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Distribution of Recoil Nucleus in Pair Production by Photons
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The angular and momentum distribution of the recoil nucleus in pair production by a photon is calculated
covariantly by a method which utilizes the unitarity of the S matrix. The results are in disagreement with
a recent experiment, particularly for small angles and high momentum transfers. The exact total cross
section for pair creation is also given.

e(ko) = td'qA„(q)A. (—q) T„„(q;k), (2)

where q is the momentum transferred to the field and k
is the energy momentum 4-vector of the photon, so that
the integrand of (2) gives directly the differential cross
section for obtaining a recoil nucleus of momentum q.

To obtain a(ko) we consider the scattering matrix, 5,
developed in a power series in the charge e:

S=1+eSg+ e'52+ (3)
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I. INTRODUCTION

ECENT attempts to measure the momentum and
angular distributions of the recoil nucleus in pair

production by energetic photons' have made a theo-
retical investigation of these efFects desirable. There
exists in the literature only an estimate of the mo-
mentum distribution. ' An opportunity is also afForded
of illustrating a method of calculation of somewhat
more general applicability, which is based on the
unitary character of the S matrix. A simpli6ed and
covariant calculation of the total pair production cross
section and its asymptotic form (Bethe-Heitler for-
mula'), is also carried through.

II. METHOD OF CALCULATION

In this discussion, the efFect of the nucleus is repre-
sented by its static field

A„(x)= ~I exp( iq x)—A„(q)d'q,

which is viewed as an external field. Higher radiative
corrections are disregarded (see Appendix II), as is
excitation of atomic states by the incident photon, and
only the lowest term in the external field is computed
(first Born approximation). The validity of some of
these assumptions has been questioned, 4 but these efFects
are in any case not large.

The total cross section for pair production by a
photon of energy ko (units in which k=c=1 are used
throughout) is then obtained in the form:

If 5* is the Hermitian conjugate of S, the condition for
the unitarity of S becomes

5'5= 1+e(51*+51)+e'(Sl*Sl+So*+So)
+e'(Sl*So+So*5i+So*+So)

+e'(S,*S,+S,*S,+5,*5,+S,*+54)+ = 1, (4)

so that each of the expressions in parentheses must
vanish. Here, apart from mass terms,

(—o)"
PL .(1) .-( )j

n~
1, .",n

XPLA„l(1)+tel„i(1), , A„„(m)+4„„(io)j, (5)

where j»(1)=oeP(xi)y»P(xi), 4»(1) is the electromag-
netic field operator at xI, etc., and the integral is taken
over all the indicated 4-spaces. '

Consider next the expectation value for a state with
a single photon of momentum ko of the e' term of (4),
limiting ourselves to terms quadratic in the external
field. If the external 6eld cannot create pairs, which is
true of a static 6eld, the S~ terms give zero. Further-
more, if the initial state in 52 is a one-photon state, the
6nal state can only have an electron-positron pair. The
e'52*5& term is then the sum of the squares of all matrix
elements between the initial state and all possible final
states containing a pair; that is, the total probability
for the creation of any pair by the photon. The cross
section o(k) is thus given by o(ko)=(ko~e'So*So~ko),
which by virtue of (4) becomes

o'(ko) = e'(ko
~

—54*—54~ ko) = 2Re(ko
~

e'5—4 t ko). (6)

This form is much more convenient for computational
purposes than is the conventional non-covariant sum-
mation over 6nal states. ' It is to be noted that the
absence of internal photon lines in the matrix elements
of interest here makes unnecessary any explicit mass
subtraction.

Employing the usual prescription of Feynman and
Dyson' to evaluate the S4 matrix element and averaging
over the polarizations of the photon, one obtains

T„„(q,k) =+ (e4/Shako)Re[A„„(q, k)+B„„(q,k)
+B„,( q, k)+A„„(q, k)—

+~"(q k)+&"( q, —k)j.—(&)—
~ F. J. Dyson, Phys. Rev. 75, 486 (1949); 75, 1736 (1949}.' Some other applications of Eqs. (4)—(6) are discussed briefly

in Appendix I.
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A„„and B„.arise respectively from the Feynman diagrams (a) and (b) in Fig. 1, and are given by:

l. ~PIT.(iv P m—)y.(iv (P k)—m—)v.(27 (P k —q)—m—)y.(iv (P—q) —m)7
A„„(q, k)= I d'p

(p'+ m') ((p—k) '+m') ((p—k —q) '+m') ((p—q)'+ m')

l. ~p[y. (iy (P+q) m)—y.(iy p m)—y.(iy (P+k) m)—7.(iv P m)]-
B„,(q, k)= I d'p

J [(p+q)2+m2](p2+m2)2[(p+k)2+m2]
(9)

so that only two of the I's need be computed. (Actually,
three were computed as a check. )

%e write

where, for instance, p stands for the 4-vector p„, pq for
p„q„=p q ppqp,

—etc.
Terms arising from diagrams such as (c) of Fig. 1 all

involve a photon self-energy operator acting on a free
photon state, and hence give zero. Even the formally
divergent momentum integrals associated with such
operators will not be encountered here, since only real
terms are carried in (7).

I,(q, k) =A, (q, k)+B;(q, k)+B;( q, k)+—(k~—k)
(i= 1, 2, 3, 4), (13)

III. EVALUATION OF T„„(q;A,)

In calculating T„„we make use of the gauge in-
variance of o(kp). If a gauge transformation is per-
formed on the A„(x), it is seen from (2) that for gauge
invariance

r' y=3! dx dyJ p ~p [a+(b a)x+(c—b)y]4—(10) abc'q„T„„(q;k) =0.
(14)T„„must be of the form ~l ran ~y-=3! dx i dy ~' ds

abed J p ~p &p7„„=+ (e'/82rk p)Re[I1b„„+Ipk„k,+Ipq„q,

+I4(q„k„+q„k„)], (11)

where A1(q, k) is the contribution from A„„(q, k), etc. ,
cf. (8), (9), and similarly for the remaining I's In th. e
calculation, imaginary parts will be dropped freely, by
virtue of (11).

An evaluation of the spur in (9), and use of the first
of the relations

where the I's are invariant functions of q and k. Equa-
tion (10) then yields the conditions:

X
[a+ (b a)x+ (c —b)y+ (d——c)s]'

I1+Ipq'+I4qk =0, Ipqk+I4q'= 0, (12) then yields:

p'(1+4(x—y)+ 2[(x—y) (Q'+3m' —2Qk)+Q'+m']
B2= —48 t d'P l dx ' dy(x —y)y

[p'+ m'+ q'(1 —x) —Q']'

~1 (z p'(1 —4x) —2x(Q'+3m' —2Qk)
Bp= —48 d4P l' dx dy(1 —x)y

J J, J, [p2+m2+q2(1 x) Q274
(16)

where Q= q(1 —x)+k(x—y). Then, making use of

1 prpi 1 p'I'
d,p d4p (17)

[p +&7 6x J [P2+&7 3x

and the transformations x—y=g, 1—x=P, it follows

that
~1 ~1—$

B2 —162rpi ' d$ dg——g(1—$—q)

q(Q2+3m' —2qkt)+Q2+m'-
+

m2+q2g Q2 (m2+qpk Q2)2
(18)

~)t

Vgp

'kr

V~

p-4I-k pg
J1

p $g~ 4 /

p

g+h

~ ~
~ ~

(cj

(1 g) (Q'+ 3m' 2—qkk)—
m2+q2( Q2 (m2+q2$ Q2)2

4$—3

with Q=qg+kg.

1 1—$

Bp —162rpi I d$
'

dg $——(1—
p
—g)J, J,

Fxo. 1. Feynman diagrams for ~&. 7 R. P. Feynman, Phys. Rev. 76, 769 (1949).
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Consider first B».. integrating (19) with respect to &t,

and dropping some purely imaginary terms, one obtains:
0

&p )
16m'i p' 1

dt-[(3t 2—) f m'+4r'5(i 5—) }
p' &o

+4(1—g)(m'+r'g)] Iln[m'+4r'$(1 —$)] Then

Fro. 2. Path of integration for 83.

16m'i p &2 d$
»—[m~+q~p(1 $—)]}, (20) B~= — (—i&r) ll

—[2m2+$( —4r —m')

where

P = 2qk and 4r'= (q—k)'.

Since q' &~0 for a static 6eld, the term in

(20a)
327l m 1 07

ln +co .
P' 1+(o

+5'(1«')+e(—12r')] (24)

r2& —m2, (21)

in which case m'+4r'$(1 —$) has two zeros in the range
of integration, at

&~=5(1—~) 6 5=(1+~) [~= (1+m'/")'] (22)

Since m' must be thought to contain a small negative
imaginary part, the path of integration for (20) is that
of Fig. 2. For this branch of the logarithm we have

1n[m'+4r'g(1 —t)]
=ln m'+4r2$(1 $) fr—om 0 to $&

ln m'+4r'$(1 $) ix f—rom—$~ to $2
ln m'+4r'$(1 —$) from $2 to 1.

Then, if f(g) is regular along the path,

~l
(dt/t)f(h)»[m'+4r'5(i —5)]

ln[m'+ q'k(1 —k)]

may be dropped if the logarithm is chosen to be real
at )=0. Equation (20) will then be purely imaginary
unless

Next, using the second of the relations (14) in
Eq. (8), replacing fo'dxfo*dy fo"dh by fo'dy fPds
f„'dx . , and making the transformation of variables

s=(1 8)y l-y, x-=y(1-&)+k(i-y),

so that

~y ta
1

ds dh. becomes y
aJ p Jp

dg

1—f
dg . -

~ fti/(1 —ft&)

pp ~1+&@/(1—u)

+ df'
4 -(1-u) 4 -0

In a completely analogous manner, one obtains from
(18), after considerable calculation:

16&r'
I

t'1 —co )
Bm q2——(12m2q2 —8m'P —P') ln

I

p4 I (1+co)

+co[P'+2P'(m' —q')

+ 2Pq'( 8m'—+q')+2q'(8m' q')]—. (25)

4
we obtain after some algebra (putting —f' for f' in the
second part of this integral, and then f= (1—y)t):

~1 ~1—(1—y) t

A„,(q, k) =6J d'P dyy(1 —y) dt
4p Jp 0 fit

Sp[ ]
d(

L(P—Q)'+m'+q'y(1 —y)+2qky(1 —y)t]'
1—yt Sp[ ]+t

& o &i [(p —Q)'+m —+q'y(1 y) 2qk—y(1——y)t]4
~ (26)

Here, Q=kt+qy, and the spur is that appearing in (8).
Now, evaluating the spur, putting (1—y) for y in the
second term of (26), and putting we obtain

A2(q, k) =A2'(q, k)+A2'( —q, k),
A3(q, k) =A, '(q, k)+A, '(—q, k)

(2't)

pl —(p2/2) m'+ q2y(—1—y) —(2m2+ q2) $(1 $)—
A&'(q, k)= —96 d4p l' dyy(1 —y) dt ~ d(

J [p'+ m'+ q'y(1 —y) —2qky(1 —y) t]'

�

~
I pl pl —yt p2+2m'(1 —2y(1 —y))

A3'(q, k)= —48 l d'p
l dyy(1 —y) l

dt ' d$J, J, &
& —,& [p'+ m'+ q'y(1 —y) —2qky(1 —y) t]'
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Using (17) and performing first the g-integration, we

obtain, using arguments similar to those used above in
obtaining 83,

16m'

IV. THE MOMENTUM DISTRIBUTION OF THE
RECOIL NUCLEUS

For a screened Coulomb field, A„(q) as computed
from (1) is:

A2' ——

[q' P—+2m']oi,
2

7r3 1—co

2(2m'+q')q'(P —q'+2m') ln
4 1+co

Ze 1
A(q) =0; A, (q) = —L1—F(q')].

(2or)' q'
(34)

Then, since Too ———T44= —Ii+Iokoo from (11) and
(33), we have from (2)

—co[P'+P'( —q'+2m')+(2m'+q')6q'(q' —P)] . (29)

+~[4(q' —P)(m' —2q') —P'], (3o)

CO

2m' ln +oi(P —q'),
1+M

if (21) is satisfied, and otherwise

I2——I3——0.
Then, from (12)

(31)

(32)

I = —(P/2q')Io Ii q'Io+ (P'—/——4q')Io (33).
Equations (30)—(33), substituted in (11),then complete
the evaluation of T„„.The distribution of the momentum
vector q of the recoil nucleus, which is essentially T„„,
is thus given exactly and fairly concisely in terms of
elementary functions by this method.

As a check on the correctness of the expression for
T„„,it is very easy to obtain from it the cross section
for the production of pairs by two photons. For this
purpose, the momentum q must also be taken to belong
to a photon (so that q'=0) and the A„ in (2) must be
replaced by the creation operators p„. Averaging over
polarizations, the total probability for pair creation by
the two photons is then proportional to

1 1
T„„(q,k) = (2I,+—kqI4)

2qo 2 16mkoqo

(p'
I —,I I

64orqoko E q' J o~=o

m'e4 1—~
a = ln (8m 4 4m'P P')—roP(P—+4m—')

p' 1+co

which is the correct result.

G. Sreit and J. A. %heeler, Phys. Rev. 46, 1081 (1934).

Collecting the results (24), (25), and (29), we have in
view of (27) and (13)

64m'q' 1—o)
ln [2(4m4+6m'q' —q4)

P 1+oi

+2(—2m'+q') p —p']

—Ze'
p (1—F(q'))'

o(ko)=
~

d'q (Ig —Ioko') (35)
4ko(2or)" & q4

where

Il I2ko
16m' 1 M—4q' 2m' ln +oo(P —q')

1+co

P' —4q'koo
~[P'—4(q' —P) (m' —2q')]

2

1—co

+ln [P'+2(P —q') (2m' —q') —Sm'(q'+m')] 1 (36)
11+co

if r'& —m', and is zero otherwise.
Next, let us make the transformation of variables

2mQ=
I ql

' &= [ko' —Iq —kI']/4m' ~=ko/2m (37)

Then J'd'q over the region r'& —m' or
I q —k

I
&k —4mo

becomes

and

a+(a~ —i)&

~ a —(a~ —i}&

p2aQ —Q'

dQ dp7rQ 4m'/a

pa+(a& —1}&

o(ko) = dQI'(Q, k ).
~ ~-(a~-t)&

(38)

I'(Q, ko) is the distribution of the momentum Q of
the recoil nucleus, in units of 2m, and is given by

I'(Q ko) =(~'e'/32 'ko')[1 —F(Q')]'I(Q )/Q'

I(Q,-)= 1I.+(1-2Q')I +(2Q -Q'-e'-'-!)I.
+2Q'u'(1+ 6Q' —4Q') I4

+Io+ (1—4Q')I i+ [(4Q'—1)Q' —4Q'~']Io

+4Q' '(SQ' —1)Io+4Q'n'(1 —SQ')I4 I, (39)

where

dy t" dp 1—io

I„=
I

ln
(Q'+~)" ~i (Q'+~)" 1+~
~= (1—1/} )', 3 =2~Q —Q'.

Kith the exception of J~, the integrals I„and J„are
all elementary and for n)1 can be computed from Ij
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and J& by differentiations with respect to the param-
eter Q'. Jr can be expressed, in terms of the functions'

~t
R(t) = 1n(1+x)/xdx, (41)

ci
0

Cl 2

J~———R(1/ZX) —R(X/Z)+ rr /6+-,'(ln)).)'
1 -', (lnZ)' —(lnZ) (ln84pQ); (42)

Z=[(y-1)»+y»7' & =[Q+(Q'+1)»7

Then, after a lengthy calculation, one obtains:

,l2.
ns

e5)

4Q'-»
I(Q, ~) =(1—2Q')Ir+

l
1—4Q' —8Q~+

E. 3nQ )

2n 2Q' —1 y

X»[(y)»+ (y—I) '7+
l

3+—+ 1 (y(y —I))»
3Q 3AQ )

2o(
+ -2(1+Q')+

l
-4+—

lQ') (1+1/Q') '

(1+1/Q') '—(1—1/y) '
Xln (43)

(1+1/Q') '+ (1—1/y) '

As a rather stringent test of (39), (38) was integrated
asymptotically and found to give precisely the Bethe-
Heitler formula. " Care must be taken because certain
terms in (43) very nearly cancel over a large region. In
faCt, in the regian Where y = 24rQ Q'= 2—4)tQ (i.e., Q((n),
a much more useful expression is:

1( 2q
I(Q ~)=(1 2Q')Ir+-I 1—4y ——

l
»Z

3y)

C0 0 I 5 I I 20

FIG. 3. Momentum distribution. of recoil nucleus for several
photon energies. Curves (a), (b), and (c): Ordinate: P(Q, k»»}/
(Z'e'/327''m~). Abscissa: Q =momentum/2m. Curve (d): Ordinate:
P(Q, ko)/(2aZ'e'/32m m'). Abscissa: 2aQ.

F in (39). It is easily verified, however, that for all Z
and all energies considered in Fig. 3, the eGect of
screening is completely negligible.

r)=4x COSg=u41 k/qkp, (46)

8 being the angle the recoil nucleus makes with the
direction of the incident photon. It then follows that

ZPeP „a
r

p+(p' —&)» dQ
(r(kp) = dr)

~

16rrPkpP ", ~ „—(„~—))» QP

V. ANGULAR DISTRIBUTION

Since, for the energies of interest here, screening may
be omitted, F in Eq. (34) can be taken to be zero. We
introduce in Eqs. (3/) and (36) the variable Q of Eq.
(37) s,nd

y'(1 —1/y) '
+

y)
(44)

1—co ( n') 1
x 1 l1——

l
1— +

1+4p E r)') 4)7' 24)Q

and if Q((1,

(1—2QP) Jq= —2R(1/Z) —(lnZ) (ln4y)
+-', pr'+-,'(lnZ)'. (45)

In the latter region, it is therefore seen that I(Q, a) is
a function only of y=2nQ.

In Fig. 3, the momentum distribution P(Q, kp) is
plotted for several values of kf) of possible experimental
interest. The general behavior of the curves does not
di6er appreciably from that estimated by Bethe
(reference 2, p. 537). The effect of screening may be
taken into account by inserting appropriate values for

9 See K. Heitler, Quantum Theory of Radhation (Oxford Univer-
sity Press, London, 1944), second edition, p. 172. (E{t) is there
called F(t}).E(x) is equal to the function —&(1, 21—x) tabulated
by K. Mitchell, Phil. Mag. 40, 351 (1949).

'0 W. Heitler, reference 6, p. 200, Eq. (15).

1 2 @f2

— ——+ +
8Q'r)' r» 2r)' 24) 4

n') ( 1 1
+p) l1——ll1-

&') & 4&P 2&Q)

1 ( 2o,')
+—

l
1- l(-2Q~+Q), «7)

g'E

where p) = [1—1/(2Qr) —Q') 7».

Introducing the variable 44=2r)Q —Q', (47) becomes

rr(kp) = (Z'ep/16rr'kp') dr)I(r) 4).).
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5"

0
0

RO'

lO' '

50 q 60

4e"

RO' '

. , 0
90 0 30 e 60

where

2 )37 14 ~ t
11 4 p

I4(~, a)=-
/

—~' f&—
f

—+(9 9 ) (9 3g')

2u' ) 73 14 q p29 10'
+

f

——+—g' f@+] —+ [F, (51)
vP L 9 9 ) ( 9 3q'J

and F and E are the complete elliptic integrals of
the 6rst and second kind, respectively, of modulus
(1—1/n')'

CO SO 60 9' 0 io 606

FIG. 4. Angular distribution of recoil nucleus for several photon
energies. Ordinate: I'(8, k0)/(Z'e'/6kr'nF). Abscissa: Angle of
scattering 8 in degrees.

with

F

1—
(

1——
)

sin'@
vP)

I(n; )=
1 "

[ ( a2)

(g' —p)& I ( q')

(2q' 2(q' —1) (1/4q') —1 q

x( + +

d& 1—
(

1——
(

sin'@ =F.
(

1——
(

I2 is not expressible in such simple form, and is:

t' a') 1 r
"'

d14 g
—(g' —y) &

I,=~ 1——I-, ln
q') g &4 Lp(p —1)j1 q+ (q' I )4—

a2q 4
), (52)

1 M 0!" A"

+ln
1+(o g'p, ' 2q4p

where

r" d$ ( 1) &

F,(~) =
Pl ( $2j

(53)

arith

') t' 1 1—8'+ii—lj+ +
2q' 4q'I4

( n' ——( /8n')) 2~'+
+ +

IJ &4 &4)

~ = (1—1/~) *'

Series expansions for the integral in (52) are easily
obtainable, though numerical integrations proved more
convenient for the actual calculations used to construct
the graphs in Fig. 4.

It may be of interest to note that using (51) and (52)
the integration indicated in (48) can be carried out in
terms of complete elliptic integrals, F&, and a simple
integral over Ii j. One obtains:

%'e may then write e (&0)=@(1/n') (W4+ W2); P = (Z'e'/64m'm') (54)

where

COS 11/a

g (4)=
Jl dgP(g) ko),

0

P(e, ko) = (Z'e'u/16m 402)I(g; n) sin8 (49)

where

2
W4= —L37Eg —14F- 4 11F4—12F4—

9
+u'( —7383+14E4+29F4+30F4) j,

(55)

I(q, n) =I,(g, a)+I2(q, u), (50)

is the angular distribution of the recoil nucleus.
Integrating the term in ln((1 —co)/(1+re)) in (48)

by parts and combining with the remaining terms, ave

obtain:

t F (n)
W2 ——4)l dg+2F4(n)

1

1y&
p

iq&—2umZ
]

1——
) . (55)i
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Wi can be further simpli6ed" to

2 64 82a'~ ) 1y &

li'~=- —»F~(a)+
I

—+ I~ I
'—

I

9 3 3 i

198 2 q -( 1q1
+I —+—+14a IF I

1——
I

. (56)
'E3 a' ), & a'I

(55) and (56) then yield the exact pair production total
cross section:

1 p F,(q)
a(ko)=~ 4 dq+2Fg(a)

a'

S4 by the usual methods in the form (2):

S4 f=d'qAv(q)A, ( q)—T„,(q, k).

For T„„we again have a decomposition of the type (11), (12), the
invariants I; now including real and imaginary parts. By ex-

pressing these invariants in the variables q'&~ 0 and r' (Eq. (20a)),
eliminating P =q~ —4r~, and letting r = —g be a complex variable,
one easily sees from (18), {19),and (28) that for fixed q', all the
invariants I; are analytic functions of P, with singularities only
on the real axis.

It then follows that the real part of all the invariants is a
regular potential function in either half-plane. Therefore, the
values on the real axis define the real part of these invariants on
one half-plane, and therefore also the imaginary part to within
an additive constant. The constant is determined by the condition
that the imaginary parts vanish for large real f. The formal con,-
nection reads, for real g:

2
+—~-(64+1' )z I

1-—
I

271 a')

+I »5+—+42a' III 1—
I

(57)
a' & ( a')

Using the following identities:

F(k) = (1+kg)F(kg),

where k, = I
1—(1—k') 1)/L1+ (1—k') &]

E(k) = L2/(1+kg)]E(kg) —(1—kg)F(kg).

(57) can be shown to be equivalent to a formula pre-
viously obtained by Racah. " This provides a very
severe check on all the preceding algebra.

VL COMPARISON WITH EXPERIMENT

The curves in Figs. 3 and 4 can be compared with
the experimental data given by Modesitt and Koch. '
Since these data give only relative intensities, the com-
parison is somewhat ambiguous. If the maxima of the
experimental and theoretical curves are adjusted to
agree approximately, the experimental curves are found
to be too low for smaller angles and too high for high
momentum transfers; the disagreement for the mo-
mentum distribution being particularly sharp.

APPENDIX I. OTHER APPI.ICATIONS OF THE
UNITARITY CONDITION

An interesting application of Eqs. (4)-(6) seems to us to be
the basis of an investigation by J. A. Wheeler and J. S. Toll, '3

the idea being to compute the imaginary part of S4 from the real
part, which is determined from (6) by S~*S~. We shall illustrate
the method for our case, and show also that the necessary assump-
tions are Justified.

For this, we write the diagonal element of the gauge-invariant

~ Jahnke-Emde, TaMes of Factions (Dover Publications, ¹w
York, 1945), pp. 73 R.

~ G. Racah, Nuovo Cimento 13, 69 (1936).
i (To be published. ) We are indebted to Professor Wheeler for

showing us a preliminary draft, and for several discussions.

where ReLI(f) j=0 for f&m' (Eq. (21)). Physically, this means
that we can deduce the forward scattering of light by a spherically
symmetric static field (this restriction resulting from our sum-
mation over the polarizations of the light quantum) from the
tensor T„„of(2}, since this is the eRect described by S4.i'

Of course, this procedure is widely generalizable. First, the
restriction of (4) to diagonal matrix elements may be dropped, so
that the full matrix S4 may be computed from the second-order
matrix S2. Moreover, one can probably apply the same method
to the calculation of radiative corrections. We do not believe,
however, that the method is of great help for computation pur-
poses, but it is certainly of interest in showing the interconnection
between various parts of the S matrix.

APPENDIX II. ORDER OF MAGNITUDE OF
RADIATIVE COMkECTIONS

To obtain an estimate of the order of magnitude of the radiative
corrections to the total cross section for pair creation in a Coulomb
field, we use the Weizsacker-Williams method, i' which is valid
asymptotically for extremely high energies.

We transform to the Lorentz system in which the incoming
photon, of energy kp in the rest system of the nucleus, has an
energy ns. As we assume kp»ns, the velocity of this system will be
close to unity and

$= 1/(1 —P'}&=kp/2m»1.

The field of the fast-moving nucleus of charge Ze is decomposed
into a suitable distribution of photons. The number of equivalent
photons with an impact parameter S and an energy between g

and v+dv reads

p(S, v)dv=(4Z'e'/v) vdv(Eq(Sv/q) ('/P,

where Ei(Z} is that of Magnus and Oberhettinger. i6 The total
cross section is therefore given by

v(kp) =2vf dvf SdSp(S, v)Q(v, ts),
8min

where Q(v, m) denotes the total cross section for pair-creation by
the head-on collision of two photons with energies v and eg.

(Q(v, m) is given in lowest order by the Breit-Wheeler formula, see
Section III.} S denotes a smallest impact parameter for the
production of the electron pair, and will be of order 1/es.

'4 Professor Wheeler informs us that Mr. Toll is applying their
method to this eRect.

» W. Heitler, reference 6, p. 263 G. E. J. Williams, Kgl. Dansk
Vid. Selsk. Math. -Fys. Medd. 13, 4 (1935).

i' Magnus and Oberhettinger, Special Factions of Math. Phys.
(Chelsea Publishing Company, New York, 1949), p. 29.
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The integration over S is straightforward and yields

16Z~e'
(ko) —

k,
'S ', d Q(, ){&'(f )—Eo(0 )&(| )},

where f =S I 2mv/ko=2v/ko.
If Q(v, m) is to contain radiative correction e~, one must

include the possibility for the emission of a photon, besides the
pair. The dependence of the cross section on the energy of this
photon is uninteresting, and even a classical effect when the
photon has a low energy. Q(v, m) should therefore be the cross
section for pair creation including possible emission of a photon.
As Q(v, m) must fall o6 for high energies v (as is generally found
for such cross sections in quantum electrodynamics), the main
contributions to tr(ko) will come from small values of v/m. We

can therefore expand the bracket { } with respect to g, obtaining

dv k v y 1
a(ko) =8Z'e~ —ln——ln- —ln———Q(v, m)

v 2m 2 2
=A ln(ko/2m)+B,

where

A =8Z'e' J Qiv, m)dv/v,

dv v y 1
B=8~e2 —ln—+ln—+—Q(v, m),

v m 2 2

lny =0.577

The only change caused by the radiative corrections will therefore
consist in a change of A and B of the order of 1/137, which is
quite negligible.
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The Inelastic Scattering of High Energy Neutrons by Deuterons
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The high energy n —d inelastic scattering problem is formulated in such a way that the amplitudes for
n —n and n —p scattering at the same energy appear explicitly. The formulation depends on: (1) the large
radius of the deuteron compared with the range of nuclear forces and high energy scattering amplitudes;
(2) the high velocity of the incident neutron compared to the zero point motion of the deuteron. The method
does not depend on the weakness of nuclear forces compared to the kinetic energy of the neutron and is
therefore not equivalent to the Born approximation.

I. INTRODUCTION
"

N a previous paper' the author discussed the elastic
scattering of 90- to 350-Mev neutrons by deuterons

and pointed out that because elastic scattering may well
represent a considerable fraction of the total n—d cross
section, it is dangerous to assume that the latter is
equal to the sum of the free n nand —e—p cross sec-
tions. This is because binding and interference effects
play a large role in elastic scattering. They do not play
so important a part in the inelastic scattering, however,
and it is possible that experiments which concentrate
on the latter rather than on the total n—d cross section
may yet reveal the magnitude of the n—n interaction
at high energies. Because of the similar properties of
mirror nuclei it appears certain that e-e and p—p
forces are equal for low relative energies. So many
surprises have appeared in high energy scattering ex-
periments, however, that it is desirable, if possible, to
measure the high energy n—n interaction independently.

It is the purpose of this 6rst of two papers to for-
mulate the n—d inelastic scattering problem in such a
manner that from its measurement one can attempt to
deduce the value of the free neutron-neutron cross

' C. F. Chew, Phys. Rev. 74, 809 (1948).
~Hadley, Kelly, Leith, Segrh, %'iegand, and York, Phys. Rev.

75, 351 (1949); O. Chamberlain and C. Wiegand, Phys. Rev. 79,
81 {1950).

section. The actual attempted deduction from Berkeley
experiments will be carried out in the second paper. A
secondary feature of this 6rst part is the demonstration
of a phenomenological approach to high energy nuclear
reactions in light nuclei, using as a basis the experi-
mentally measured values of nucleon-nucleon cross
sections. It is hoped that this general method may
eventually be extended to nuclei more complex than
the deuteron.

The fundamental assumptions will be twofold: (1)
the "collision" time in high energy n—d scattering is so
short compared to the period of the deuteron that the
change in the wave function of the latter during the
collision can be described by an "impulse" approxima-
tion; (2) the deuteron has such a diB'use structure com-

pared to the range of nuclear forces that the wave
function of the incident neutron at one of the two scat-
tering centers within the deuteron is not appreciably
perturbed by the presence of the other center. Outgoing
waves from both centers are present and must be added
together, but individually they wiB be assumed to be
the same as would be produced by a single neutron or
proton. In this way the three-body problem is reduced
to a superposition of the two-body problems.

It should be noted that these assumptions are not
completely equivalent to the Born approximation,


