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G(x) Jx'W=q(l) dl, (4)

If we define the inverse function to f(h) as h=g(f}, then Eq. (4)
becomes

G(x}= — xg(f~fq 'e fdf.1

(Q —j.}~ 0

As a simple example, we consider the case f(h) = Q (not applicable
to scintillation counters), in which case R= ~ and g(f) =f/X:

G(x)=(1—) 'lnx) q, t=(BG/Bx) „g=Q/X,
Qj) '=~'/Q (5)
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CINTILLATION counters are being used increasingly for
applications that require extremely short resolving times. In

this letter, we discuss the limitations on resolving time that arise
from Quctuations in the emission, transmission, and collection of
scintillation photons. For this purpose we assume that following
excitation of the scintillator by an energetic event, the photo-
multiplier multiplies the primary photo-electrons without time
spread, and that the resulting pulses are fed into a discriminator
that gives a signal when it has accumulated a definite number,
say Q, of pulses. We ask for the fluctuation in time of these signals.
Except for the neglect of time spread in the photo-multiplier, this
model contains the essential features of actual counting systems.

The average or expected number of photo-multiplier pulses
between the initial excitation of the scintillator at zero time
(allowing for a possible constant time delay in the photo-multiplier)
and time h is f(h), where f{0)=0,f is a continuous monotoni-
cally increasing function of h, and dfjdh is piecewise continuous.
It is assumed that the probability that E pulses occur between 0
and t is given by the Poisson distribution:

PN(h) = Q{h})~e J'(')/X J. (1)

This means that either (a) a relatively small, randomly selected,
sample of the emitted photons is converted into output pulses,
or {b} the magnitude of the initial excitation is randomly dis-
tributed, ' or both, Then the probability that the Qth pulse occurs
between h and h+dh is'

W q(h)dh= I'q, (h) Pdf(h)/dh$dh. (2}

The total probability that the Qth pulse occurs between 0 and ~ is

j Wq(i)u= f f& 'e ~df
1 z

0 (Q-1) I 0

R2 Rq '
=1—e ~ 1+R+—+ . + —=Iq(R}, (3)2I (Q —1) f

where R=—f(~) is the average total number of primary photo-
electrons. It is readily verified by comparison of Eqs. (1) and (3)
that Iq(R} is the probability that Q or more pulses occur bet.ween
0 and ~, as it should be. Iq(R) can be evaluated from Eq. (2),
or found from tables of the incomplete gamma-function. '

The variance of the signal time is

1 1
v —=(h')A„—h'= h'W q{h)Ch- hWq(h)Ch

Iq(R) Iq{R}

It may also be calculated from a generating function: ~

where
h=g(f) =b f+b f'+

1j~i b2= —a2/a&'

In general, a~, a~, are proportional to R, so that b~~1/R,
b~ ~ 1/R', etc., and the series that follow are expansions in powers
of Q/R; these are convergent if the series for g(f) converges inside
the circle f= R, and are otherwise asymptotic. We find that

h=L1/Iq(R) jLb QI..(R)+b.Q(Q+1)Iq,.(R)+ . j,
e = L1/I q'(R) jI bg'LQ(Q+1) Iq(R)Iq+2(R}—Q'I q+g'(R}j

+2byb2PQ(Q+ 1}(Q+ 2)Iq(R)Iq+3(R)—Q'{Q+1)Iq (R}Iq {R)j+ . I.
With the approximation Iq(R)=1, these become asymptotic
series:

i=b,Q+b,Q(Q+ 1)+."=—1—Q +~(Q+1)
Qy a~2

Q 4"(Q+1)&~b 'Q+4bib2Q(Q+1}+ =—1—
Cy

1 2ug{Q+1)

Q ag'

the last of these agrees with Eq. (5) to lowest order, as expected.
For an exponentially decaying scintillator:

f(h) =R(1—e " ), eq=R), a2= —~RX2

In this case:

t~{Q/RX} I 1+I (Q+1)/2R)+
1+2{Q+1)+-. =—~ 1+Q+1+

R Q
(6)

To see the order of magnitude of the r.rn. s. signal time deviation
in a practical case, we calculate e& when Q= 10, X=5X10' sec. ',
and R=75, which corresponds roughly to the excitation of a fast
liquid scintillator~ by a 1-Mev electron and the conversion of
1 percent of the emitted photons into photo-multiplier pulses,
when the spread in photon collection time can be neglected. In
this case, the first two terms of Eq. {6) give e&=10 "sec., with
an error of a few percent. With slower scintillators and less
energetic events, v& can be substantially larger, of the order of
10 s sec. in a typical case. The time e& represents a loss of resolu-
tion that is superposed on any losses owing to the electronic
circuits.

+ The work reported herein was performed under a contract between
Stanford University and the ONR.

j The case in which f is not monotonic, which might be of interest in
connection with the time fluctuations in the disintegrations of radioactive
chains, could also be treated by a straightforward extension of the formalism.
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For a scintillator, R must be finite, and g(f} has a singularity
at the point f=R. It is apparent, however, that the integral
over f that gives (h")A„diverges if and only if the nth moment of
the probability function (2) diverges, so that any difhculties
caused by the singularity can easily be traced.

When R is finite, G(x) and e cannot be written in simple closed
forms. However, in the physically useful case R»1, R»Q, Eq. (3)
shows that we can put Iq(R)=1, and simple asymptotic ex-
pressions can be obtained that involve only the behavior of f(t)
near t=0. Suppose that

f(h) = agh+a2h'+
then


