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Experimental results are given on the velocity of propagation of a single domain boundary in a crystal
of silicon iron with a simple domain structure. In weak applied magnetic fields (~0.003 oersted) the ve-
locity is given by a relation of the form v=G(H —H,), where G is a constant ~4 cm/sec./oersted in this
crystal, and Ho=20.003 oersted is the starting field. Calculation of the eddy current losses accompanying the
motion of a plane boundary gives a theoretical expression for G in good agreement with experimental values;
the predicted linear dependence on the resistivity was approximately verified by measurements at 78°, 194°,
and 293°K. In stronger fields (>5 oersteds) there is evidence that the wall closes on itself, and the experi-
mental velocity of collapse of the wall as deduced from flux changes agrees with the theoretical result based
on a model of eddy current losses accompanying a collapsing cylindrical boundary. The results have a bear-
ing on the well-known eddy current anomaly, namely, the fact that the total loss in a ferromagnetic material
undergoing a.c. magnetization is often two or three times larger than the eddy-current and hysteresis losses
calculated in the usual way assuming a spatially uniform and isotropic classical permeability.

I. INTRODUCTION

HIS paper discusses the results and interpreta-
tion of measurements of the propagation velocity
of a ferromagnetic domain boundary in the single crys-
tal of silicon iron with a simple domain structure em-
ployed previously by Williams and Shockley.! The
experiment is similar in principle to the Sixtus-Tonks
experiment,’ with the important difference that in the
present experiment the eddy current configuration is
amenable to exact mathematical calculation, thereby
enabling a quantitative comparison with observation.
Experiments and analysis similar to those described in
IIT and V below have been carried out by K. H.
Stewart?® and were reported at the Grenoble Conference
on Ferromagnetism and Antiferromagnetism as were
the principal results of this article. However, it appears
from Stewart’s hysteresis loops unlikely that his speci-
men had as simple a domain structure as that encoun-
tered in our experiments.

II. DESCRIPTION OF SPECIMEN

The specimen was cut from a single crystal of 4
weight percent silicon iron so as to form a hollow
rectangle (Fig. 1) having all surfaces parallel to [100]
planes. The outside dimensions of the rectangle are
1.34X1.71 cm and the cross section of a leg is 0.114
X0.152 cm.

Figure 1 shows the domain structure of the crystal.
The broken lines represent domain boundaries or
Bloch walls. There is a boundary at each corner and
one extending completely along the length of the speci-
men, forming a total of eight domains. If the four inner
domains carry flux around the crystal in a clockwise
manner the four outer domains carry flux in a counter-

* A preliminary report was presented at the New York Meeting,
Phys. Rev. 78, 341 (1950).

U'H. J. Williams and W. Shockley, Phys. Rev. 75, 178 (1949).

2K. J. Sixtus and L. Tonks, Phys. Rev. 37, 930 (1931); 39, 357
(1932); 42, 419 (1932); 43, 70, 931 (1933).

2 K. H. Stewart, Proc. Phys. Soc. 63A, 761 (1950).

clockwise manner. The net flux depends on the position
of the boundary which can be moved by an applied
field. The field is obtained by winding a number of
turns of wire around the specimen and then passing a
current through the wire. The change in flux is meas-
ured by a secondary winding connected to a fluxmeter.

III. LOW FIELD MEASUREMENTS

With this specimen there is a direct correlation be-
tween the position of the boundary and the net mag-
netization in the specimen, so that the velocity of the
boundary movement for low fields can be measured by
timing the deflections on a Cioffi recording fluxmeter
with a stop watch. When the magnetization changes
from saturation in one direction to saturation in the
other direction the boundary moves the width of a leg
in the hollow rectangle. At low fields the boundary is
thought to be plane, as shown in Fig. 2a, the surface
tension of the boundary overcoming the tendency of
the eddy current drag to make it curve. The effective
driving field was taken to be the difference between the
applied field and the minimum value of the field which
would make the boundary move. First a hysteresis
loop was traced using the smallest value of the field
that would move the boundary. This value of the field
was not constant but varied somewhat as the boundary
moved across the crystal perhaps due to different im-
perfections that the boundary encountered in various
places. Then another loop was traced keeping the
excess field constant by manipulating the current con-
trol in the magnetizing circuit. This was done by ob-
serving the loop as it was being traced and keeping the
recording pen a constant distance away from the side
of the previous loop. A series of such loops was traced
with constantly increasing field and the times for the
deflections measured. Then the velocity was plotted
as a function of the field. The maximum excess field
was 0.003 oersted. A linear relation was obtained; the
slope of the line gave the velocity per oersted. Sets of
measurements were made at 78°, 194°, and 293°K.
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These results are compared with the theoretical values
in Fig. 3.

The criterion for low fields is that the effect of surface
tension for appreciable curvature of the wall be large
compared to the driving field. A surface tension v of
2 ergs/cm? and a field H of 0.003 oersted correspond to
a radius of r=+/2IH=2/2X1500X0.003=0.22 cm or
more than twice the edge of the rectangle cross section.
For such a condition, no matter what forces tended to
hold the wall back, the applied field could not deform
it appreciably from a plane. On the other hand, for the
high field conditions described below, the H values are
1000 times larger and consequently surface tension
forces are negligible for the curvatures that are expected
to occur, such as those in Fig. 2(b), for example.

IV. HIGH FIELD MEASUREMENTS

Some preliminary work was done in which a con-
denser was discharged through the primary winding and
the deflections observed on a galvanometer scale to
determine the extent of the boundary movement. Dur-
ing these tests it was observed that if a reversing field
was applied to the specimen in an initially saturated
condition the net change in flux increased uniformly
with condenser voltage up to about the point at which
half the flux was reversed. For larger discharges it was
observed that the ballistic kick was followed by a slow
motion which proceeded with gradually increasing
velocity until the specimen became spontaneously
magnetized to saturation in the reverse direction. This
was interpreted as meaning that under high fields the
eddy currents tend to retard the motion of the boundary
more in the middle of the crystal than near the surface
so that the boundary curves and finally forms a cylinder
which collapses due to its surface tension as is shown
in Fig. 2b. This idea was checked by making a series
of measurements at comparatively high fields.

F1G. 1. Simple domain structure in Si-Fe single crystal in
form of hollow rectangle.
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F16. 2. Boundary motion in low and high fields.

For high field measurements secondary voltage
pulses were photographed on a type 304H Dumont
cathode-ray oscillograph using a 5C PA tube. A vari-
able delay circuit was used so that the field was applied
after the sweep had been triggered. The secondary
voltage pulses were photographed with a Leica camera
having an /3.5 lens and using a super xx panchromatic
film. Figure 4 shows a typical voltage pulse.

Voltage pulses were obtained for fields ranging from
5 to 80 oersteds. For each pulse values of V/H were
plotted as a function of the corresponding values of
TXH as shown in Fig. 5, which also shows the theo-
retical curve for a collapsing cylindrical boundary.
The experimental results are in good agreement with
theory.

We go on to derive the theoretical expressions for
the low and high field situation.

V. EXACT SOLUTION OF EDDY CURRENT LOSSES
FOR PLANE WALL IN RECTANGULAR BAR

This calculation is intended to apply at low fields.
The width of the bar in the x-direction is 2L, and in
the y-direction is d. The origin of coordinates is at the
center of the cross section, and the wall is in the plane
x=0. We neglect H in comparison with B, as is readily
justified. We employ Gaussian units.

We require solutions of the following equations for
the current density i:

V2i=0; 1)
curl i=0; (2)
divi=0; 3)

except within the wall, where
curl i= — (1/7¢)(dB/dt), (2a)

7 being the electrical resistivity. The boundary condi-
tions are

in=0 C)
on all outer surfaces, and at the wall position
+1,=B,/7c, 5)

where v is the wall velocity. We suppose that the wall
is moving sufficiently uniformly so that dissipation of
energy by purely local eddy currents caused by struc-
tural irregularities may be neglected. This appears to
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Fic. 3. Comparison of experimental and theoretical values of
the wall velocity in low fields. The theoretical calculation, based
on eddy current losses for a plane wall in uniform motion, does
not contain any disposable constants. The deviations between the
two curves are within the estimated accuracy of the measurements.

be a valid supposition in our experiments, but in the
case of cold worked materials the local losses may be
appreciable, and we have in these circumstances a
probable explanation of the effects of cold-working re-
ported by Dijkstra and Snoek® in their work on the
Sixtus-Tonks experiment.

The solution may be verified to be of the form:

iz=— 3. D, sin(nry/d)sinh[ (L—x)nr/d]; (6)
odd

n

iy= Y D, cos(nry/d)cosh[ (L—x)nr/d], 7

odd
where

D,==+4(Bw/rc)/[nmw cosh(Lnw/d)], (8)
the plus sign obtaining for =1, 5, 9, -+, and the

minus sign for n=3, 7, 11, - -.
We denote by P the power loss per unit length in
the z-direction, and find

L a2
P=4r f (.2+i,2)dxdy, 9)

0 0

which comes out after carrying out the indicated inte-
grations, to be

P=(16d2B%%/7r®) 3° n~ tanh(nwL/d). (10)
odd

The series is rapidly converging, and for a square rod
d=2L is equal to 0.97, while for the actual dimensions
of the crystal employed the sum is 1.00.

If we set the eddy current losses equal to the rate
2HI ,vd at which work is done by the applied field on
the specimen, per unit length, we find, taking the sum
as equal to unity, the result

v=(w?rc®/32B.d)H, (11)
3L. J. Dijkstra and J. L. Snoek, Philips Res. Rep. 4, 334 (1949).
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which is in excellent (420 percent or less) agreement
with the experimental results shown in Fig. 3. The ob-
served velocities are slightly lower, and this is in the
expected direction as we have not considered purely
relaxation effects on the wall motion. In the experi-
ments v/H=4 cm/sec./oersted.

Landau and Lifshitz* in their classic paper on do-
mains show that relaxation effects alone will give the
following relation:

v=(v1,A/M)H, (12)

where A is the relaxation frequency, v is the magneto-
mechanical ratio and A=(4/K)? is the usual wall
thickness parameter; in Si-Fe we have A=3X10~% cm;
v=2X107 radians/sec./oersted; I,~1600; A=3X10°
sec.” as estimated from microwave resonance results;
so that v/H =600 cm/sec./oersted. This is much higher
than the actual velocity, which is apparently limited
almost entirely by eddy currents. But in very thin
sheets or in high resistivity material (such as ferrites)
we may expect to find that relaxation processes® are
important in determining wall velocities. Further, in
the case of experiments of the Sixtus-Tonks type the
wall makes a small glancing angle with the propagation
direction, so that the effective value for A to be used
in Eq. (12) may be greater by a factor of the order of
100 than the normal wall thickness. This is the ex-
planation which we offer to account for the high values
(~50000 cm/sec./oersted) for v/H reported, for ex-
ample, by Dijkstra and Snoek?® in a Sixtus-Tonks
experiment.

VI. STUDY OF COLLAPSING CYLINDRICAL DOMAIN
WALL IN CYLINDRICAL SPECIMEN

This calculation is intended to apply at high fields;
we approximate the rectangular cross section of a
crystal leg by a circle of equal area. We consider a
long cylinder of magnetic material of radius R, and
suppose that within and concentric with this there is
a tube-like domain boundary of radius p separating
two domains running in the direction of the cylinder
axis, but antiparallel to each other. We suppose that
the wall is collapsing under the action of an external
field H alone, and neglect the surface tension of the wall,

—f__

2 VOLTS

{
L— 10-3 sec.—»,

F16. 4. Photograph of voltage pulse resulting from collapse of
Bloch wall in strong fields (~10 oersteds).

4 L. Landau and E. Lifshitz, Physik. Zeits. Sowjetunion 8, 153-
169 (1935).

5 C. Kittel, Proceedings of Grenoble Conference, 1950 (to be
published) ; Phys. Rev. 79, 214 (1950).
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which is quite legitimate. We study the voltage induced
in an external winding which is concentric with the
cylinder.

The flux associated with the collapsing wall induces
at radius 7 a field Ey:

1do 1 d 1672
2rrEy= —— —= —-8xM ,-—wp*= ———M ,pv,, (13)
c dt c dt c

where v,=dp/d! is the radial velocity of the wall. We
have
E¢=—(87/c)M sv,p0/7. (14)

Dropping the minus sign, the eddy current density is
(15)

where 7 is the electrical resistivity. The total current
per unit length of cylinder is

Jo=8mM v.p/7cr,

R

Tg= f Fodr=(8m/7¢)M 2.0 In(R/p).

P

(16)

We have again neglected secondary eddy current effects,
as is quite justified in our velocity range.
The longitudinal field inside the wall is

H= 47rio/c,
H=(320%/1¢)M .p In(R/p). (17)

The velocity of the wall is determined by the energy
balance A=B,

where
A =energy dissipation by eddy currents,

B=energy release by magnetization change.

R R
A= f JE2mrdr= f (647%/ 7)) M 20,202 - 2mdr /7
p p

= (12873/rc) M 2020 In(R/p); (18)
B=4rHM ,pv.,. (19)
Equation (19) gives for the velocity
v,=Hrc*/[320°M .p In(R/p) ] (20)
and, for the voltage,
V=HrcN/2 In(R/p), (21)

where N is the number of turns on the secondary wind-
ing. The comparison with experiment is shown in Fig. 5.

VII. THE EDDY CURRENT ANOMALY

The calculation of eddy current losses in ferromag-
netic materials is a standard engineering calculation
in connection with transformer cores and rotating elec-
trical machinery. It is well known that the calculation
does not give correct results in ferromagnetic materials,
even when hysteresis effects are considered: the ob-
served losses are always greater than the calculated
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Fic. 5. Comparison of experimental and theoretical values of
the voltage pulse arising from the wall collapse at high fields. The
theoretical calculation is based on eddy current losses for a circular
cylinder and does not contain any disposable constants.

losses, often by a factor of two or three. The discrepancy
is known as the eddy current anomaly.®

At the basis of the standard calculation lies the
assumption that the permeability is homogeneous and
isotropic; that is, it is assumed that every element of
volume of the specimen is characterized by a scalar
permeability po. Actually we know that the important
magnetization changes in ferromagnetic materials are
associated with domain rotation and domain boundary
displacement. We are concerned in this paper only
with domain boundary displacement. Here the effective
local permeability is very inhomogeneous. In the case
of a field applied parallel to a 180 degree boundary the
local permeability is unity away from the boundary,
but assumes extremely high values within the boundary.
It is obvious that the values inside the boundary must
be very high if the average of the permeability over the
entire volume is to account for the high average per-
meabilities observed in transformer materials.

It is reasonable to expect that such an inhomogeneous
distribution of permeability will lead in general to
higher eddy current losses than one would calculate
on the basis of an equivalent uniform average perme-
ability. A given flux change will cause a definite e.m.f.
S E-dl around a fixed path, independent of the origin
of the flux change. But the power dissipation is pro-
portional to E? and the average value of E? will be
higher for an inhomogeneous distribution of flux change
than for a uniform distribution, even though the total
flux change may be equal in both cases. Therefore, we
expect on this qualitative reasoning to find that the
uniform permeability assumption leads to calculated
losses lower than observed losses.

We give below exact calculations for the comparison
of losses on the classical and domain models for the
case of a square rod in an a.c. field parallel to the axis
of the rod. For the domain structure we assume a single

8 F. Brailsford, J. Inst. Elec. Eng. 95, II, 38 (1948); O. I. Butler
and C. Y. Mang, J. Inst. Elec. Eng. 95, II, 25 (1948); R. Feldt-
keller, Frequenz 3, 229 (1949); V. E. Legg, Bell Sys. Tech. J. 15,
39 (1936); L. W. McKeehan and R. M. Bozorth, Phys. Rev. 46,
527 (1934).
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plane domain wall dividing the square into two equal
rectangles. A suitable basis for comparison of the losses
is found in the comparison of Q’s, that is, the ratio of
energy stored to energy dissipated per radian. The
domain model has a Q lower than the classical model
by the factor 4. This is of the same order of magnitude
as the observed discrepancy, but of course the calcu-
lated results will depend on the particular geometry
employed.

In the case of a circular cylinder with a concentric
domain boundary the ratio Q(domain)/Q(classical) can
be varied between 0 and o, according to the position
of the domain boundary. This situation is rather special,
however, and in general one would expect the domain
Q to be lower, on the basis of the qualitative argument
given above relating to the average values of E? and E.

There are theoretical grounds for believing that the
eddy current anomaly may be larger in thin sheets of
material than in thicker sheets, if we suppose the
number of domain boundaries to be constant. The
thinner the sheet, the more concentrated are the lines
of E about each domain boundary, thus leading to a
high average value of E? and high eddy current loss.

VIII. CLASSICAL THEORY OF EDDY CURRENT
LOSSES IN SQUARE ROD

We consider the eddy current losses in a square rod
of side @, permeability u, and conductivity ¢. The rod
is situated in a uniform field of amplitude H, parallel
to the axis and varying with angular frequency w. We
treat first the low frequency limit at which the skin
depth 8 is >>a. The field then penetrates the rod without
significant change in amplitude, so that we have

(curl E),= — jwuH/c, (22)
or
(curl 1),= — jwucHo/c. (23)
This equation is satisfied by
i,=Fy; i,=—Fx, (24)
if
F=jwusHo/2c. (25)

The time-average power loss per unit length of rod is

1
P=——f f (t2+1,2)dxdy
20

=4(F?/2¢) fo " J; m(x2+y2)dxdy

= owuH ?a*/48¢2.

(26)

(27)

The maximum energy stored is uH%?/8m, so that the

Qis
Q=12(5/a)% (28)

At the high frequency limit ¢>>§, and we employ
appropriate approximations to find for the average
power

P=w(uH/167)(4a8), (29)
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while the maximum energy stored is uHy*4ad/16m,
giving

0=1. (30)
The effective permeability may be written as
p(14-707Y), 31)

which is consistent with the familiar equation Q=wL/R.

IX. DOMAIN THEORY OF EDDY CURRENT LOSSES
IN SQUARE ROD
We treat a model in which there is a single plane wall
running parallel to the axis of a square rod, and parallel
to two of the sides. We suppose that the equilibrium
position of the wall is at the midpoint of the rod; the
losses will depend somewhat on the choice of equi-
librium position. If there is a restoring force —gx per
unit area of wall the permeability at sufficiently low
frequencies will be real and given by

(32)

where a is the side of the square, and we suppose that
uw>1.

We suppose that in the absence of restoring force
there is a relation of the form

v=GH (33)

connecting the wall velocity and the applied field. It is
shown in Section V above that

Ho= Bs2/7rqa)

G'=(32B,a/rc*r) 3 n® tanh(nm/2), (34)
odd
where the sum is approximately equal to 0.97.
The complete force equation now is
2HI,=gx+ j2wl x/G, (35)
which gives
p=po[ 14 j(Buw/2rGg) ™. (36)
We have
Byw/2nGg=(8/7%)(a/5)*(0.97), 37

where the effective skin depth § is defined in the classical
way, using o as the permeability.
At low frequencies §>>a, and

Q=(x%/1.76)(8/a)?
~4(8/a)?, (38)

which is only one-third of the value of the classical Q
given by Eq. (28).
At high frequencies §<a, and

u=~—4;5(8/a)uo (39)

so that the material behaves as a resistive element. The
calculation is valid only so long as the skin depth for
permeability unity is greater than the side of the speci-
men, or when ud?>a?. It is seen that also at high fre-
quencies the domain model gives lower Q’s than the
classical mode.
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