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TABI.E II. Values of collision cross section per unit solid angle in barns. An orthogonal transformation is now made by HK to make P a
sum of squares. The new variables Pp, Qp after renormalization are
determined by

8 = 70 80 100 110 120 140 160

(P-d) 0.115 0.095 0.060 (0.052) 0.055 0.105 0.230
(n-d) 0.125 0.088 0.050 0.055 0.105 0.200
(n-d) 0.095 0,050 0.055 0.130 0.210

180o (Mev)

5.25
0.235 5.5
0.275 4.5

where

N-I N-I
St, =(5)& Z a»P&, S&,„={5)&Z a»Q&,X~

(sa)

that for 0= 130' the difference betmeen the values of e at 5.5 and
4.5 Mev is sufliciently large to make reasonable an estimate of
errors of the order of 10 percent in the n-d measurements. The
outstanding differences at 8=160' may not be real, therefore.

On account of effects in the interior of the nucleus one may
expect the phase shifts to be affected when a neutron is changed
into a proton. An exact correspondence cannot be expected,
therefore, even apart from the interference with Coulomb scatter-
ing. The author is indebted to Dr. Louis Rosen for helpful dis-
cussion of his data.
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N 1934 Heller and Kramers' obtained the Bloch energy levelsg
~ ~ for a ferromagnet by starting with a classical theory of spin-
waves and then quantizing this theory. Certain obscurities re-
mained in the theory, however, as recognized by Heller and
Kramers, and it is the purpose of this note to clarify these obscure
points. We shall discuss particularly the physical and mathe-
matical origin of the apparent zero-point energy, which HK had
to omit, and the canonical nature of the variables used. Reference
mill be made to the quantal spin-wave theory as given by Holstein
and Primakoff, 3

The Hamiltonian for the simplest case, a linear chain of N
atoms with nearest-neighbor interactions, is

N
3„'=—2PH Z St, ,—2J Z St St+I, (1)

I-I I-I
where St is the spin vector (operator in the quantal case) of the 1th
atom in units of k, P the Bohr magneton, J the exchange integral,
and II the z-directed magnetic 6eld.

Considering St as a classical vector, HK observe that near
saturation St, , and St,„are small and, therefore,

St, ,= I
8s—{St,,~+St 2) j&~5/1 —(St,,s+St, 2)/2S'j, (2)

where S is the magnitude of the spin vector. In a quantal treat-
ment 8 is to be replaced by $5(S+1)j&, where S is nom the
maximum z component of the spin.

Using Eq. (2) causes the Hamiltonian to become
N

BC=3'.nx(S) = 2X8)PH+ J8$+2J—Z
t I

X I {1+~)(St, '+St, &'}—(St,*St+I,.+St, I St+I, &) j, (3)

where of= pII/2J8.
We may compare Eq. {3) with the quantal Hamiltonian ob-

tained4 by HP after introduction of approximations appropriate
near saturation. In the same notation:

3'.Hp=XHK(S)+2J(1+ }iZ (St, St,„—St,„St„). (4}
t I

We notice that the quantal Hamiltonian has an additional sum
of commutators, which vanish classically, and that it is S rather
than S which appears. %e shall discuss this below.

a»= (2/N)& cosI (2') /N)+{2rx/2N) j () ~0)
alo= (1/Ã) ~. (Sb)

The variables P&, Q& are obviously wave-like in nature,
Quantization of the HK theory is now possible, since the

classical Poisson bracket is

IP)„Qg j p. B.= (Bgyr/S) I St,» St, If j p. B.=~) ) rSt, ./S=b), y& (6)

from Eq. (5) and with 5&,,/5 approximately equal to unity, corre-
sponding to conditions near saturation. Hence, Pg'+Qg' has
eigenvalues 2(ng+$) with ng=0, 1, 2, . . ..

The energy levels for XHK are:

EHK(n)„S) = —2N8$ pH+ J8j
2~)+4JS Z 1+a—cos {n),+$), (7)

a result'differing from the quantal energy levels in the appearance
of 8 and the additional $ in the factor (ny+x) as will now be
shown. For the additional terms in Eq. (4) can readily be calcu-
lated using the HP approximations' to be

Sr, +St, I
—St, „St,~= ~S. (8)

(Equation (8) indicates that the same approximation is made in
the quantal theory as in Eq. (6); i.e., St, , is replaced by S.) It
follows that, using the same orthogonal transformation and
quantizing the result, we obtain

EHp{ng) =EHK(ng, 5)—2JSz (1+0.)
X

2' p

=EHK{ny, 5)—2JS Z 1++—cos, (9)
X N

which veriaes the statement made above.
The physical origin of the extra $ is not hard to see, It arises

from Eq. (2): in the HK theory the distinction between 5 and
LS(5+1)j is not maintained, so that, in effect, the expression
5—S„ the deviation of the z component of the spin from its
maximum value, is replaced by )S(S+1)]&—S,. Now the former
quantity has, rigorously, integral values, while the latter is
approximately S—5,+$ (expanding LS(5+1))&}.The $ comes
from the fact that, quantum-mechanically, the spin vector never
lies along the z axis and 5,'+S„s is never rigorously zero. In the
formal theory this is expressed by the appearance of the com-
mutator of S, and S„as mentioned above.
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N analysis of the 5-wave scattering of nucleons by deu-
terons has been carried out by means of a spin-dependent,

"efFective" tmo-body model of the nucleon-deuteron interaction. '
This analysis was begun by considering the deuteron as a single
structureless particle so that the actual nucleon-deuteron inter-
action could be replaced by an "effective" two-body interaction.
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The «S and 4S effective two-body neutron-deuteron interactions
were represented by square-mell central potentials having depths
V«and V4, respectively, and the same range r0. It was then assumed
that'

ro= (5.0&2.0)X 10 "cm. (1)
The analysis proceeded with the deduction of a theorem to the
effect that the binding energy of the «S or 4S ground state of H',
calculated on the basis of such an effective two-body model, is not
greater than the actual binding energy of a neutron to a deuteron
in forming that state. The existence of H' in a 'S ground state of
known binding energy and with no bound excited states con-
sequently places a restriction on the maximum values of V«and V4
for a given value of r0.

The value of V, (x=2 or 4) can now be calculated uniquely,
for a given value of r0, from the corresponding scattering length
of the deuteron a {x=2or 4) by means of the relationship:

tan{K,r0)/K, r0= 1—a /r0, (2)
where

K,«= 4.VV, /3A«,

provided the above-mentioned restrictions on V» and V4 are con-
sidered. At the time this work was undertaken, the experimental
results on the scattering of slow neutrons from deuterons provided
only two fairly definite conclusions regarding the values of a»
and a4, ' ' namely: a», a4&0; and Eq. (5) below. From the fact
that a4&0, it was then concluded from (2) that V4 cannot be
greater than zero, and consequently,

0&a4&r0. (3)
From the fact that a«&0, it was deduced from (2) that, for any
given value of r0 in the range of {1),

a«~(a») ~;,~0.4X 10 "cm. (4)
Corresponding to four different values of r0 in the range of (1),

sixteen sets of values for V«and V4 were then calculated from
Eq. (2) by using values of (a«, a4) consistent with (3), (4), and
the experimental value of

~D= (4~/3) (~»+2««)
=3.44 barns, (5)

which was assumed to be correct, It proved convenient to com-
bine {5) with (2), and consider a» and r0 as the independent
variables for the functions V«and V4. On the assumption that
the speci6cally nuclear n-n and p-p interactions are the same,
these sets of potentials were then used to calculate the angular
distributions obtained in p-d scattering at 250 and 275 kev, e

and the 90' (center-of-mass system) cross sections obtained for
p-d scattering from 1.5 to 3.0 Mev. 7 It was found (as was to be
expected) that the 6t of the calculated values to the experimental
data was relatively insensitive to the value of r0 within the range
of (1) (or even to the assumption of two different values of r0, in
that range, for the 'S and 'S effective interactions). It was found,
however, that a good fit to the data could be obtained only for

a«=0.8X10 '«cm
a4=03X10 '«cm, (6)

a4 being obtained from a«via (5). These values, moreover, pro-
vided this 6t over the entire energy range of the p-d data con-
sidered.

This work was carried out before the accurate results obtained
at. Chalk River for the scattering of slow neutrons from D» became
available. s These latter results, together with (3), (4), and (5),
give

a«= (0.826~0.012)X 10 "
a4= (0.26~0.02) X 10 "cm (/)

which is in excellent agreement with (6) above, deduced from
the analysis of p-d scattering. This agreement implies that an
effective two-body model of the nucleon-deuteron interaction is
indeed a practical means of correlating the low energy nucleon-
deuteron scattering data, and, that the hypothesis of the equality
of the 'n-n and p-p interactions is corroborated under these
conditions.

A detailed report on the above work will be submitted for
publication shortly.
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'N a recent paper' Kuhn has applied the WEB method to the
- ~ calculation of the cohesive energies of monovalent metals. His
analysis is based on a new procedure proposed by the writer. '
In consideration of the possibility that this method may be
capable of wide applicability, it will be justifiable to present it
here in a more explicit form.

We consider the asymptotic solutions of the second-order linear
differential equation

(d«4/dx»)+a«P(x)C =0 (for a—+~), (1)
where

P(x) =aix+a»x«+ . (a»80').
We make the transformations

fL=~(x)7"%,
0

q =P i/4d»Pi/4/dz« — P 3/4d«P —i/4/dx»

= —
t (5/36)z-«+gz-«/3+~+), iz«/3+ ~ . .j (2)

Q(~)= I Q(r)4
It can be shown that the two independent solutions Ci, 4«, can
be expressed in the form

c, ,=p-i/ e,, , (3)
with

4'i »= expL~iaz~ (i2a} Qi{z)+{4a ) Q(z) g+O(a )
for z /0, and

= ('ma) 2i+ exp W(i2a)

Pg+(5/36Z2) gdz z / gg (' )(q)+O(a —') (5)
0

for z=O(a»).

(4)

Here
L$——)%,»K 2(2)»/2 g = KQ+ ) 1K 2)2)3 2 (6)

=Z2/3+ )I K
—2 K2 a2+

and the symbol H stands for the Hankel functions.
As an example, the asymptotic formula for the Hankel functions

for the "transition region" can be written in the form

H ' {asecg)=i+' cot' g z gH ' (g)+O(a t ) (7)
where

z= tang —g, ),= —3 3/105, &=2/75, )I = —(69/13475)3 3.

This is to be compared with Langer's formula, 3 which can be
obtained from the above by setting ) = Xp=) i, =0, giving

II (» 2)(a secg) =i+ /3 cot'/ g z'/ II (' )(az)+O(a 5/ )

and Watson's formula4

~ (», 2)(a secg) i+»/33 —1/2 tang. II' (», 2)(xa tan3g)+O(a —
»)

One of the merits of the new formula is that it permits the easy
computation of the zeros of C (for example, of J (x)), from those
of the Bessel functions of order 1/3.

~ T. S. Kuhn, Phys. Rev. 79, 515 (1950).
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