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Neutron Penetration and Slowing Down at Intermediate
Distances through Medium and Heavy Nuclei*
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(Received February 2, 1950)

This paper reports new theoretical results and numerical calculations of neutron slowing down and pene-
tration to fairly large distances from the source assuming constant mean free path and no absorption. The
Placzek one-velocity problem which results from a Laplace transformation of the Boltzmann equation is
solved approximately by keeping only a finite number of harmonic terms in the Laplace transform of the
scattering function but not restricting the expansion of the neutron density. The Laplace inversion is
carried out by the method of steepest descent. Numerical results are given for nuclei of mass infinity and 9,
carried out to three orders of approximation, namely zeroth, first, and second. They show the expected
transition behavior between age theory and the asymptotic exponential behavior. The accuracy of the
method is high, being greater than that of the numerical work over the useful range of the calculations.
Rough agreement with Kick's asymptotic results for M= 12 is found.

I. INTRODUCTION
'N many problems it is necessary to know the dis-

" ' tribution of neutrons in a moderating material at
large distances from a source. If the distance expressed
in mean free paths is not small compared with
u'=(3l/2)u, where u=ln(ED/E) the customary age
theory breaks down, and improvements on this theory,
such as the spherical harmonics method, are also inad-
equate. (In our notation E0 is the energy of the neutrons
as they are emitted from the source, E is the energy of
the neutrons whose spatial distribution is to be found,
and M is the mass number of the moderator. The quan-
tity u' is a measure of the number of collisions required
to reduce the neutron energy from ED to E )On the.
other hand, "asymptotic" theories in which the neutrons
are assumed to move very nearly in the forward direc-
tion are not valid until s))N", which, even for moderate
values of u' is far outside the practical range. It is the
purpose of this paper to bridge the gap between "age
theory" and the "asymptotic theory. " The methods
which we employ are similar to those which have been
developed independently by Kick. ' The numerical
results which we shall present are for moderators of
fairly large M (say 3f 9), whereas W—ick and his col-
laborators have paid particular attention in their
numerical work to the case of hydrogen (M= 1).

We shall use the notation of Marshak' except where
* Note added June 14, 1950:This paper is based on the Atomic

Energy Commission report, KAPL-256, which was declassified
on January 16, 1950. Since its submission for publication it has
come to the authors' attention that report A.E.R.E. T/R 523,
April, 1950, of the Atomic Energy Research Establishment,
Harwell, Berks. , entitled "Calculation of the Functions Used for
Determining Neutron Diffusion at Large Distances from the
Source" by J. P. Price was issued. This report covers very much
the same ground as the present paper but gives about half the
number of values. It uses the fact that the function ltd can be
expanded as a Taylor series in increasing powers of 1/M, of which
the first two terms are given. This is equivalent in our case to
linear-in-1/M interpolation between P and Ps. J. P. Price' s
results agree with those of the present authors when the sign of
her 1/M term is reversed.**Permanently at Cornell University, Ithaca, New York.

' G. C. W'ick, Phys. Rev. 75, 738 (1949).
s R. E. Marshak, Rev. Mod. Phys. 19, 185 (1947).

otherwise mentioned. All distances are measured in
units of the mean free path, which is assumed to be
independent of the velocity of the neutron. The slowing-
down medium is assumed to be non-absorbing and
infinite. We assume that the neutrons are emitted
isotropically from a monoenergetic infinite plane source
with unit strength per unit area located at the position
s=o.

The theory we present here is a development of
Placzek's "one-velocity theory" which is described by
Marshak. Our formalism will give results accurate to
10 or 20 percent for any distance, provided only that
the number of collisions u' is large. (For any practical
problem with materials as heavy as Be or heavier, u'
is at least about 20.) This is in contrast, for example, to
the spherical harmonics method (Marshak, reference 2,
p. 222), which breaks down at distances s of the order
u'&, or at attenuations of the order exp( —u'&) which is
insufhcient for many shielding problems. Placzek's ex-
tension of the spherical harmonics method (Marshak,
Eq. (146a)) extends this to attenuations of the order
exp( —u'&) which is often valuable; it represents a
second approximation toward our theory.

II. TRANSPORT EQUATION. DEFINITIONS

We start from the transport equation (Marshak's
Eq. (140)):

(1 —iyl)4(r n, u)

d~~'d (y, n, I')g(n, ~0)+1/(4~), (1)

where @ is the Fourier-Laplace transform of the collision
density (number of collisions per unit volume, unit time
and unit u), that is,

P(y, q, u) =~ e'*"d Jteduc &"P(z, u, u). (2)
—00 0

The notation is the same as Marshak's: 2,'is the distance
from the plane source in units of the mean free path,
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g(g, u)=aF(u, g)=)' e &"f-(u, u)du, (3)

u=ln(EO/8), p is the direction cosine of the motion of
the neutron, y is the parameter of the Fourier transform
and y is that of the Laplace transform. The function g
in (1) is given by Marshak's (140b), (see also his defi-
nition of n, Eq. (17a)) vis. ,

to age theory and v near 1 corresponding to large
attenuation.

It turns out further that the relevant values of g are
of order 3II. It is therefore not permissible to expand in
powers of q as is done in the spherical harmonics
method. Instead, we expand the function g in spherical
harmonics as does Wick, ' except that our gi(q) are
(2l+1) times his. Thus

g(v u) = (I/«)Z gi(v)Pi(u). (5)
where f(p, u) is the transfer function in Marshak's Eq.
(7).

It is advantageous to discuss first the range of
parameters q and y which will be of importance. It will

be shown that by far the main contribution to the
Fourier inverse of p comes from the pole of @, i.e. from
that value of y for which the homogeueous Eq. (1) has a
solution. This is the case for some purely imaginary
value of y; we therefore set

tg= v.

It may be noted that the evaluation of the g~'s becomes
simple if the double integration on f(u, u) is carried out
first with respect to the angular distribution before the
Laplace transformation is performed.

If in Wick's equations, modiFied by 21+1, the trans-
formation

g=~Mx —1

is made for the transform parameter, and the resulting
functions be denoted by gi(x), then

Positive values of v are relevant for positive s; v will lie
between 0 and 1, with small values of v corresponding

(M+1 ) ' 1 —[(M —1)/(M+1)]~*
(7a)

etc.

3 (M+1) ' x —1+(x+1)[(M —1)/(M+1)]u*

2& M i x' —1/M'

x(x' —4/M')

5 (M+1~ ' x2 —3x+3 —M ' —[x +3x+3—M '][(M—I)/(M+1)]~'
g, (x) =-I

2E M i
(7c)

%hen N is large, then putting

Gi(x) = [M/(M+1) ]'gi(x)

Go ——(1/2x) [I—e-'*], (9a)

inverting the Fourier transformation:

(2/M)) du'P(s, u', u)e
0

G, = (3/2x') [x-1+(x+1)e- *], (9b)

62 ——(5/2x') [3—3x+x' —(3+3x+x')e-"]. (9c) where u' is approximately the average number of col-
lisions and is given by

The G& are essentially Bessel functions' of ix.
For reasonable values of x (up to about unity), the

G~ decrease with increasing /; for small x,

(14)u'= Mu/2.

G&~x'/[1. 3 o (2l —1)].
Inserting (5) into (1), we get

(1—iyu)4(y» p)=E gi(x)4i(y x)Pi(u)+1/(4~) (11)
As previously indicated, we shall first seek a solution

of the homogeneous Eq. (11),postponing consideration
of the complete equation until the next section. Such a
solution exists for some real value of iy. We therefore
consider the equation

where

i

4, (y, x) =-,'~ dud (y, x, u)P&(u).
—1

(1—vu)4 (v, *, p) =Q g, (x)yi(v, x)Pi(u) (15)

It shouhi be noted that the factor in (14) is M/2, not

I/$, which differs from it in the relative order 1/M.
10

III. SOLUTION. RELATION SET%PEEN v AND x

The relation (2) can be rewritten, introducing (6) and and try to determine the eigenvalue v, for a given x.

' Gegenbauer's Integral. See KatsorI, Blesse/ Fuwctg'ops, p. 50. ' Reference 1, Kqs. (2) to (5).
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e(v, *,~)=E g~(x)@~(v, x)2'~(~)i(1-v~).
l=o

From this we obtain

(16)

The right-hand side of (15) is a rapidly converging
series in l for any reasonable value of x (let us say, not
much greater than unity), because the g& are rapidly
decreasing. (At this point, our assumption differs from
that of Kick, ' who considers the case in which many g~'s

are about equal in magnitude. ) Therefore it is permissible
to consider only a small number of l's on the right-hand
side of (11). Indeed, our numerical calculations which

are reported below, show that in all cases of practical
importance, the eigenvalue v is given with sufhcient
accuracy by taking only the terms through l= 2. Since

gl contains the anisotropy of scattering due to the finite
mass of the target nucleus, it is understandable that in
all but the M = ~ case both l =0 and /= 1 terms must
be included even for the smallest v. In terms of age
theory the omission of l=2 amounts to neglecting
(cose) A, in the transport cross section in age theory.

The error incurred by omitting l= 2, 3, etc. terms will

be indicated in Section VII.
Ke have considered as of possible practical im-

portance all elements from Be up (M)&9) and all values
of N from 3 up so that N'~)13, and any attenuation up
to 10"=e".

While the right-hand side of (11) is rapidly conver-
gent, an expansion of p itself in spherical harmonics of
p, would converge exceedingly slowly. In fact, the most
important dependence of @ on p, is given by the factor
1/(1 —v, N) in which v may be as large as 0.9 or even
closer to unity (see Table III). The expansion of p in
spherical harmonics will therefore converge very slowly,
and the spherical harmonics method as used by
Marshak' cannot give a good approximation. In other
words, y~ does not decrease rapidly with /, but g~yt does.

With any finite number S+2 of terms on the right-
hand side of (15), the dependence of p on p is deter-
mined:

Equation (17) is the fundamental system of equa-
tions of our theory. It is a system of %+1 ordinary
linear homogeneous equations for the 1K+1 unknowns

@p, Ql, ' ' 'QN. The system is soluble only if the deter-
minant of the coefEcients vanishes, and this condition
determines the eigenvalue v for any given x. Thus, the
condition is

goADD —2

gpA01

goAo,v

gIAol
glAll —1

glA 1V

gN~ON

gN~ IN

gNANN —2

=0. (21)

Note that all g's are known functions of x, and the A' s
are known functions of v.

In the "zero-order" approximation we have, for
instance,

as in the equation succeeding Marshak's Eq. (149).
From this equation it is easy to determine v as a function
of x, or, conversely, x as a function of v.

It is not, in general, permissible to expand Eq. (21)
in powers of v or x or both. Such an expansion is unsatis-
factory especially because the power series for f(v) is
very slowly convergent except for very small v. If an
expansion is made, and M is assumed large, equating
the lowest powers of v and x gives

v= (3x)&

which corresponds to the age theory. Further results of
expansion wiH be given at the end of Section V.

The "erst-order" approximation, in which gp and gl
are taken into account, gives for v the relation

1 1+v
Aoo(v) =f(v) —=—ln

2v 1 —v gp

M 2x
(22)

(M+2 j 1 —[(M —1)/(M+1)]M*

where

y)(v, x) =P g.(x)A,.(v)y„(v, x),
n =0

(17) f(v) —1 ( 1
f(v)= ——

i
——1 (gi.

gp v' k go j (24)

, 1'2'i(~)~. (~)
A&„(v)=-,' I dp.

1 —vp

With the abbreviation

2 2

f(v) =—tanh —'v =—In[(1+v)/(1 —v) j,
v 2v

the 6rst A~„are
Aoo= f,
Apg ——(f—1)/v,
AU

——(f—1)/v',
A» = (3/(2v')) I f(1 —v'/3) —11,
A rp =A op/v,
A op ——A op[3/(2v') ——',J.

(19)

(20)

It is convenient to determine an approximate value of
v from (22), then insert this into the right-hand side of
(24), determine a more accurate value of v, etc. Equa-
tion (24) is equivalent to the equation below (151) in
Marshak's paper.

In principle, the relation between v and x can be
obtained to any desired accuracy by numerical calcu-
lation. This mill be done in Sections IV and V for in-
finite mass of the slowing atoms and for M=9; the
results for any "practical" value of M can then be
estimated by interpolation. Once the relation v(x) is
known and tabulated, the neutron density can be ob-
tained without difhculty, as will be shown in the fol-
lowing.
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IV. FOURIER INVERSION in6nite and
A(x, v)=0. (31)To calculate the Fourier transform (13) of &/ for

positive s, the path of integration can be deformed from
the real axis into the negative imaginary plane. The
function p is regular in this plane except for a pole at
y= —iv, corresponding to the solution of the homo-
geneous equation found in the last section, and a branch
line extending from —i to —i~ along the imaginary
axis. As will be justified below (see also Marshak's
remarks after Eq. (149)), the contribution of the branch
line is unimportant. Therefore, the integral on the right
of (13) will be —2&ri times the residue at the pole.

Thus we need the solution of the inhomogeneous Eq.
(11) for ay = v' in the neighborhood of the eigenvalue v.

))

Thus this can replace Eq. (21) in the actual calculation
of x(v).

In the process of determining x numerically from Eq.
(31) one also obtains automatically the derivative

(32a)

which will be useful in the numerical calculation. In the
analysis we need,

(32b)A'= L(&//&/v')A(x, v') j..

Multiplying by I'~ and integrating we find
and the Fourier inversion of (13) gives

We have then in the cVth approximation It is easily seen that A' and ) are positive.
&&(u) For v' near v we find from Eqs. (28) and (30), since

&/'(v * &«) =Z g&(x)&/'& v *),+, (23) the last term of the former is negligible near the pole,
L=o 1 —v'&«4or(1 —v'p)

4&ra»o = 4&r a&/go = —1/(go'(v' —v) A') (33)

p&(v', x) =Q g &/„A&„+Aa&/(4or) (26)

While it is possible to obtain all of the p's, we are
interested mostly in the total neutron intensity moving
in all directions, which is given by

J.(z, x) = (2/M)
~

du'&/&a(s, u')e "'&' —olu&—

"o

= 1/(2w) dy4xPa(y x)e-'v*= e-" /ga»A',

)I P(y, x, u)d0=4&rga(y, x). (2&) where &/a is the total collision density integrated over
all directions of neutron motion,

The "residue" of this quantity near the pole v can be
obtained in the same numerical process as the eigen-
value v itself, as follows:

Introducing the quantity

q =goa»o+ 1/(4x), (28)

and dividing Eqs. (26) for /W0 by this quantity, one gets

(4&la) 2, g.(x)A&.—(v')(4./a)=A«(v') (29)

For any x and v' these equations can be solved for the
unknowns &t&&/ao for /=1, 2, 1V. The result can then
be inserted into the equation for / =0. If this equation
is also divided by &v and (26) used, we get

= Aoa(v')+Q g&(x)Ao&(v')(4&/s) 1/go (3—0)
4~goy

—=A(x, v').

Since the aI&&/ao can be determined as functions of x and
v' from (29), the middle member of (30) is a calculable
function of x and v' for which the abbreviation A is
introduced. For general values of x and v', (30) deter-
mines the remaining unknown q. However, the eigen-
value v of v' is determined by the condition that the
homogeneous equation (1) has a solution, so that s& is

Pa(s, u') = ~d 0&/&(s, u', u). (35)

branch/pole~e "&' "&. (36)

For moderately small v, this is of order e ', we can
therefore neglect the branch integral at distances large
compared to a mean free path, which are the only ones
of interest to us. As was pointed out by Marshak, the
branch integral represents the direct effect of the source
which is of no interest for our purposes. One might be
afraid that (1 —v)» is no longer large when v is nearly
unity, whi"h is the case for large attenuation. However,
as we shaH see in Section VI, (1 —v)s is in this case about
u'/4 which we have assumed to be large. Therefore in
spite of the smallness of 1 —v, the product (1—v)s stays

The parameters v and x in (34) are connected by the
relation derived in Section III.

Equation (34) is exact (insofar as the relation between
v and x is correct) except for the neglect of the integral
along the branch line from y= —i to —i ~. In the "zero
order" approximation, this integi al is given explicitly in
Marshak's Eq. (149). Except f&&r a numerical factor
depending on x which is of or&ler unity (in general
smaller), this integral is proport onal to e *. Its ratio
to (41) is therefore,



NEUTRON PENETRATION AND SLOWING DOKN

large, and the contribution of the branch integral is

always negligible.
This conclusion remains true in spite of the fact that

the numerical factor of the pole contribution (especially
the factor 1/A') is small for v close to unity. This only
gives a factor of order I/z, which is unimportant com-

pared to the exf&o&Mntial factor (exp(-u'/4).
For the numerical work it is not convenient to keep

x fixed and to calculate the function A. for various values
of v', but it is preferable to calculate A as a function of
x, for fixed v. Equation (31) for the eigenvalue v(x) then
implies, using Eqs. (32a) and (32b), that

4'= (8A/Bv), = (BA—/Bx)(d /xd )vied=—x/dv (3.7)

The derivative BA/Bx must be evaluated at the eigen-
value of x as defined by (31).The quantity X is then a
function of v only, but through v(x) it can also be
regarded as a function of x.

Another convenient modification is the introduction
of the slowing-down density,

Using this and (37), we get from (34)

L(s, x) =2/(MP) du'q(s, u')e-"'&*-zl~&

= (dv/dx) (I/g, 'X)e-" .

V. LAPLACE INVERSION; MAIN FORMULA

Having calculated L(s, x) in Eq. (39) we now wish to
obtain its Laplace inverse g(s, u').

According to the general method for this we get from
(39):

1 Mp +'"
q(s, u') = e-'"~~

~
dxL(s, x)e"'*

2%i 2 —joo

M$ 1 +'" dv
e--+-'-d* (40)

2 2zi —; dx g, ')

In this expression, v, go, and X should, at this point, be
regarded as functions of x, determined by the theory of
the preceding sections. Equation (40) is exact except for
the neglect of the branch-line integral Lsee Eq. (36)].

To evaluate (40) we remember that we are interested
only in large values of u' and/or s. In this case, the
exponential varies far more rapidly with x than do any
of the other factors. The exponential has a saddle point
at a certain value of x determined by the condition

s(d v/dx). ,=u'.

Since v is a given function of x, this determines xo (or vo,

TABLE II. Functions of x for 3f= oo, Kqs. (9).

v A oo(v) A ox Act Aoo A to Ago

0 1.0000000 0 0.3333
0.05 1.0008346 0.01669 0.3338
0.10 1.003354 0.03354 0.3354
0.15 1.007603 0.05069 0.3379
0.20 1.013663 0.06830 0.3415
0.25 1.021651 0.08660 0.3464
0.30 1.031732 0.1058 0.3527
0.35 1.044125 0.1261 0.3603
0.40 1.0591 0.1478 0.3695
0.45 1.0771 0.1713 0.3807
0.50 1.0986 0.1972 0.3944
0.55 1,1244 0.2260 0.4109
0.575 1 ~ 1390 0.2417 0.4204
0.60 1.1552 0.2587 0.4312
0.625 1.1730 0.2768 0.4429
0.65 1.1928 0.2966 0.4563
0.675 1.2146 0.3179 0.4710
0.70 1.2390 0.3414 0.4877
0.725 1.2663 0.3673 0.5066
0.75 1.2973 0.3964 0.5285
0,775 1.3326 0.4292 O.S538
0.80 1.3733 0.4666 0.5833
0.825 1.4210 0.5103 0.6185
0,85 1.4778 0.5621 0.6613
0.875 1.5475 0.6257 0.7151
0.90 1.6358 0.7064 0.7849
0.925 1.7542 0.8154 0.8815
0.95 1.9282 0.9771 1.0285

0
0.00054
0.00140
0.00306
0.00554
0.00881
0.01300
0.01824
0.02452
0.03256
0.04230
0.05466
0.06113
0.06908
0.07784
0.08808
0.09919
0.11213
0.12705
0.14416
0.16433
0.18827
0.21732
0.25307
0.29891
0.35950
0.44509
0.57861

0
O.Q1080
0.0140Q
0.02040
0.02772
0.03524
0.04333
0.05211
0.06130
0.07236
0.08460
0.09938
0.10628
0.11513
0.12454
0.13554
0.14695
0.16018
0.17524
0.19221
0.21204
0.23534
0.26342
0.29773
0.34161
0.39944
0.48118
0.60906

0.32373
0.20930
0.20247
0.20498
0.20704
0.2102
0.2142
0.2176
0.2249
0.2327
0.2437
0.2467
0.2533
0.2600
0.2687
0.2770
0.2872
0.2990
0.3124
0.3282
0.3471
0.3703
0.3989
0.4362
0.4860
0.5577
0.6724

The slowing-down density has the advantage that it
remains finite for M-+~, whereas fo would become
infinite (proportional to M). In the limit M—+~, the
factor 2/(Mg) in (39) tends to unity.

TAm. z I. Functions of v, Eqs. (20).

0
0.05
0.10
0.15
0.20
0.25
0.30
0,35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

Go '(g)

1.000000
1.050833
1.103331
1.157489
1.213298
1.270747
1.329822
1.390504
1.4528
1.5166
1.5820
1.6489
1.7172
1.7870
1.8582
1.9308
2.0048
2.0800
2.1565
2.2342
2.3130
2.3931
2.4741
2.5563
2.6394
2.7236
2.8086
2.8945
2.9813
3.0689
3.1572
3.2462
3.3360
3.4264
3.5174
3.6090
3.7011
3.7938

Gt{x)

0
O.N 7573
0.090574
0.129397
0.164402
0.195920
0.224267
0.249674
0.272447
0.292793
0.310914
0.327025
0.341292
0.3S3887
0.364943
0.374608
0.383004
0.390238
0.396422
0.401651
0.406010
0.409530
0.412420
0.414621
0.416230
0.417303
0.417896
0.4180S3
0.417814
0.417223
0,416313
0.41S115
0,413661
0.411979
0.410090
0.408022
0.405790
0.403416

0
0.0015776
0.0060365
0.012931
0.021897
0.032595
0.044735
0.058055
0.07232
0.08733
0.10291
0.11889
0.13514
0.15153
0.16797
0.18437
0.20063
0.21671
0.23254
0.24807
0.26327
0.27810
0.29252
0.30652
0.32010
0.33323
0.34589
0.35819
0.36986
0.38116
0.39197
0.40233
0.41228
0,42169
0.43074
0.43933
0.44749
0.45527
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where

te p (v0)
) (42)

i.e. the corresponding value of v} for any given ratio
s/u'.

In Eq. (40) the factors multiplying the exponential
are slowly variable functions of x and may be replaced
by their values at xo (or vo). For the exponential we
need its value at ~0 which we write in the form

This is easily seen to be positive so that the steepest
descent from the saddle point is for purely imaginary
changes of v or x. The slowing-down density is then
easily calculated to be

E~(v)
q(s u') = e-"'&~&"&

I'
with

s (v) = vdx/dv —x. (43)

In addition, we need the second derivative of the
exponent, and

Mj 1 1
Epl(v) =

2g09, (2x) & (d'x/d v') &

(46A)

8' 8'v (dv) 2 8'x—(u'x —vs) = —s—= u'i —
(
—,

Bx' Bx' 0dx) Bv'

0'ir(v) = s (v)+2/~, (468)

(44) where all functions of v must be determined at the
value of v defined by (41), i.e., by

where Eq. (41) has been used in the elimination of s. (dx/d v) = s/u'. (41')

TABLE III. Functions in s1o~ving-down density Eq. (45) for M= ~.

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.50

0.55

0.60

0.625

0.650

0.675

0.725

0.75

0.775

0.80
0.825
0.850
0.875
0.900
0.925
0.950

0.0008346

0.0033535

0.0076029

0.0136637

0.0216537

0.0317402

0.0441573

0.05920

0.07725

0.09898

0.1252

0.1568

0.1751

0.1955

0.2184

0.2443

0.3080

0.3479

0,3938
0.4506
0.5217
0.6154
0.7460
1.0260
1.7582

dx
dv

0.0167

0.0504

0.085

0.1213

0.1600

0.2017

0.2484

0.3008

0.3610

0.4346

0.5248

0,6320

0.816

0.916

1.036

1.184

1.374

1.596

1.892

2.53
3.23
4.36
7,26

16.27

0.0002097

0.001897

0.005366

0.010814

0.018552

0.029056

0.04301

0.06147

0.08562

0.11883

0.16404

0.22318

0.3095

0.2826

0.3352

0.4002

0.4813

0.5850

0.7229

0.8898

1.1195

1.63
2.23
3.20
5.79

14.02

ki(~l~')

0.0126

0.0376

0.0631

0.0892

0.1160

0.1441

0.1731

0.2044

0.2372

0.2734

0.3126

0.3531

0.3999

0.3861

0.4108

0.4369

0.4646

0.4941

0.5261

0.5575

0.5917

0.6443
0.6904
0.7339
0.7975
0.8617

{1.0013

{i.oo3)

{1.0035)

{1.004)

(1.0045)

(1.006)

(i.oo8)

(i.oi2s)

(i.o17s)

{1.022)

{1.027)
1.03

(1.035)

(1.045)

(1.O42)

(1.048)

(i.oss)

(1.062)

(i.o7)

(1.075)
1.08

(i.o8s)

(1.095)

{1.11)
{1.12)
(1.14)
1.16

d'x
dvs

0.667

0.679

0.705

0.744

0.802

0.881

0.983

1.1215

1.302

1.550

1.899

2.413

3.311

3.04

3.614

4.35

5.31

6.52

8.068

10.32

14.14

0.4886

0.4859

0.4797

0.4713

0.4594

0.4454

0.4302

0.4124

0.3938

0.3737

0.3513

0.3264

0.2947

0.3029

0.2878

0.2711

0.2544

0.2398

0.2269
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and gi into account. Ke And:

3t s~' 81psq, 20613It'sy&
&=-I —, I

——
I —,I+

4 I u') 80 (u'J 5600 t. u']
(48)

For finite M, the coeKcients of (s/u')' and (s/u')' are
aGected slightly by g2 but not by g3 which is zero for
iI=0. For Be(M=9) and C(M=12), p is given to order
(s/u')' by the following expressions:

Be P=0.6456(s/u')' —0.6972 (s/u') 4

+2.046(s/u')' (49)

f=0.6705 (s/u')' —0.7659(s/u')'
+2.37'2(s/u')'. (50)

Neglecting g2, one obtains instead

Be: /=0 6456. (z/u')' 0 6—964. (z/u')4
+2.048(s/u')' (49')Fio. 1. Slowing-down density exponent in Eq. (47) for M = ~ and

iV=9 for small zju'. C: /=0 6705(s/. u')' 0 7654—(s/. u')4

+2.374(s/u')' (50')
Eq«tion (45), with (43), (46), and (41'), is the prin-
cipal result of our theory. In using it, one first has to
determine x as a function of v by solving (21) or (31).
In doing this, one also finds X [Eq. (32a)]. Having the
relation x(v), one also has dx/dv and f [Eqs. (43) and
(46B)]as functions of v, as well as d'x/dv' and g, .Equa-
tion (41) then yields z/u' as a function of v, or, con-
versely, v as a function of the ratio s/u' which embodies
the conditions of the experiment. Thus P and K are also
determined as functions of s/u', and finally q is found
from (45) as a function of s and u'; hence q can be
expressed in the form:

The effect of gz is thus very small. The values of f ob-
tained by the numerical procedure described below
agree with Eq. (49) to within 2 percent up to (s/u')
=0.35. The "exponential" theory of Placzek' is equiv-
alent to using only the erst two terms in the expansion
of P in (z/u')'. For M= 1, using Wick'

1 t'sp' 11 (s$4 73 / )s8I-I+ I-I ~

4 I u) 240 I ul 4032 (ul

Ejr(s/u')
q(s, u') =- exp[ —u'PM (z/u')].

gu'

The power series for E„and Eg have been worked
out to (s/u')'. They are:

(47) lt = [3/(4x)]1[1 (14/5—) (s/u')'+19 20(s/u'. )4 ],
KQ ——0.4533[1—2.225(s/u')'+12 39(s/u')4 .]. (51)

The exponent, which is the most important part of the
expression, can also be written as

@I SN (47')

It can be shown that in the case of infinite M, P is
determined correctly to order (s/u')' by taking only go

The age theory approximation is equivalent to using
only the first terms in the expansions of P and IC,

0 3 5 6 7 .S 9 IQ I I I 'P

(~r, I ~
I

6 7 8 8 I0 II I.P I 3 l4 I5 I.6 I I

FIG. 2. Slowing-down density exponent in Eq. (47) for M = oo and
M =9 for larger z/u'.

Fic. 3. Slowing-down density coefhcient in Eq. (47) for M= ~
and M=9.

~ G. Placzek, "The Spatial Distribution, of Neutrons Slowed
Do2on by Elastic CollisiorIs. " Declassified Report A-25 (1941).
The author has given explicit formulas for the first two terms in
P for any M.



speci6cally

BETHE, TONKS,

(52))=-,2 —2'Me[1 ——,'Mj (s/u') 2,

AND HURWITZ

TABLE IV. Functions of x for HE=9, Eqs. {7).

goy 1(x) gas(x)

. -', )M (1—2/3M)
E= (53)

VI. CALCULATIONS FOR NUCLEI OF
INFINITE MASS, M= ~

Calculations have been made in accordance with the
procedure outlined below Eq. (47). They were carried
through the second order approximation. v was used as
the independent, x as the dependent variable.

Table I contains a tabulation of the necessary A' s,
and Table II covers the G's.

Equation (21) with )V=2 was expanded to give Eq.

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.575
0.60
0.625
0.65
0.675
0.70
0.725
0.75

0.979472
1.026030
1.073910
1.123097
1.173575
1.225325
1.278324
1.332549
1.360114
1.387976
1.416131
1.444577
1.473309
1.502325
1.531619
1.561189

0.20433
0.243449
0.278597
0.310127
0.338347
0.363551
0.386002
0.405931

0.423575

0.439132

0.452786

0.464708

0.01003
0.01600

0.05102
0.06083
0.07099
0.0?608
0.08123
0.08638
0.09155
0.09672
0.10189
0.10705
0.11218

la,p

lP

first two columns of Table III tabulate x(v) in the
second-order approximation.

From a table such as III we had to calculate f in the
exponent of e in the slowing-down density, Eq. (45).
The variable part of p is oo, Eqs. (43) and (468), and
it is desirable to have this as a function of dx/dv. This
can be done by well-known methods using differences.
For much of the work we used a method that gave
vdx/dv —v as a function of dx/dv more accurately than
usual methods but this led to later unfortunate com-
putational complications because it required forsaking
the established tabular points which are equally spaced
in v. The interlining of the results of this calculation in

TABLE V. Functions in slowing-down density Eq. (45) for M =9.

Bh dx s
8g dP 14

Px
0/(~/~')

IP 20 40

F»G. 4. Asymptotic relations of g e —&'4 for large AI.

(31) in the form

X(x, v') = — +woo(v')
go(x)

2A o»A Q2A»2Ao2'Ao»'
+ +

gl +ll g2 +22 (gl ~11)(g2 ~22)
+ (54)

A»2'

(gl +11)(g2 +22)

The zero-order approximation is obtained by retaining

gQ and A QQ only. A pair of these values, x and v, from the
zero-order calculations were used as x and v' in the
second and third terms of the right member and an
improved go

' found, since A. (x, v)=0. From this a
better value of x was found and this iterative process
was continued until no further change in x occurred.
Since each approximate value of x gave a non-vanishing
value of A, this process furnished X—= —8A/Bx. The

0.35 0.27385 0.942

0.40 0.29157 0.945

0.45 0.31299 0.951

0.50 0.33883 0.956

0.55 0.37031 0.963

0.60 0.4087 0.970

0.65 0.4564 0.978

0.70 0.5172 0.988
0.75 0.5978 1.003
0.80 0.7109

0.2914
0.3211
0.3544
0.3895
0.4284
0.4694
0.5168
0.5691
0.6260
0.6930
0.766
0.8508
0.950
1.069
1.204
1.385

0.05073
0.06076

0.08645

0.1741 1.168 0.3961
0.1892

1.356 0.3775
0.2220

0.12044 0.2566

0.16792 0.2951

0.23305 0.3363

0.3240 0.3808

0.4607 0.4309

0.6743 0.487

1.600 0.3552

1.968 0.3349

2.476 0.3123

3.200 0.2884

4.316 0.2690

6.160 0.2425

0 0.22222 0.9298 0.4533
0.0194 0.00024 0.0124 0.7?6 0.4532

0.05 0.22319 0.930
0.0586 0.00221 0.0377 0.792 0.4499

0.10 0.22612 0.931
0.0988 0.00624 0.0632 0.820 0..".P.

0.15 0.23106 0.933
0.1412 0.01262 0.0894 0.876 0.4342

0.20 0.23812 0.934
0.1868 0.02176 0.1165 0.948 0.4231

0.25 0,24746 0.936
0.2364 0.03419 0.1446 1.036 0.4118

0.30 0.25928 0.938
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columns 3, 4, 5, etc. of Table III recognizes that values
calculated in this way apply to points intermediate
between the tabulated v and x values.

As v approaches unity there is difliculty because dx/d v

and x both increase indefinitely there. But there we used

whence

d ("1—x~~ —
~
=dx/dv —x= s,

dv Ex&

dx/dv= (iv+x)/v

(55)

1dy
d'x/dv' =——

v dv
(57)

VII. CALCULATION FOR NUCLEUS OF
MODERATE MASS, M=9

The difference between this and the previous case is
that the functlolls gp(x), gi, f2 of Eqs. (7) were used in
place of the functions Go of Eqs. (9). In these functions
only the region x&2/M=2/9 is of interest Lsee Eq.
(6)J since lr&0. For purposes of calculation, however,
the g's were tabulated from x=0.20. Values of gp ', g~,

g2 are given in Table IV for M=9 and are accordingly
designated as gpg, gag, g2g, respectively.

The calculations of x(v), P, etc. were carried out just
as for M= ~, noting that here 2/M must be added to
s to get P and that M$/2=1. 080. The results are
tabulated in Table V and in Figs. 1, 2, 3, and 5.

It was of immediate concern to know what the ac-
curacy of the present approximation is. Using Eq. (54)
it was possible to segregate (approximately) the various
orders of approximation. In the calculations

0= h.= —2.3542+1.7542+0.4557+0.1443
for M= 00, v=0.925,

All of the above material appears in Table III. Plots
essentially of P against s/u' appear in Figs. 1, 2, and 5.
The first is of lt/(s/u')' to make the comparison with

age theory which gives a constant for this quantity.
The second and third are appropriate to Eqs. (47) and
(47'), respectively.

Next, IC„(v) had to be calculated. The calculation of

x(v) led quite naturally to a value for X and the other
quantities presented no diKculties. E„(v) is tabulated
in column 8 of Table III and is plotted in Fig. 3.

Ke now had everything necessary to evaluate Eq.
(45):

E (s/u')
q(z, u') = — exp L —u'P„(s/u') ]I

for M very large. Here the functional dependence on the
physical quantities z and I, instead of v, is indicated.

Figure 4 compares the present results with age theory
on the one hand and with the asymptotic form e ' for
large s/u' on the other. The comparison is based on the
exponential factor only. The agreement with age theory
at low s/u' is apparent, and at zju'~7 the approach to
e ' is evident.

6 8 4 .9 l 0 u i.2 l5 l.4 6 i6

FIG. 5. Slowing-down density exponent as in Eq. (4"/') for M= ~
and M =9 for larger z/u'.

0=A = —1.5206+1.4210+0.0934+0.0062
for M= , v=0.825,

0=A = —1.5150+1.3733+0.1351+0.0066
for M=9, v=0.80,

where, in turn, the two zero-order terms, the first- and
the second-order appear. The first expression applies
well beyond the range of s/u' for which we have made
accurate calculations, yet the convergence is not very
bad. In the second expression the corrections amount,
successively, to 6 percent and 0.4 percent, thus pre-
dicting an error of well under 0.1 percent. The con-
sequent error in x is less than 4X10 4 since X 1. A
little analysis shows that, for the same dx/dv, P would
decrease somewhat less than x increases, that is by less
than 0.025 percent. The third expression indicates
about the same accuracy as the second although we are
here outside the tabulated range of f.

Another matter of interest concerns the error caused
by using P„ instead of $9 for Be. The comparison must,
of course, be made at the same s (relative distance) and
the same u' (relative slowing down). From 1 Mev. to
thermal in Be, I'= 79. If we choose z= 79, a distance of
about 13Q cm in Be, the difference in f/(s/u') from
Fig. 5 is O.Q4, the g„giving too low a value of g by the
factor

e—0.04x7g —0 043

Finally, we can make a comparison of asymptotic
results obtained by Marshall, a student of G. C. Wick, '
for M=12 with our results. Marshall's results can be
expressed as

Pi2 ——s/u' —0.587(s/u') ~+0.0417.

From s/u'= 1 to 16 both Pi2 and Pi2 —s/u' agree within
better than 10 percent with our P„results, and this
seems to be better than is to be expected.

We wish to acknowledge the services of Mrs. Dorothy
Guy and Miss Bernice Warr in performing the cal-
culations.

6 By letter communication. Wick (see reference 1) has shown
that the behavior of p for large zfe' can be studied by means of a
Schroedinger-type differential equation for the transform of the
neutron angular distribution. This approach was suggested inde-
pendently by J. A. Wheeler.


