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Calculations are carried out along the lines of the work of Fermi and Yang in which the ~-meson is con-
sidered as a composite particle formed from a proton and an anti-neutron. On the assumption of a vector
interaction it is found that the 'S0 state must be excluded because its energy goes to zero as the interaction
goes to zero, while the 'P0 state appears to give an acceptable solution. On the assumption of a tensor inter-
action it is found that 'S0 and 'P0 solutions both exist, but for opposite signs of the interaction. The tensor
interaction must therefore be excluded since it would lead to the formation of a composite particle by a
proton and a neutron. Using the vector interaction one finds that the ground state is a ~P1, but that there
are other states with j=0, 1 and 2 lying near it, the proximity depending on the interaction range assumed.

I. INTRODUCTION

S OME time ago the suggestion was made that par-
ticles of spin 0 and 1 are composite, consisting of

two particles each of spin ~, closely bound to each
other. ' The method of calculation used was essentially
equivalent to that of Kemmer in his attempt at a rela-
tivistic treatment of the deuteron. ' Recently this idea
was applied by Fermi and Yang' to the case of a
x-meson, regarded as a composite particle formed by a
nucleon and an anti-nucleon. The present paper is
devoted to a further consideration of this problem.

II. GENERAL TREATMENT

For two particles, individually satisfying the Dirac
equation and interacting with each other directly,
without any intermediary field, the wave equation can
be written in the usual. notation

I
—zhc43 I ' V I+232 lc Pl —1 hen 8
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+2338C'P8+III8 I 4 = W4 (1)
In order to have relativistic invariance, the inter-
action term IIf2 must be of the form

III$ ———8(xI—xz)Q; b;4d;, (2)
where the b; are constants and

44'I PIP2 (scalar interaction),
(uz=-', (1—48I nz) (vector),
~8 8PIP2(zrl'432+ n1' 43$) (tensor), (3)
~4= —8,(43I 438—&1&8) (pseudovector),
40$ PIPzrlr2 (pseudoscalar).

Here 43 is the spin vector (o,= in, n„, e—tc.) and
aiba.'yaz

The wave function P in (1) will have 16 components,
which can be written f;, (i, j=1, 2, 3, 4), the subscripts
representing spinor indices associated with the two par-
ticles. However, in place of these spinor components,

* Part of this work was done while one of the authors (H.M.M.)
held an AEC Predoctoral Fellowship.'¹Rosen, Phys. Rev. 74, 128(A) (1948). H. M. Moseley,
Phys. Rev. ?6, 197(A) (1949). However it should be pointed out
that a similar idea, although involving a different point of view,
was proposed earlier by L. de Broglie, "Une Nouvelle Thborie de
la Lumihre" (Hermann, Paris, 1940) and "Thborie &nhrale des
Particules k Spin" (Gauthier-Villars, Paris, 1943).

~ N. Kemmer, Helv. Phys. Acta 10, 48 (1937).' E. Fermi and C. N. Yang, Phys. Rev, 76, 1739 (1949).

one can introduce linear combinations of them which
will transform like components of tensors of various
ranks. Thus, if one takes the Dirac matrices in the
usual form, 4 one can write

8 ($1$ $21+4'34 4 43) t
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A$=(z/2)( —P» —$8+/»+P ),
A3= 3(44+48—48$ —441))
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831 G2 (2/2) ( PI I f22 0'33 0'44) 1

Illz G3 3 (412+4'21+4'34+ 4'48)1
( )

3 (4'14 4 2$+ f32 441)1
—1 4

UI 8 ( tt'll+ 0'22+ 4'33 0'44) 1

U$ (2/2)( 0'll 0'$2+0'33+0'44)
U8 $(4'12+481 4$4 4'43)y

U4 8 ( O'14+ 4'28+ 4'32 441)1
2841=Fl = 3 ( 4'13+$24 $31+4'42) y

zfl42 P2 (2/2) ( 413 0'$4 ti'31 0'42)
&

2848= F3= 8 (lP14+ $23+f32+$41)q

where 1 is a scalar, A„a four-vector, B„„anantisym-
metric tensor (expressed in terms of two three-vectors
F and 6), U„a pseudovector, and I a pseudoscalar.

Equation (1) can be rewritten as a set of equations
for the above tensor components. It is convenient to
introduce, in place of the coordinates xf and x2, new
variables x=xl —xz and X=8(xl+x$). However, it is
easily seen that the total linear momentum of the
system, i.e., the momentum conjugate to X, will be a
constant of the motion and by a Lorentz transformation
can be made to vanish. In that case, derivatives with
respect to components of X drop out of the equations
and the resulting relations can be written as follows:

(w+pQ)I+2ihcv F+2MC8A4 0, ——
(w —sQ)A+2hcvx U—224czF=O,

(W+sQ)A 4+2Mc'I =0,
(W vQ) 6+2—ihcVI 2Mc'U=—0,

(W+v Q)F+2ihcVI 224C3A= 0, —(~)

(W+NQ) U4+22IC8J=0,
(w I4Q)U+2hcvx —A 2Mc'6=0, —
(W+qQ)I+2ihcV 6+214czU4=0

' W. Pauli, Handbuch der Physik 24 (2nd ed.) Part 1, p. 219,
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noting the components of any one of the three-vectors
A, U, F, 6 by H~, II2, III one takes instead

x,= 2-&(-H, i-H,), 3c2= Ha,
X3——2 &(Hi+iH2).

0
-Mc* 2Mc~

b

I"xo. 1. The {S',b} plane, separated into regions according
to the sign of T .

where the operator V refers to the relative coordinates x,
M=-', (mi+m2), p=-', (mi —m2), Q=b(x) and

p =bi +2b2 3bs —2b4+—bv,

q= bi+ 2b,—+3ba 2b4 bs—)—
s=by —b2 —b4 —bg,
u= —bg —b2 —b4 +bs,
v= —bI —b3 —b5.

(6)

Now Kemmer found in his deuteron calculation
(taking mi ——m2) that if the interaction involves 8(x),
as is required for relativistic invariance, then there are
no bound states of 6nite energy. Fermi and Yang, con-
sidering the problem from the standpoint of quantized
6elds, pointed out that the states of the system involving
two particles are mixed with states in which additional
particle pairs are formed. On the basis of this fact they
were led to take for the effective interaction between a
nucleon and an anti-nucleon a range of the order of
b/Mc, where M' is the mass of a nucleon. On the other
hand, if one accepts the idea of the existence of a
universal length of the order of the classical electron
radius as a limit to the accuracy of measurement of
position, ' one is led to a range of this order of magnitude
(since it is large compared to )t/M'c). Hence in place of
b(x) we shall take hereafter

r&0',

0, r&o,

With a suitable change of notation one then gets
Kemmer's equations and one can use his method of
solution. '

At this point is is desirable to make a more specihc
assumption concerning the nature of the interaction
between the particles. Fermi and Yang pointed out that
of the five types of interactions in (3), the vector and
tensor interactions change sign if the anti-nucleon is
replaced by a nucleon, whereas the other interaction
terms remain unchanged. Hence, on the assumption
that a proton and an anti-neutron form a composite
particle, while a proton and neutron do not, they re-
stricted the interaction to the vector and tensor types.
%'hile a linear combination of the two is possible, it is
natural to take only one of them for simplicity. Fermi
and Yang chose the vector interaction. However, the
tensor interaction has a priori an equal claim. In the
present paper both types of interactions will be con-
sidered.

Following Fermi and Yang, we shall restrict our-
selves to the case p, =0. These authors also restricted
their discussion to the case of zero total angular
momentum (j=0). To permit a ready comparison with
their work, the next section deals with the case j=0,
while the case of a general integral value of j is dis-
cussed in the following sectio~.

IV. CASE j=O

There are two types of solutions for states with j=0.
One will be labelled 'So ~ In the relativistic case it is a
mixture of 'So and 'Po, but goes over into 'So in the
non-relativistic approximation. The other will be
labelled 'Po. It is also a mixture of 'Po and 'So in the
general case, but goes over in 'Po in the non-relativistic
approximation. These two types of solutions differ in

their behaviors under a reQection of coordinates. '
For the 'So solutions the non-vanishing components

are taken in the form:

where r is the inter-particle distance and 0 a constant,
the range of the interaction. This "square-mell" poten-
tial is taken for simplicity; it is clear that its use can
lead only to very approximate results.

III. THE MESON

I=f,(r), A4 f2(r), F=f3(r)—r—/r

One obtains for r&0

f& Br ' exp( —kr), ——f2= 2''fi/W, —
fq (—2i bc/W) df,/dr——, (10)

As already mentioned, Fermi and Yang' assumed
that the ~-meson was composed of a nucleon and an
anti-nucleon of equal rest-mass M. In this case then
y=0 and Eqs. (5) can be transformed by a change of
variables into the equations given by Kemmer. ' De-

~ L. de Broglie, Comptes Rendus 200, 361 {1935};A. March,
Naturvriss. 26, 649 (1938};¹ Rosen, Phys. Rev. 72, 298 (1947}.

and for r&o.

fi=Ar 'sinTr, f2 2''f&/(W+——s—),
(&&)

fi 2i&(df,/dr)/—=(W+ v),

6 The more general equations for p/0 and their solutions are
discussed by H. M. Moseley, dissertation, University of North
Carolina (in preparation).
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where

k' = (4M'c4 W—')/4h'c',
T'= (W+ v) t (W+ p) (W+s) —4M'c4)/4h'c'(W+s), (12)

and A, 8 are constants.
The boundary conditions at r=o determine the

energy through the equation

Ta ctn(Ta) = 1—(1+ka)( W+ a)/ W. (13)

For the 'Po case, the non-vanishing components are

J=f4(r), G= fp(r)r/r, U= fp(r)r/r. (14)

One finds that, for r&r

f4 Br ' e——xp( —kr),
fp 2ih——cW—(df4/dr)/(W' 4MPc4—), (15)
f4= 2Mc'f 4/W,

while for r&o

f4 Ar ' s——inEr,
f4 = 2ihc(W—u) (df4/—dr)/

L(W—u) (W —a) —4M'c'), (16)
f4 2Mc'f 4——/(W u) . —

Here

E'= (W+q) $(W—u) (W—a) —4M'c4)/
4h'c'(W —u), (17)

and the energy is determined by the boundary condi-
tions through the equation

Ea ctn(Ea) =1+(1+ka)WDW u)(W p—) 4MPc—4)/—
(4M'c4 —W') (W—u). (18)

From the preceding relations one can determine the
energy for each of the two types of interactions.

(a) Vector Irsteractiors For the. 'Sp state, if we write b

in place of the interaction constant b2, then the relations
(12) and (13) on the basis of (6) can be written

(Ta)'= Wa'[(W+2b)(W b) 4MPc4)/— —
4h'c'(W —b), (19)

Ta ctn(Ta) = —ka. (20)

Let us now consider (Ta)' as a function of W and b,
according to Eq. (19). Note that for W=b, (Ta)'= ~,
and for (W+2b)(W b) =4M'c4, (T—a)'=0. The curves
represented by these two equations divide up the (W, b)
plot into three regions, as shown in Fig. 1. In the region
marked (1) in this figure, (Ta)'(0 so that Eq. (20) has
no solution in this region, since xctnhx&1. In the
regions marked (2) and (3), (Ta)'&0, so that solutions
are possible. But if b is taken to lie in region (2), then
W&4v2Mc'/3, so that the energy is too large for the
system to represent a x-meson. Hence only the region
(3) remains.

Figure 2 shows a plot of the ground-state solution
W4(b) and the solution for the 6rst excited state Wp(b)
for values in the region (3) and with the range a =h/Mc.
The lower curve passes through the point corresponding

Mci-

I

20 Mc*
I

40 Mcg

Pro. 2. The energies of the two lowest states of the 'So type as
functions of the interaction parameter b.

to the solution given by Fermi and Yang, i.e.,

W =Mc'/6. 46 b =53.0Mc'.

However, if we accept the criterion that only those
solutions have physical significance for which the
energy goes to 2M'' as the interaction is cut out adia-
batically (in this case, as b +0—), we see that no accept-
able solution exists in this case. This conclusion is inde-
pendent of what value one takes for the range a, as can
be seen from the shape of the region (3) in Fig. 1.

Let us now consider the 'Po state. The relations which
determine the energy are

(Ea)'= (W+2b) [W(W+b) 4M'—c4)a'/
4h'c'(W+ b), (21)

Ea ctn(Ea) =1+WOW(W+b) 4M—'c4)(1+ka)/
(W+b)(4M'c4 W'—) (2.2)

By proceeding as above one Ands that all solutions for
which b &0 are of the type for which W~O as b—+0. On
the other hand for b&0 acceptable solutions exist.
Assuming that the ground state represents a x-meson,
so that W=Mc'/6. 46 one obtains

for a=h/Mc, b=286 Mc' (A)

for a=2.8.10 "cm=ap, b=2.71 Mc'. (8)

(b) Ter4sor Interaction For the . 'Sp state, the condi-
tions determining the energy are

(Ta) = (W b)[W(W— 3b ) 4—M'c4)a—'/
4h'c'W, (23)

Ta ctn(Ta) = 1—(W bp) (1+—ka)/W (24)

It is found that acceptable solutions exist only for
b3&0. For example, to get a ground-state energy cor-
responding to the mass of a vr-meson one Ands

for a.= h/Mc, bp —9.86Mc', ——
for cr= ao, b3= —8.57Mc~.

Finally, for the 'I'0 state the equations determining
the energy are

(Ea)'= (W+3bp) [W(W+bp) 4MPc4)a'/—
4h'c'W, (25)

2Mc'
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YhaLE X. Enery'es of lowest states of various types.

State

3P1
3D
3P0
'~1+'D1
'P2+'~S

0.1548
0.166
1.350
0.165
0.180

8'/Mt. ~

tr =2.8X10 13 cm

0.1548
0.15487
0.162
0.15486
0,15494

for lr= k/Mc, bs 26.TM——c',
for 0 =Gp) b3= 25.7MC .

(E)
(F)

The preceding results indicate that it is necessary to
discard the tensor interaction. Since it has been found
that bound states exist for both signs of b3 it follows

that if a proton and an anti-neutron form a composite
particle, then a proton and a neutron will do likewise,
in general. For example, if one accepts the solution (C)
above for the 'Sp state as describing a ~-meson, then
with a change in the sign of ba (corresponding to a
change from an anti-neutron to a neutron) one can
obtain a solution for the 'Pp state, This is found to have
an energy of 0,509Mc'. Similarly, if one accepts the
solution (E) for the 'po state, then changing the sign of

b3 leads to a solution for the 'Sp state corresponding to
a smaller mass than that of the ~-meson. To avoid such
neutron-proton systems one must discard the tensor

type of interaction.
We see then that Fermi and. Yang were justified in

adopting the vector rather than the tensor interaction.
However, it appears that one should take the 'Pp solu-

tion rather than the '5p, as long as one restricts himself
to states with j=0.

The question arises as to whether, for a given value
of the interaction parameter, there may not be states
with j diBerent from zero lying below the ones con-
sidered previously. This is investigated in the next
section.

V. CASE OF HIGHER j
For an arbitrary integral value of j, there are in

general three distinct types of solutions of Eqs. (5). We
shall denote them here by A, 8, C corresponding to
Kemmer's' type IIb, Ib, Ia, respectively. To charac-
terize these solutions we shall make use of Kemmer's'
"vectors" Xt, Q;", Bt", which he defined in terms of
normalized spherical harmonic functions P,

(a) Solutions of type A. The solutions of type A have
for the non-vanishing components

t3P,m g —&g . m+ g3, m (2y)

where u, P, y, 6 are functions of r. With respect to a
reflection of coordinates through the origin the solution

Ea ctn(lpga) =1+IW(W+bs) 4M—'c'](1+ko)/
(4M'c4 —W') (26)

In this case acceptable solutions exist only for be&0,
and to get the ~-meson energy one finds

has a parity of (—1)'. The 'So solution found above is a
special ease of this type. It is found that, as in the 'Sp

case, the energy in general tends to zero rather than
2Mc' as b~0. Hence this type of solution will be dis-
carded.

(b) Solutions of type B. The solutions of this type
have for the non-vanishing components

A=,X,-+„$,„-, G=XQ,-, U=fg), ", (28)

where e, g, ), and g are functions of r. Substituting into

(5) enables one to express e, lt and X in terms of f which
satisfies the equations

d'f' 2 dg j(j+1)
+——+ k'—

r dr
(=0, r&o,

r2

j(j+1)-
+——+ &'— /=0, r&o',

dr' r dr r2

(29)

where ¹=(W+b))W(W+b) 4M'c']—/4k'c'W (30).

One can show that at r =o, where the interaction has a
discontinuity, f and (W+bQ) '(dg/dr+&/r) must be
continuous. The solutions of this type have a parity

(—)' with respect to a refiection through the origin.
No solution of type 8 exists for j=0. For j= 1, one

gets solutions which will be denoted by 'P&, but which
in the relativistic case include also some '5& and 'D~.
For these solutions one takes

1 =Ar '(1Vr cos1Vr—sinlVr), r(o,
f= J3r '(1+kr) exp( —kr), r) o. .(31)

The boundary conditions at r = o. give the relation which
determines the energy,

1Vlr ctn(1V0) = 1+(1Vo)'(1+ko)/
[k'0 + (b/W) (1+ko+ k'lr') ] (32)

A calculation shows that for the values of b deter-
mined in the previous section the lowest P'~ level lies
below the 'Pp level. Hence it is necessary to modify the
interaction constant b so as to make the energy of the
lowest 'P~ state correspond to the mass of the ~-meson
(0.1548Mc'). One finds that

for 0 = k/Mc, b= 28 3Mc'.
for o.= ap, b=25.7Mc'.

It follows then that the energy of the 'Pp state in the
first case is 1.350Mc' and in the second case 0.162Mc'.
There will also be a number of excited 'Pj states, the
first one in the first case (0 =&/Mc) having an energy
of 0.196Mc'.

In the ease of j=2, one gets solutions labelled 'D2.
For the values of b chosen above one gets as the energy
of the lowest state of this type for

o = k/Mc, W= 0.166Mc',
o.= ap, W= 0.1549 Mc'.
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(c) Solutions of type C. The solutions of this type have
as non-vanishing components

J=a1, , A= f L, (33)G= y».-i-+&8;+i, U = ~» i"+n8r+i",

where n, f, y, 5, e, and g are functions of r. This type
of solution has a parity (—1)&+' under a reflection

through the origin.
In the case j=0 the equations are fairly simple and

one obtains the 'Po solution discussed in the preceding
section. For larger values of j the equations, and also
the boundary conditions giving the energy, are some-

what complicated and will therefore not be given here. '
For j=1 the solution is a mixture of 'Si and 'Di

(with small amounts of 'I'q and 'Pq, the proportions of
these increasing as one goes to higher excited states).

These will be found, in different notation, in reference 2.
However, in Kq. (21b) of that paper there appears to be an error
of sign in the third term of each of the two factors on the left-hand
side.

The lowest state of this type has an energy

for 0 = h/Mc, W= 0.165Mc',
for 0 = ao, 8'= 0.15486Mc

where the value has been written with excessive pre-
cision to show its relation to the energy of the ground
state. For j=2 the solution is largely a mixture of 'P&

and 'F2. The lowest state of this type has energy values
0.180Mc' and 0.15494Mc' for the above ranges, respec-
tively. The preceding results are summarized in Table I.

In conclusion it should be emphasized that the nu-
merical values for the energy levels are not signihcant
because of the approximation introduced by the use of
the square-well interaction. However, it is interesting
that there are a number of different states lying close
to the ground state with angular momenta 0, 1, and 2.
These would be interpreted as partides with nearly
equal masses and spins 0, 1, and 2. Further measure-
ments and analysis of data on m-mesons should show
whether variations in mass and spin actually occur.
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The Emission of Long-Range Charged Particles in the Slow Neutron
Fission of Heavy Nuclei

K. W. ALLEN AND J. T. DEwAN
Atomic Energy Project, Eationa/ Research Council of Canada, Chalk Eker, Ontario, Canada
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Light charged particles with ranges greater than 6 cm of air
produced in the slow neutron fission of U ', U~, and Pu~e have
been studied in detail by coincidence counting methods. In each
case particles with a continuous range distribution extending to
about 50 cm of air were observed, the distribution showing a
broad maximum in the neighborhood of 20 cm. Direct measure-
ment of the energies of the light particles from U'~ showed a fairly
symmetrical distribution about 15 Mev with a maximum energy
of about 26 Mev. Comparison of the energy and range distribu-
tions shows that all the long-range particles are n-particles. The
frequency of emission of these a-particles was found to be

1 in 405~30 fissions for U'~,

1 in 505~50 fissions for U~, 1 in 445+35 fissions for Pu~'.

No protons were observed, although the apparatus wouM have
detected any with ranges lying between 10 and 100 cm of air. The
energy distribution of fission fragments coincident with long-range
a-particles was also measured. The usual two peaks were ob-
served indicating asymmetric division of mass, but each peak was
shifted to a lower energy than is observed in binary fission. Quan-
titative comparison of the energies involved showed that, on the
average, the total kinetic energy carried away in fission accom-
panied by a-emission is about equal to that liberated in binary
fission. Possible explanations for o.-emission in fission are dis-
cussed.

L INTRODUCTION

'HE occasional emission of light charged particles
in the 6ssion of uranium by slow neutrons seems

to have been noticed first by Alvarez. ' Subsequent inves-
tigations in several laboratories using coincidence
counting techniques and uranium-loaded photographic
emulsions have conhrmed and extended the original
observations. Farwell, Segrb, and VViegand, ' using a
coincidence arrangement, reported that light particles
with ranges up to 23 cm of air are produced in about

L. W. Alvarez, mentioned in reference 2. Earliest publications
in the open literature are by Green and Livesey, Proc. Int. Conf. ,
Cambridge, July, 1946, and Tsien, Chastel, Ho, and Vigneron,
Comptes Rendus 223, 986 (1946).

~ Farwell, Segrh, and Wiegand, Phys. Rev. 71, 327 (1947).

0.4 percent of fission events in U23' and in 0.2 percent
of 6ssions in Pu" by slow neutrons. By comparison of
the ionization of the light particles with that of n-par-
ticles from polonium it was shown that they were
probably a-particles, a conclusion in accord with the
majority of measurements of grain density in photo-
graphic emulsions. '—' On the other hand, the work of
Tsien and his associates' suggests that not all the light

' P. Demers, Phys. Rev. 70, 974 (1946).
4 Wollan, Moak, and Sawyer, Phys. Rev. 72, 447 (1947}.' L. L. Green and D. L. Livesey, Phil. Trans. A 241, 323 (1948).

L. Marshall, Phys. Rev. 75, 1339 (1949).
~ E.W. Titterton (unpublished). We are grateful to Dr. Titterton

for communicating to us some of his results prior to publication.
Tsien, Ho, Chastel, and Vigneron, J. de phys. et rad. 8, 165,

200 (1947).


