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TABI.E II. Values of collision cross section per unit solid angle in barns. An orthogonal transformation is now made by HK to make P a
sum of squares. The new variables Pp, Qp after renormalization are
determined by

8 = 70 80 100 110 120 140 160

(P-d) 0.115 0.095 0.060 (0.052) 0.055 0.105 0.230
(n-d) 0.125 0.088 0.050 0.055 0.105 0.200
(n-d) 0.095 0,050 0.055 0.130 0.210

180o (Mev)

5.25
0.235 5.5
0.275 4.5

where

N-I N-I
St, =(5)& Z a»P&, S&,„={5)&Z a»Q&,X~

(sa)

that for 0= 130' the difference betmeen the values of e at 5.5 and
4.5 Mev is sufliciently large to make reasonable an estimate of
errors of the order of 10 percent in the n-d measurements. The
outstanding differences at 8=160' may not be real, therefore.

On account of effects in the interior of the nucleus one may
expect the phase shifts to be affected when a neutron is changed
into a proton. An exact correspondence cannot be expected,
therefore, even apart from the interference with Coulomb scatter-
ing. The author is indebted to Dr. Louis Rosen for helpful dis-
cussion of his data.
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N 1934 Heller and Kramers' obtained the Bloch energy levelsg
~ ~ for a ferromagnet by starting with a classical theory of spin-
waves and then quantizing this theory. Certain obscurities re-
mained in the theory, however, as recognized by Heller and
Kramers, and it is the purpose of this note to clarify these obscure
points. We shall discuss particularly the physical and mathe-
matical origin of the apparent zero-point energy, which HK had
to omit, and the canonical nature of the variables used. Reference
mill be made to the quantal spin-wave theory as given by Holstein
and Primakoff, 3

The Hamiltonian for the simplest case, a linear chain of N
atoms with nearest-neighbor interactions, is

N
3„'=—2PH Z St, ,—2J Z St St+I, (1)

I-I I-I
where St is the spin vector (operator in the quantal case) of the 1th
atom in units of k, P the Bohr magneton, J the exchange integral,
and II the z-directed magnetic 6eld.

Considering St as a classical vector, HK observe that near
saturation St, , and St,„are small and, therefore,

St, ,= I
8s—{St,,~+St 2) j&~5/1 —(St,,s+St, 2)/2S'j, (2)

where S is the magnitude of the spin vector. In a quantal treat-
ment 8 is to be replaced by $5(S+1)j&, where S is nom the
maximum z component of the spin.

Using Eq. (2) causes the Hamiltonian to become
N

BC=3'.nx(S) = 2X8)PH+ J8$+2J—Z
t I

X I {1+~)(St, '+St, &'}—(St,*St+I,.+St, I St+I, &) j, (3)

where of= pII/2J8.
We may compare Eq. {3) with the quantal Hamiltonian ob-

tained4 by HP after introduction of approximations appropriate
near saturation. In the same notation:

3'.Hp=XHK(S)+2J(1+ }iZ (St, St,„—St,„St„). (4}
t I

We notice that the quantal Hamiltonian has an additional sum
of commutators, which vanish classically, and that it is S rather
than S which appears. %e shall discuss this below.

a»= (2/N)& cosI (2') /N)+{2rx/2N) j () ~0)
alo= (1/Ã) ~. (Sb)

The variables P&, Q& are obviously wave-like in nature,
Quantization of the HK theory is now possible, since the

classical Poisson bracket is

IP)„Qg j p. B.= (Bgyr/S) I St,» St, If j p. B.=~) ) rSt, ./S=b), y& (6)

from Eq. (5) and with 5&,,/5 approximately equal to unity, corre-
sponding to conditions near saturation. Hence, Pg'+Qg' has
eigenvalues 2(ng+$) with ng=0, 1, 2, . . ..

The energy levels for XHK are:

EHK(n)„S) = —2N8$ pH+ J8j
2~)+4JS Z 1+a—cos {n),+$), (7)

a result'differing from the quantal energy levels in the appearance
of 8 and the additional $ in the factor (ny+x) as will now be
shown. For the additional terms in Eq. (4) can readily be calcu-
lated using the HP approximations' to be

Sr, +St, I
—St, „St,~= ~S. (8)

(Equation (8) indicates that the same approximation is made in
the quantal theory as in Eq. (6); i.e., St, , is replaced by S.) It
follows that, using the same orthogonal transformation and
quantizing the result, we obtain

EHp{ng) =EHK(ng, 5)—2JSz (1+0.)
X

2' p

=EHK{ny, 5)—2JS Z 1++—cos, (9)
X N

which veriaes the statement made above.
The physical origin of the extra $ is not hard to see, It arises

from Eq. (2): in the HK theory the distinction between 5 and
LS(5+1)j is not maintained, so that, in effect, the expression
5—S„ the deviation of the z component of the spin from its
maximum value, is replaced by )S(S+1)]&—S,. Now the former
quantity has, rigorously, integral values, while the latter is
approximately S—5,+$ (expanding LS(5+1))&}.The $ comes
from the fact that, quantum-mechanically, the spin vector never
lies along the z axis and 5,'+S„s is never rigorously zero. In the
formal theory this is expressed by the appearance of the com-
mutator of S, and S„as mentioned above.

*Supported in part by the ONR.
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N analysis of the 5-wave scattering of nucleons by deu-
terons has been carried out by means of a spin-dependent,

"efFective" tmo-body model of the nucleon-deuteron interaction. '
This analysis was begun by considering the deuteron as a single
structureless particle so that the actual nucleon-deuteron inter-
action could be replaced by an "effective" two-body interaction.


