really unam-

biguous since only these combinations of initial and
final momenta, except for interchange of k& and h2 can
ever occur.

As an example of the procedure of calculation, con-

sider the simplest case, the quartet, which is totally
symmetric in all three spins. Only the triplet two-body
interactions enter and no spin changes are induced.
Because of the criteria for taking account of final state
interactions the terms generated by E.„~ must be con-
sidered separately from those generated by R„„.The
contribution of the 22

—p interaction to 'R;„s is as follows,

for k2„&kgb.

~(kl+k2+k0 k0) tdk21 +21 (k21 )

equal momenta. This is also rather obvious physically,
since neutron number two has no way to acquire a high

velocity. Now if k& and k2 are both small, then k„must
be large and will dominate the final argument of r„„'.
The initial argument is likewise dominated by kp so

that again k~I plays only a small role. A diferent argu-
ment may be based on the experimentally observed
fact' that for large momentum transfers r„„' depends
much more sensitively on the sum of initial and final

relative momenta than on the difference. The reverse

appears to be true for small momentum transfers.
Taking the sum of initial and final relative momenta in

(18) just cancels out the dependence on k»', and it
turns out that when k20&l021 (which corresponds to
small momentum transfers), taking the difference would

cancel out the dependence on k~„', the variable of in-

tegration in that case.
Similar arguments can be made for the terms

generated by the rl,—n interaction, so that in general,
the removal of the two-body scattering matrices from
the integrals is well justified. In the special case of (18),
this leads to

f'1(k1+k2+k, ko)r—1,'

(ko —k„
X II dk21 +21 (k21 )go~ +k21' ~. (19)

2 )

Overlap integrals, such as that which appears in (19),
will appear in every term of the complete matrix. It is
therefore appropriate to introduce another abbreviation
as follows:

(k1 k0 k21' —k21 k0+k2 k21 k21)
+

E. 2 2 2 2 )
tk0 —k,

Xgoi +k,1' ). (18)i

I21 ' dk21 g1221 (kll )g0(k00+k21 )

I dr20k211 (f)e ' '
02 (r),

J

(20)

This term corresponds to the case in which the
incident neutron transfers most of its momentum to the
proton so that in the final state the two neutrons are
the most strongly interacting pair. The function
g1112'(k12') is the triplet relative wave function (not
antisymmetrized) in momentum space of two neutrons
with relative momentum kI~.

There are several reasons for thinking that the
matrix r„„'which appears under the integral sign, does
not in fact depend appreciably on k»'. If k» corresponds
to a relative energy greater than about io Mev,
yc12'(k12') b(k12=k12)' —so th,at the peak of the inte-
grand occurs in a region in which the dependence of
r„„'on k»' vanishes. If k» is small, this will usually be
because both k& and k2 are small. Energy and momentum
conservation, together with the character of the func-
tion go, which is appreciable only for small arguments,
make it very unlikely that as a consequence of an n p-
collision the two neutrons should go oG with high but

where 021»'(r) is the relative wave function of the two
neutrons in configuration space. The other integrals
will be designated by I»', I»', I»', I»', etc. , where the
subscript identifies the pair of particles whose final
interaction is being accounted for and the superscript
gives their spin. If the pair ij is being considered, then
the momentum occurring in the exponential of the con-
figuration space integral is always -', (k;+k, ), so that
additional indices are unnecessary.

It is clear, then, that the complete inelastic scattering
matrix can be expressed as a sum of products of the
type, r»'I»'. The origin of each term will be indicated
by the superscripts and subscripts. This particular one,
for instance, comes from a collision in the triplet state
between neutron number one and the proton, leaving
neutron number one with the smaller final momentum
and in a triplet state with respect to neutron number
two.

Evaluation of this sum of products is merely a matter
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of bookkeeping and only the results will be given here.

(k12, h p ~

2r;„s
~
hp, 0)

—&(rt, '—3r(,')I21'

2 (rl& +3r1& )I2tt tt(rjtt rlrt )Iptt

tt(r12 +3r12 )I 2 +p(r12 r12 )I,2'
t

p(r12 +3r12 )Ittl +$(r12 r12 }Ittt

v3/4(r 1,'+r 1,')I21'

v3/8(rt, '+3rt„')I2, '+v3/8(r), ' r1„')I,„'—

v3/8(r)2'+3r12')It, 2' —v3/8(r12' —r12')I„2'
+

v3/8(r 12'+3r)2')I»' —v3/8(r, 2' —r t.')I„1'

Of the two alternatives within each bracket, that one
is to be chosen which takes account of the strongest
interaction between a final pair of particles. It can be
verified quickly that in case both final interactions are
negligible, the two alternatives are equal. For example
1f ((tk21t(r) (1/22r)teiktt ~ r then

r
I21t (1/22r)$ (jrp i(k2—kt—(2) ~ tp—i(k2+kl/2) ~ 2 (2)

=(1/22r)&) dre ""p2p(r) =gp(k2).

I2~', I~~', I~„' all approach this same limit, while I~2',
I„2', I»', I»' all approach the limit gp(k„). The for-
mulas (21) simplify in this limit to

(k12, k, ~'r;„s~ kp, 0) =r1, 'g, (k,)+r12tgp(k„),

(k12, k„~ r;„~kp, 0)= —4(r1„'—3r)p')gp(k2)

+-,'r1, 'gp(kp), (21a)

(k12, h, I
'«,."1 hp, 0) =~3/4(rt, '+r1, ')gp(h2)

+v3/2r12'gp(h ).

V. SUMMARY

A formula (21) has been derived for the complete
n—d inelastic scattering matrix in the case of central

forces only. Properly antisymmetrized with respect to
the neutron variables, this matrix leads to the cor-
responding cross section through formulas (15) and (16).
The impulse approximation which is the basis of (21)
is believed to be better than the usual Born approxi-
mation, depending on the large radius of the deuteron,
the high incident velocity of the neutron, and the short
range of nuclear forces, but not on the weakness of
nuclear forces. Appearing in (21) are two kinds of
quantities, each of which refers to a two-body problem.
The first kind are 22—p and 22—22 scattering matrices,
evaluated for the initial and final momenta which occur
in the three-body problem. The second kind are overlap
integrals between final continuum wave functions and
the initial deuteron function.

If the theory of nuclear forces were on a firm basis,
as it may be someday, it would be a straightforward
procedure to solve the required number of two-body
problems and substitute into (21). At the present time,
it is perhaps more sensible to adopt an empirical ap-
proach in terms of experimental values for the two-body
scattering matrices. In the second part of this report,
which will follow when experiments at Berkeley are
complete and have been analyzed, this author will
attempt such an approach. In particular, an eR'ort will
be made to derive information about the high energy
n—n interaction from the experimental observations.

It might seem that the overlap integrals which occur
in (21) would preclude the empirical approach, but this
is not so. The asymptotic form of these integrals for
high final relative momenta depends only on the deu-
teron wave function, as seen in (21a):and at low relative
energies the perturbation is important only in the 5
part of the final wave function. Low energy 5-state
interactions are very reliably described by the empirical
theory of the effective range, 9 so no essential difhculty
need be encountered there. Trouble could come from
interference terms in the n—d cross section, and one of
the chief tasks of the second part of this report will be
to show that these terms are actually not likely to be
large for inelastic scattering.

Preliminary stages of this investigation were made in
collaboration with Dr. M. L. Goldberger while he was
at the Radiation Laboratory. During later stages
Professor Serber and Professor Wick have given much
help and encouragement for which the author is ex-
tremely grateful.

9 H. A. Bethe, Phys. Rev. 76, 38 (1949);J. M. Blatt and J. D.
Jackson, Phys. Rev. 76, 18 (1949); G. F. Chew and M. L. Gold-
berger, Phys. Rev. 75, 1637 (1949).


