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The Production of High Energy Deuterons by Energetic Nucleons Bombarding Nuclei
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Laboratory of Sgclear Studies, CorndL University, Ithaca, Ee2tt Fork

{Received June 9, 1950)

A calculation is given of the cross section for production of fast deuterons (~50 Mev) by fast nucleons
{~100Mev) bombarding heavy nuclei. A corrected Fermi model is used. The dependence on energy is

given and also the momentum vvave function of a nucleon in a heavy nucleus.

I. INTRODUCTION

HE production of fast deuterons in nuclear events
& ~ involving energies of the order of 100 Mev has

been shown to take place in cosmic-ray stars' and in the
Berkeley cyclotron experiments. ' 4 The most advanced
study has been made by York in bombarding C, Cu
and Pb targets with 90-Mev neutrons.

A semi-empirical calculation of the process has been
made by Chew and Goldberger' in which the wave
function of the nucleon which will be picked up is taken
from the experiments themselves; another treatment
using the Wheeler alpha-particle model has been given
elsewhere' for the case of light nuclei.

In this paper we give a treatment for heavy nuclei
which is a continuation of the Chew and Goldberger
work, in the sense that no data essential for the calcu-
lation are taken from the deuteron production experi-
ments. That will enable us to draw some conclusions
concerning the energy dependence of the process.

II. FORMULATION OF THE PROBLEM

As we are dealing with energies of the order of 100
Mev we shall use the Born approximation. Let the in-

dices 0 and 1 refer to the incident neutron and the pro-
ton of the nucleus which will be picked up to produce the
deuteron. Let r; be the position vector of the ith nucleon
in the center of mass system of the nucleus, which we
shall assume to be heavy enough to be used as a con-
venient reference system; let k and K be the propaga-
tion vectors of the incident neutron and of the pro-
duced deuteron in that system. Then the amplitude
for the production of a deuteron of momentum AK is:

A = —(1/4or) I' exp[iK (ro+r&)/2]PD(0, 1)gf(2, A)

A

XPVo xo exp(ik ro)f, (1, A), (1)
n~l

where xo is the spin wave function of 0, fg& the total
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wave function of the deuteron, f, and f~ those of the
initial and 6nal nuclei, Vo„ the potential between
nucleons 0 and m. As we use as a perturbation the
interaction before the rearrangement collision we must
antisymmetrize the final wave function, which is
accomplished by the operator P. It is seen that the
contribution of the terms n/1 will be negligible if E/2
is large compared to the internal momenta of the
nucleons of the nucleus, which is roughly the case at
90 Mev.

For the term m=1 the antisymmetrization gives a
small correction, as k is large compared to the internal
momenta. Finally, as the final wave function is sym-
metric with respect to nucleons 0 and 1 in both spin
and space coordinates, the P, and P, exchange oper-
ators which occur in V are equivalent to unity. The
amplitude is then simply:

A = —(1/4s) exp[iK (ro+r, )/2+D(0, 1)fq(2, A)

X Voto exp(ik ro)f;(1, . A) . (2)

Integrating over ro —r~ 6rst we can separate the
terms depending on the state of the nucleus from those
depending on the nucleonic forces:

A = —(1/4n. ) Q exp[i(k —K/2) (ro —r~) $
spina!

Xga*(0, 1)VoixoX~I exp[i(k —K) r&Qf*f; (3).
The first factor is the Fourier component of fgjVQ),
corresponding to the momentum change of the neutron.
The second factor is the component of f~*f; corre-
sponding to the total momentum change of the free
particles (i.e., 6nal deuteron momentum minus initial
neutron momentum); if the P's were products, this
would be exactly the momentum wave function of the
proton, as was stated by Chew and Goldberger.

III. USE OF FERMI MODEL

If we make use of the statistical Fermi model, then
restricting ourselves to the case of heavy nuclei, an
opposing case to our previous treatment, 6 we can write
the initial wave function of the nucleus as:

f,(1, A)=o &x~exp(ip r~)p, (2, A)
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where yq is the spin function of 1, y its propagation
vector, e the volume of the nucleus.

Integration over nucleons 2 .A will give unity if
these nucleons remain in the original states and inte-
gration over proton 1 will also give unity if K—k p.
Since in a Fermi distribution p has a definite upper
limit I, the differential cross section will be diBerent
from zero only for

~

K—k~ (I.. In reaBty, of course,
momentum changes greater than I. will occur; in fact,
if the initial energy of the neutron is high, these are
the only ones that cars occur for energetic reasons. In
this case, then, it is necessary to go beyond the Fermi
model.

IV. CORRECTION TO FERMI MODEL

The correction we shall make consists in the intro-
duction of an interaction between proton 1 and another
nucleon 2 of the nucleus. We shall then write f; as:

f;(I, . A) =n—Ix,2 exp(2iP r)f„(F)P;(3, A),

The spatial part of fn will then be an even state of
small energy (hp)2/M, which we shaB assume to be an
S state. The wave function can be written approxi-
mately, following Hulthen, as

pf„=Bn[sin(pp+8)/sinb e»—]/(n2+ p') I (5a)

where n ' is the scattering length, p ' the range of the
Yukawa potential and b the phase shift given by

cotb —a/p.

B is a normalization factor; as p,
' is small compared

with the radius of the nucleus, B will be determined by
the condition that, for p of the order of the radius of
the nucleus R and b A, f„—is the S-part of a plane
wave. We have then:

f„-+Businp pip p

from the normalized plane wave:

with
r = (f2+ ro)/2, F= f2 r2. — hence:

n exp(ip y)~n j o(pp)

Bo.=e—
&.

In the same way we shall write the 6nal wave function
as:

lpf(2, A) = n Ixo exp(i12' r2)pf(3, A).

The antisymmetrization of that 6nal wave function
will give but a small correction (exchange term).

Integration over r gives k —(K—2P) p' and a factor
e, and integration over nucleons 3 . .A gives unity.
Then (3) reduces to:

4n-Ba
6'= simp

v(&+p')'" o

sin(p p+ b)

sin8
pp g Ppdp

For p R we must have pn=0. This will be achieved
essentially by putting in (4) a convergence factor
exp( —Pp) with P 6I/R. Integrating over the angular
variables in (4) we get:

A= —(1/42r) jr expLi(k —K/2) (ro —r&)j
Xfn*(space) Vo& XSXG

with

hence:

4+Bn p'+g' ~p p'—
+

(~2+p2)$ q2+( +P)2 (82+q2+P2)2 4q2P2

G= )t exp(iq y)P (y)dog, q= k—K+P. (4) of which a good approximation is, for
~ q —p~&&P and

p»P:
The spin factor is S=(To2xo, xox&2) where To& is a
triplet state of the 6nal deuteron.

V. CHOICE OF Q„
The interaction we introduce between nucleons j. and

2 will be pictured by the choice we shall make for fn.
The form of fn will depend upon the nature and state
of nucleon 2. If that nucleon is a proton and if we
assume a Serber interaction, nucleons 1 and 2 must be
in a singlet state, which will occur w2=Z/4 times; if
nucleon 2 is a neutron we shall have an even triplet
state with w2=3(A —Z)/8 or an even singlet state with
wo=(A —Z)/8. These three possible states will be
denoted later by the index i, which, however, will be
omitted in unambiguous cases.

S can be calculated; if we are interested in the
formation of a deuteron of any spin by an incident
neutron of unde6ned spin it is found that in the three
cases outlined above S' is equal to 3/4.

this term is:

42rAnV (F(l)=
~

tan ' l
tan ' — i, 1=k—K/2.

~2+P&

VI. CROSS SECTION

The differential cross section for the production of a
deuteron of momentum hK while nucleons 1 and 2 are

~ H. A. Bethe, Phys. Rev. 76, 38 (1949).

The first term of (3) is simply the Fourier transform
of fDVoy. Assuming a Yukawa potential and an
approximate (Hulthen) wave function:

4n(p)=An(e "' e")lp, Voi(p)—= Ve "'/pp
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in the initial state described by P and p is:

o'p~= (K/2k) (2'', es/4~k')' P F' Q, ZuiGP

where the index i refers to the three cases outlined in
the preceding paragraph.

In order to get the cross section without any regard
to the initial state of nucleons 1 and 2, we have to
integrate C,' with respect to P and y with a weighting
factor given by the probability of getting given values
of P and y and taking into account the limitations
given by the energy conservation relation.

K(8 ~ 0)

5 -IO cm

VII. ENERGY CONSERVATION RELATION

Let y~ and y2 be the propagation vectors of nucleons
1 and 2 in the initial state when the distance between
them is large compared to p, ', we have the relations:

t
L
2

I

o p

P=(P,+P2)/2, Ii=(P,—1i)/2.

Assuming that the energy of a bound nucleons is given

by its potential energy (assumed to be —29 Mev), plus
the kinetic energy of a free particle of the given momen-

tum, the energy conservation relation is:

K' (29—2)Mev—&'—pi' —p2'+ —+
2 20.7&(10 "

y(1 —K+P,+I,)2=0.

FIG. 1. Energy conservation relation.

The relation between P and y for a given K due to
the energy conservation relation is very intricate,
except in the asymptotic case k—+~. But as 6' is not a
too-rapidly varying function of K we can write (note
the normalization of P):

~ G'(Pd'Pdp
[ fixed

(
~ 6'd'Pdp

)
Axed

t'~ l (r
)

~ G'(pd'Pdp
~

all space.
f f'

)
Here 2 Mev is the binding energy of the deuteron, and
20.7&10 "converts Mev into cm '. From this relation
it is deduced that K lies on a sphere of center C and
radius E. given by: From this equation we shall calculate the energy and

angular distribution of the deuterons. The first term
of the right-hand side is simply the distribution of K
obtained from purely geometrical considerations. It
can be estimated graphically (Fig. 1). For example,
when the angle 8 between k and K is zero and the angle
between k and P is 45', the modulus E of K must lie
inside the contour labelled 45 in Fig. i. From it, one
can read the maximum and minimum value of E as a
function of P, with p varying between 0 and (L'—P')'*.
Figure 1 also gives curves for an angle between k and
P equal to 0 and 90'.

From the inspection of Fig. 1 and from the fact that
the dependence of G on E will give greater probability
to small values of E, we shall suppose that for any
angle 8 the energy distribution of the emerging deu-
terons (i.e., the distribution of K ) is uniform between
40 and 80 Mev with zero probability outside that range.
If an accurate calculation on the basis of Fig. 1 gives
diGerent results, it will only be necessary to correct the
6nal result but not the calculation in the next section.

C =2(k+ 2P)/3
R'=4L(k —P)'+3p'j/9 —2X27 Mev/3X20. 7X10 "

with the restriction:

K'/2&k'+(2 —8) Mev/20. 7X10 "
which means that the residual nucleus cannot have
less energy than its ground state.

VIII. DISTRIBUTION OF P AND y

Ke shall calculate this distribution from the distri-
butions of p& and p2, which we shall assume to be
Fermi distributions; as G depends on p only through
its modulus, we can integrate immediately over the
angular parameters of p and get:

(P(P, P)d'PdP =P'dPdOr dP X 72P'JC//4m L'
with

3C= p if p&L E, —
K= (L'—P' —p')/2P if L—P&p & (L'—P') &

where L, is the maximum of the Fermi distribution.
(P is normalized such that

~t(Pd'Pdp= 1.

IX CALCULATION OF X Zw; J't ';(Pd'PdP

This is a function of Q= K—lr which we set equal to
A'(Q). We shall distinguish the three following cases:

(a). Q small. As stated above we can neglect the
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correction to the Fermi model. 6 is then:

G= )t exp[i(k —K) r,7v
—i exp(iy r, )d'r,

nucleus

hence:

and:
ItI(Q) = s

y-K —k,

Then:

which means that the initial propagation vector of the
proton must be K—k. P is still equal to 3/4.

(b). Q large We. can write q Q, and G' is equal to:
G2 —(4~II~)2(P2+ p2)2/(~2+ p2)Q8

Integrating first over P we get:

~ (}—L) )P. The calculation is simpler if we calculate
first the distribution of the modulus of Q; from it we
shall get ItI by dividing the result by 4s Q', we can do
that as G' is proportional to the probability for the
propagation vector of p/2 to be q. We have then:

Zw; t"
p t

—2vrq'Q
X(Q)=g I

i
„GP(pdqdpd'P,

' 4xQ'&q=o p» Pq
i.e.,

X(Q) = —+18(4sBn)'I;Zw;/L'Q

with, omitting again the index i:
Ppac -

1 1 2 X2—p~-
J= + + ln

o2+ p2 X2+~2 X2 p2 ~2+P2 X2+ ~2

1 2 PXXx
ilnfX —

PJ dpdP
2X(X—p) X'+p' +XI

with:

X(Q) =+12(4 sBn)'I, Zw, /L' Q' pPXXg 1 2
+ + Infx —

pf dpdP,
~ n'+X' 2X(X—p) X'+t '

P'( '+P') '( P)'( +—P)(p'+I')' P
0

hence:
Ot n'+ I'

I= (p' —u')' —(3L'+u') ln
2 0!

I.—2'.' tan '—
N

3 n'L' I.' I.'
+ I.' +—+—(2—p' —n')—

4 2 40 12

where X=Q Pand K—x means that in K we write
p=X. In I the integration over q and the angular
parameters of P has been performed. The second
integral of J cancels the second term of the first integral;
we introduced it in order to make the first integral
calculable graphically by eliminating the poles occurring
for p=X.

The integration over p in the second integral of I
gives:

—Px
where the index i is omitted.

(c). Q intermediate We shal. l restrict ourselves to the "o 2(a'+X')
case in which G can be written in the form (5); i.e. ,

ln

2P'X3Cx

X—(L' —P') i

IO

.OI

+ (L—P)[ln~L —P~ —1j dP
(n'+ X')(a'+X')

where the subsequent integration over P will be
performed graphically.

In case (c) we have carried out the calculation only
for one value of Q, zs. , 1.3X10"cm '; the value thus
found can be joined to the results of cases (a) and (b),
for instance by a Fermi distribution at suitably chosen
temperature.

I; and J;depend upon the triplet or singlet character
of the initial state of nucleons 1 and 2 only through the
scattering lengths a, ', but as the dependence is not
very sharp we shall perform the calculation only for the
triplet case; then we can separate the summation over
w, and, with Z=A/2, we get:

P, w;=3A/8.

I

0 in IO'3 cm-'

FJG. 2. Momentum distribution of a nucleon inside a nucleus
(the odd contours are the result of the superposition of quad-
rangles representing York's data).

X. NUMERICAL RESULTS

We shall first deal with X(Q) which is important as
it is proportional to the momentum distribution of a
nucleon inside a nucleus.
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FIG. 3. Differential cross section per Mev and per nucleon for
production of deuterons by 90-Mev nucleons.

The numerical values taken are:
X=1.0X10"cm ' p=0.847X1.0" cm '
v=17 AX10 "cm') n '=5.39X10 "cm.

Then for Q small we have:
m—=E(Q)/A =17X10 "cm',

for Q=1.3X10"cm ' n=3.6X10 "cm',
for Q large: ri=& 6X10."/Q'X10 "cm'.

The e value for Q= 1.3 is likely to be too high because

~ (}—L
~
)P is only just satisfied, therefore we shall take

n=3.0 instead. The temperature of the Fermi distribu-
tion joining these data is found to be 9 Mev, which is,
within our uncertainties, in agreement with Watanabe s
calculation. ' The result of the calculation is shown in
Fig. 2. Note that a Fermi distribution is used only for
purpose of easy interpolation.

We can make a comparison with York's results. In
his thesis York gives the cross section 0 for production
of deuterons ejected at given angles and of energy
lying in given intervals. From these values we can plot
o/F' as a function of Q. That is done on Fig. 2 in
arbitrary units from York's data on C. As a matter of
fact, our calculations should not be too good for such
a light nucleus as C, but we cannot compare them with
York's results on Cu and Pb, first because the latter
experiments are not so complete, and second because
the internal scatterings of the incident neutron play a
very important role in such heavy nuclei. ' Even if our
curve of Fig. 2 was rectangle-like it would be possible
to account for a spread 0/F' through these internal
scatterings.

XL CROSS SECTION FOR 90-MEV NEUTRONS

The differential cross section per Mev and per
nucleon is:

E f My'3 1

~

—F (k-K/2) ~(K-k) —.
2X ia) 40

' S. %atanabe, Zeits. f. Physik 113, 482 (1939).' M. L. Goldberger, Phys, Rev. 74, 12{F9 {1948).

Fro. 4. Spectrum at various angles of the deuterons produced
by 90-Mev nucleons.

The numerical values involved in Ii are taken as:"
AD'=0.0613X10"cm '

n~=0.231 X10"cm ' t/'=67. 8 Mev.
n2=1.55 X10"cm '

The differential cross section per Mev and per nucleon
is shown in Fig. 3. The corresponding spectrum of the
deuterons at various angles is shown in Fig. 4. It seems
that our calculation accounts in a natural way, without
the introduction of internal scattering, for the shift of
the most probable deuteron energy to lower energies at
larger angles which was observed by York. This shift
is due to the fact that for large angle the values of E
permitted by the energy conservation relation are such
that ~K—k~ can take the value L. By graphical
integration we find that the total cross section is:

ay=1.94XAX10 "cm'.

This is a very large cross section; it is equal to ro'

where ro is the radius of the sphere containing one
nucleon. This explains qualitatively the experimental
result that the cross section of the pick-up process is
considerable, a result which was surprising to most
physicists because of the small binding energy of the
deuteron. For a comparison with experiment, we should
take into account that the deuteron can easily disinte-
grate again while escaping from the nucleus. We shall
assume that the layer of the nucleus effective in the
pick-up process has a thickness of ro (measured in the
direction of motion of the deuteron and on the escape
side of the nucleus only). The effective volume of the
nucleus is then irro(r, A&)2 as compared to the total
nuclear volume (4n./3)ro'A. This means the effective
number of nucleons is about 43A& instead of A. For C,
this yields about 4, giving a theoretical cross section of
about 8X10 " cm'. The observations of York give
2.6X10 " cm'&25 percent: our theoretical value is
therefore about three times too high. An error in this
direction is not unsatisfactory because (1) the "mean

'0 H. A. Bethe and C. Longrnire, Phys. Rev. 77, 647 (1950).
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2. - ~

O

The fact that the values of the total cross section
calculated for 90- and for 200-Mev neutrons are har-
moniously disposed compared to the asymptotic value
calculated in the next paragraph (Fig. 6) shows that
we were right enough in neglecting the terms n/1 in
(1) for 90-Mev neutrons.

XIII. DEPENDENCE OF THE CROSS SECTION
ON ENERGY

For this purpose we shall use asymptotic forms for
G, C, F, and Ir'; then this calculation will be valid for
incident neutron energy larger than about 500 Mev.

F becomes proportional to l ' where l= ~k ——',K~,
and we get:

l20 Deuteron- Knergy l94 Mev
IC )M q

s 3 Ir4trADVq s

Fro. 5. SPectrum at various angies of the deuterons Produced o„= .
) ~

.—
~ (

. (err —res)s
by 200-Mev nucleons. 2k E a.k'J 4

24-

25-

26-
Oe

Oe

Ke have, moreover:

12(4a8a)s 3AI .Z/4Q '.
I.' 8

27-

2S- b

l28-

oeymptotlc value hence:
Q' l' k'(5 —4 cos28)/9

Eo„=— Z 3"/k"(5 —4 cos28)s.
2k

incident Nucleon Energy

.5 Bev

Fxo, 6. Total cross section for production of deuterons as a
function of the incident nucleon energy.

free path" of the escaping deuteron may be less than
rs, and (2) there are many competing processes for
which our theory will also give large cross sections.
The Born approximation customarily over-estimates
cross sections. For heavier nuclei, there will be a further
reduction because the incident neutron may be absorbed
before it reaches the far side of the nucleus; the cross
section should therefore increase less than A&, in
agreement with observation.

XII. CROSS SECTION FOR 200-MEV NEUTRONS

A similar procedure to that illustrated on Fig. 1
shows that the energy of the deuterons produced has a
distribution nearly uniform in the range 120—194 Mev.
Similarly to Fig. 4, we get a deuteron spectrum as
shown in Fig. 5. By graphical integration the total
cross section is:

~,=0.37'A y 10-'6 cm'.

Thus we get the remarkable result that the angular
distribution of the deuterons becomes independent of
the energy of the incoming neutron and is characterized
by a half-half width equal to 7'.

The spectrum of the deuteron becomes a sharp line
at SE/9, E being the energy of the incident neutron.

The excitation given to the nucleus becomes E/9, in
the form of recoil of the nucleon 2, which if E/9 is
large enough will be ejected in the forward direction.

The total cross section is proportional to the inverse
of the sixth power of the energy of the incident neutron,
as in the corresponding case of the capture of an
electron by an ion He+ traversing a gas of H atoms. "*
The explicit result in our case is:

osi.r=7.7XAX10 (1s0s0/E ~M)
cmss.

which is shown in Fig. 6.
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"Brinkmann and Kramers, K. Wet. Amst. 33, 973 (1930).* Note added in proof: see explanation of that analogy given by
Levinger and Bethe, Phys. Rev. ?8, 115 (1950) in paragraph IV.


