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The S-matrix formalism introduced by Yukawa for non-local 6eld theory is considered. For suitable types
of non-local 6elds and interactions it is shown that the S-matrix is convergent through the second order of
interaction. In the limiting case in which the non-local fields become local, it is found that the S-matrix
formalism yields results inconsistent with the usual formalism unless a certain limiting process is introduced.
The limiting process brings agreement between the two formalisms only through the second order of inter-
action; and the higher orders will, in general, disagree. Unfortunately, the limiting process also destroys
the convergence of the S-matrix in the general case of non-local Gelds. These results suggest that the S-matrix
formalism will need to be revised, but no de6nite recommendations for doing this are made here. An internal
angular momentum operator for non-local 6elds is introduced; this operator aids in the decomposition of the
6eld into irreducible parts of diferent spins.

I. INTRODUCTION The proposed S-matrix then has the form

KCENTLY Yukawa considered the possibility of
extending ordinary (local) field theory by intro-

'

~ ~

ducing the concept of non-local 6elds which were
supposed to represent elementary particles having a
6nite extension in space-time. ' In local 6eld theory we
associate a 6eld quantity with each space-time point
x& (x'=xi ——x, x'= x2 ——y, x'= x&——s, x'= —x4 ——ct); for
example, a local scalar 6eld is represented by U(x). In
non-local 6eld theory, however, we consider the field to
be a matrix element of a non-local operator, the rows
and columns of the matrix being characterized by
space-time coordinates; for example, a non-local scalar
field would be written as (x'

~
U

~
x").A local field is then

a special case of a non-local field in which the matrix is
diagonal:

S=1+ (i/hc) ( L' I+ (i/Ac)'(L'D+L' )
+ (i/hc)3( L'D+L'D+L' )+, (3)

where L is an invariant Hermitian operator charac-
terizing the interaction and is expressed as a sum of
products of non-local and local 6eld quantities. D+ is an
invariant displacement operator with the matrix ele-
ments

(x'i D+ i
x")=D+(x' —x")

(4)

(x'~ U~x") = U(x')S(x' —x"),

b(x) = b(x') b(x') 8(x )b(x').

The problem of introducing interactions between
non-local 6elds seems to be much more difFicult than
in local 6eM theory, since it does not seem to be possible
to extend the concept of the Schrodinger wave func-
tional and Schrodinger equation in any simple manner.
Yukawa" suggested, however, that it might be possible
to introduce interactions between 6elds by extending
the formalism of the 5-matrix to the case of non-local
fields. To do this he de6ned a space-time average for an
arbitrary operator A by

(dx)4= dx'dx'dx'dx'.
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as (x' —x") is time-like in the future, space-like, or time-
like in the past. As shown by Yukawa, ' this S-matrix has
the following properties: (i) it is relativistically in-
variant; (ii) it is unitary; and (iii) it is diagonal with
respect to total energy and momentum.

The question of the convergence of the S-matrix will
be considered in Sec. II. No general investigation will be
attempted, but a simple example will be considered and
it will be shown that for a suitable choice of I.' the
S-matrix is convergent through the second order of
interaction. In Sec. III, the limiting case in which I
is made up of local field quantities will be discussed, and
it will be shown that the present S-matrix does not
yield the same results as the usual formulation of field
theory. This diGerence can be eliminated in second
order by introducing a certain limiting process to be
applied to the operator D+. Unfortunately, however, if
this same limiting process is applied to the general case
in which 1.' is composed of non-local fields, the S-matrix
will no longer be convergent. Because of this difFiculty
the S-matrix (3) is not completely satisfactory, but,
of course, it may still be possible to modify it in some
way so that it will satisfy all the desired conditions.

Yukawa has discussed the problem of decomposing
arbitrary non-local 6elds into irreducible parts, each
of which is characterized by four constants referring to
the mass, internal radius, internal angular momentum,
and another quantity which has no immediate physical
meaning. ' These irreducible parts are eigenfunctions of
an invariant internal angular momentum operator, and
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the corresponding eigenvalues of this operator may be
taken to be h'f(l+1). This internal angular momentum
operator, along with operators for the components of
internal angular momentum, will be derived and dis-
cussed in Sec. IV.

By analogy with local 6eld theory, we take the non-
vanishing commutation relations to be

b(q'+»-')L~*(q), N(q')3= —(q'/I q4I)b(q —q'), (1l)

b(k'+«, ')Lv (k), v(k') j= —(k4/ik'i)b(k —k'), (12)

ah=a„b4'=a~b'+a2b' +a3b'+a-4b', a'=a„a4', (7)

the matrix form of these fields is

(x'i Ui x")= (h/(2x)'c)&(«„/24rX„)

with

X) b(q'+» ')b(r' 74 ')—
)& b(rq)u(q) exp(iqX)(dq)', (8)

~*(q)=I(—q),

(x'I Vl*")= Ch/(2x) ~c]&(K„/2xX„)

II. SELF-ENERGY CALCULATION

It is of course impossible to make a general inves-
tigation of the convergence of the S-matrix, so that we
shall content ourselves with the consideration of a par-
ticularly simple example. Although the term "self-
energy" may not have a meaning in the same sense here
as in local 6eld theory, we shall carry out the calculation
which in the limit of local Geld theory would be call.ed a
self-energy calculation. For this purpose we introduce
two non-local helds, U and V; U is a real held and V is a
complex 6eld. We assume the interaction between them
to be given by

I'=gV*UV,

where V* is the Hermitian conjugate of V. Using the
notation

X=xv(x'+x"), r= (x' —x"),

[A, B7=AB —BA. — (13)

These commutation relations lead to the following
de6nitions for occupation, creation, and annihilation
operators:

U-type particles: qp=q'={q+~„~)& (q is the space vector part
of q and q'=q q)

Occupation operator: M(q) = (1/2qp)N*(q, qp)u(q, qp)
Creation operator: (1/2qp) 4*{q,qp)
Annihilation operator: (1/2qp) 4(q, qp)

V+-type particles: kp=k4= (%~+kg,')&

Occupation operator: E+(h) = (1/2kp)v*{h, kp)o{k, kp)
Creation operator: (1/2kp) &v*(h, kp)
Annihilation operator: (1/2kp) &o(&, kp)

V=type particles: kp =k'= —(k~+~,') &

Occupation operator: E (h) = (1/2kp)o(h, kp)e*(h, kp)
Creation operator: (1/2kp) &v(h, kp}
Annihilation operator: (1/2kp) &@*(k,kp)

In addition we have the following vacuum expectation
values which can be derived from the commutation
rules and the creation and annihilation properties of
the operators:

b(q'+«-')(N(q)N'(q'))0= b(q —q'), qo»; (14)

b(k'+« ')(v(k)v*(k') )0
——b(k k')

4 ko)—0I (15)

b(k'+ «.')(v*(k)v(k') )0——b(k —k'), kp(0. (16)

We shall consider the second-order contribution of
Eq. (5) to the 5-matrix. Higher orders of interaction
will not be discussed because of the difFiculty of cal-
culation and because the results of Sec. III indicate
that Eq. (3) is probably not correct in higher orders.
The second-order contribution can be written as

X I b(k'+«„')b(r' —7.')

X b(rk) v(k) exp(ikX) (dk) ',

5&'& = (ig/hc)'( V*UVD+V*UV I

For simplicity, we assume that

( V*UV) =0.

(17)

(18)

(x'i V*i x")= [h/(2v. )'cj&(»,/2xX, )
(10)

b(k'+ «.')5(r' —X.')

Xb(rk)v*(k) exp(ikX)(dk&4

These non-local 6elds are less general than those intro-
duced by Yukawa in that the expansion coefBcients
u(k) and v(k) are not functions of r; this corresponds to
using just the spherical harmonic of order l=0 in his
expansion in terms of spherical harmonics. In the rest
system (k~ ——k2 ——k3 ——0), we see that the internal
structure is given by r'=0, r~~+r22+rP=)', and that
there is no dependence on angle.

This is always valid for x„&2~„since then it is never
possible to satisfy the energy™momentum conservation
laws derived from Eq. (18). For the same reason it is
also valid (regardless of the ratio «„/«.) when the initial
or 6nal state consists of a single V-type particle. As-
suming Eq. (18), we may simplify Eq. (17) by replacing
D+ by ~D, where D is de6ned by

D(x)=1, 0, —1

as x is time-like in the future, space-like, or time-like
in the past. This replacement does not alter S&" because
the omitted part can be written as

', (ig/hc)'I V*U-VEV*UV j
,'(ig/hc)'( V~U-V P= 0. (20)
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S&" can now be written out in the following form:

S'4'= ', (-ig/hc)', . CI(x'jr, +r, { V*}x'+r,)

X(x'+r
}
U{x')(x'}V}x'—r )

X(x'—r4}D}x"+r4)(x"+r4}V*}x")

X(x"
}
U}x"—r4)(x"—r4} V{x"—f4—r4) }

x(d*')'(dx")' II («')' (»)

where 8 is the derivative of the 8-function with respect
to its argument and E' represents a principal value which

must be taken when performing the integral. In carrying
out the integrations over r, we find the following simple

integrals:

For ri and re,

(~ /24rX ) t, tb(r' —X ')8(rk)(dr)4= 1; (23)

For r2 and rg,

=(sink Q)/X Q, (24)

where

For r3 and r4,

Q= Lk' —(kq)'/q'j'
= [(kq/~„)' —s.'j .

G(k'p)=(~. /24'„) ~C )
&(r' —&.')b(rk')

J
Xexp(ipr) (dr) '

= (sinlI, „K)/X„K, (26)

A =Lp'- (k'p)'/(k')*j'
=k'p/a, .

These integrals are invariant functions of their argu-
ments and are most easily evaluated by using special
Lorene frames to simplify the calculation; for example,
Eq. (24) would be evaluated by using the reference

In Eq. (21) the variables of integration have been
chosen to facilitate integration over the internal coor-
dinates r; the remaining integrations over x then cor-
respond to the usual local field theory except that they
contain certain convergence factors introduced by the
integration over the internal structure. To carry out the
integrations we use the Fourier integral representations

(8) and (10). In addition we need the Fourier expansion
of D(x) which is shown in the Appendix to be

D(x) =(—i/~')F "" ~'(p')(p'/} p'I)
J

Xexp(iPx) (dP)', (22)

system in which @=0, q'=&~„. In Eq. (27) we have
set p' equal to zero because of the factor 8'(p') occurring
in the remainder of the integrand; this is not strictly
correct, but should introduce little error into our later
semi-quantitative arguments. '

The expressions (24) and (26) are responsible for
making S&2) convergent, and accordingly they will be
called convergence factors. They are of the form
x ' sinx, a function whose properties are well known.
To see the nature of these convergence factors, let us
suppose in Eqs. (24) and (25) that q=0, q'= &z„; then
Q=}k} and F=(X„{k{)'sin(X }k}).If X„}k{is small

compared to unity, Ii will be close to unity; accordingly,
if X„ is small enough, the factor Ii will acct the
S-matrix only for a very large momentum }k}.For
real processes, the eGect of the factor F would be
detected only at high energies; for virtual processes, I'

becomes a cut-oG factor which helps produce conver-
gence in the integrations over the intermediate mo-
menta. For later work, it will be useful to express Q and
E in diferent forms, so that at least one of the mo-
menta in each expression represents the momentum
of a real particle. This is possible because the momenta
are always connected by an expression of the form

k—
q
—k' —P=O,

from which we can derive

kq= —k'p —~~K '——',p'

2

where we again have set p' equal to zero. ' Thus Q and
E can be expressed in terms of kq or k'p and some
constants; at least one of the momenta k, q, or k' is the
momentum of a real particle.

Making use of these results, S&') becomes

4

S"'=(Ng/4 ' '))f )' II (dk;)'b(k, + „')
i~1

x II(dq;)'b(q, '+~-')(d p)'{(p'/I p'})s'(p)
i=I

Xb(k4 q, k2 p) b(ks+—q4
—k4+—p)—

Xu'(k, )n(k2) v*(k4)s(k4) 44(q~) 44*(q2)

XF(keg)F(k4q4)G(k4P)G(ksP) }. (29)

Except for the convergence factors Ii and G and the use
of the Fourier transform of D(x), this expression is
much like the one which would be obtained from local
field theory. There are three diG'erent self-energy terms
in Eq. (29), one for each type of particle. Owing to the
way in which we have chosen the interaction, the self-
energy of the V+-particle divers from that of the
V -particle; in fact, as we shall see, the self-energy of

'This implies neglecting the derivatives of F and G with
respect to p, which is reasonable since these functions are slovenly
varying compared with the other functions in the integrand of
Eq. (22).
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the V+-particle is finite, while that of the V -particle is
infinite. This arises from the particular choice of L'
given by Eq. (5). By splitting the V field into positive
and negative frequency parts, and using a slightly
diGerent interaction, it is possible to eliminate this
asymmetry between V+- and V -particles (see below,

Eq (36)).
We shall consider the self-energy calculation for the

V+-particle in detail, and indicate briefly the results for
the other two types of particles. There are two possible
contributions to this self-energy which are given by

v" (ki) v(k4)(v(kg)v*(k3))0(N(qi)N*(q2))0, (30)

v(k2) v*(k3) (v*(ki) v(k4))p(N(qi) u*(q2) )v. (31)

As a matter of fact, the contribution from Eq. (31)
vanishes because it is impossible to satisfy simul-

taneously the relations

(k3+q2 —k4)'= p'=0
(qg) v) 0, (k3)v) 0, (k4) v(0. (32)

This is connected with the fact, mentioned by Yukawa
in the preceding paper, that with this S-matrix for-
malism there is no self-energy of the vacuum.

Using Eq. (29), we find for the self-energy of V+-
particles

( %+=1 . ~S&'i~ . Ari4+=1 )

= (ikg'/4»'c')fi(ki k4) g(ki'+—»„')8(k4'+»„')Ii(k4), (33)

where

I,(k )=4I I (dk)4(dq)4(dp)'
J
kp&0, qo&0

X (8(k+q —k4+p)8(k'+» ')8(q'+» ')

x(p'/I p'I)&'(p')LF(k q)G(kp))'I. (34)

We note that Ii(k4) is an invariant function of k4 and
can therefore depend only on k4' ———~,', accordingly we

simplify further considerations by setting k4 ——0,
(k4) 0

——», . We also use Eq. (28) to express G as a function
of k4q. The integrals over k and p in Eq. (34) are then
easily performed since they are independent of the
convergence factors; the details of this calculation will

be found in the Appendix. The resulting expression for
Ii ls

Ii(k4) = v )I ~8(q'+» ')A(qo)

x (L1/(P+». ')3—(1/2P) I

where
~~ for qv) (»„'+»„')/2»,

A(qv) = 1 for qv&(» '+», ')/2»„, if K (K„
0 for qv& (»„2+»,')/2»„, if »„)».

P= —a„~—I~ ~+2~ gO

The integrand of Eq. (35) has a singularity at just the
value of qo at which A(qv) has a discontinuity; conse-
quently, the integral is not convergent. This divergence
of the integral will be ignored at present, however,
because the discussion of Sec. III and the Appendix
will show that it is a consequence of the structure of the
S-matrix rather than of the particular properties of the
fields. A suitable modification of the S-matrix should
eliminate divergences occurring at finite intermediate
momenta. We are more interested here in the con-
vergence of Eq. (35) at the upper limit of integration.
At this limit, the combined convergence factors produce
a factor of the order of

I il I
', so convergence of Eq. (35)

is secured; we shall accordingly consider Eq. (35) to be
convergent.

Having seen that the self-energy of the V+-particle
is finite, we consider briefly the other two types of
particles. The self-energy of the V -particle involves an
integral of the form (34) except that the integration is
over k4, while k is a fixed ~ector. Making use of Eq. (28)
then, the convergence factors are found to depend only
on kp. Since the integration over p is convergent without
the convergence factors, we see that the value of the
integral is essentially independent of these factors, and
the integral will diverge. The self-energy in this case
diverges linearly; this is in contrast to the ordinary fieM

theory, where the divergence is only logarithmic. This
difI'erence arises because in the present calculation
there is a contribution from Eq. (31) but not from Eq.
(30). In ordinary field theory both of these terms con-
tribute and partially cancel in such a way that the
order of the divergence is reduced. The self-energy of the
U-particle is found to be finite because the convergence
factor for that calculation can be written as

I F(k4q)
XG(—k4q ——',»„')O'. Since q is fixed, integration over k,
will always be convergent.

The asymmetry between the V+-particle and the
V -particle can be removed by revising the interaction
operator L'.' We separate the field V into two parts:
V+ and V . V+ corresponds to ko&0, and V to kp(0.
We may then take L' to be

L'=g(V+*UV++V UV *

+V+*U V +V *UV+ I, (36)

or we may symmetrize the last two terms:

L'=g(V+*UV++V UV *+-',(V+*UV
+V UV+*+ V ~UV++ V+UV *)I. (36')

Using either one of these interactions, we have the two

'Operators referring to different momenta may be freely com-
muted.

6 The author is indebted to Prof. Yukawa for suggesting the
following scheme.
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self-energies given by

', (-ig/Iic)'( V~*UV+DV+*UV+ I for the V+-particle,
~(ig/kc)'(V UV *DV UV *t for the V -particle.

Because of the creation and annihilation properties
given previously, it is seen that these two expressions
are symmetrical in the two types of particles and both
are convergent (provided that we again ignore the
divergence occurring at finite intermediate momenta).
This procedure seems to be quite arbitrary at present,
but it may turn out that this, or something similar,
will be necessary in the future development of the non-

local field theory.
The calculations of this section seem to indicate that

when a satisfactory method of introducing interactions
is found, the non-local field theory will be convergent.
The present S-matrix seems to be unsatisfactory for
various reasons, but the non-local character of the fields

introduces convergence factors which eliminate the
usual divergences of local field theory. These con-
vergence factors should be carried over into the more
correct formulation when it is found.

GI. THE LIMIT OF LOCAL FIELD THEORY

If we let X and X„approach zero in Eqs. (8) and

(10), we find that U and V become local fields U(x) and

V(x) with the following non-vanishing commutation
relations:

[V*(x'), V(x")]=(k/ic)D„(x' x"), (37—)

[U(x'), U(x")]=(k/ic)h„(x' x"), — (38)

where h„and h„are the usual invariant functions of
local field theory and are given by

6=[—1/(2x)'i] 3 ~ ~ ~ JI 8(k'+K)(ko/~ko~)

&& exp(ikx) (dk)'. (39)

We have now to compare the results of calculations
using the 5-matrix given by Eq. (3) with the results
from the usual. field theory. In the usual theory, the
S-matrix takes the formv

5' = 1+(i/hc) ( L' I+ (i/kc)'I L'e+L')
+ (i/hc)'I L'r+L'e~L' )+ . , (40)

whei'e e+ is a non-invariant operator given by

We thus see that the relativistic invariance of Eq. (3)
has been obtained by purely kinematical means while
invariance of Eq. (40) depends on the dynamical proper-
ties of the field and the form of the interaction.

The second-order contributions to the S-matrix in
the two cases are found to be'

&& [I.'(x'), L'(x")](dx')4(dx") 4, (43)

5&'& = -'(i/hc)'J1 )fc(x' x"—)

where
)& [L'(x'), L'(x")](dx')'(dx") 4, (44)

e(x' —x")=
for x'4) x"4

—1. fOr X'4&X"4

These two expressions appear to be equivalent for the
following reason: the integrands are equivalent for
(x' —x") time-like, and they both vanish for (x' —x")
space-like. This equivalence is only apparent, however,
for the commutator [L'(x'), L'(x")] has a singularity
of the 8-function type when (x' —x") lies on the light
cone. (For spinor fields the singularity would be even

stronger. ) In Eq. (43), D(x' x") changes d—iscontinu-

ously as (x' —x") crosses the light cone; the 5-function

from the commutator averages out this discontinuity
in D so that the contribution from the light cone is only
half as great as in Eq. (44), where e is continuous across
the light cone. The eGect of this will be seen in more
detail with the aid of an example.

Using the previous interaction (5) we have

[L'(x'), L'(x")]
= g' ( V*(x') V(x') V*(x")V(x")[U(x'), U(x")]

+U(x")U(x') V*(x')V(x")[V(x'), V*(x")]
+U(x")U(x') V*(x")V(x') [V*(x'), V(x")]I. (46)

To compare Eqs. (43) and (44), we may use for exainple
the first term of Eq. (46); this amounts to comparing

2 (x) = -,'D(x) A.(x) (47)

g'(x) =-', c(x)A„(x). (48)

Equation (48) is the function A„defined by Sch-
winger" and is known to have the Fourier expansion

1 for x'4&x"4
(x'

i e+ (
x")= e+ (x' —x")=

0 for x'4&x"4
{41)

~ (*)= (*)

= (1/(2ir) ')P~ I ~ ~ ~ )exp(ikx) (dk) '/(k'+ K„') (49).
JThe relativistic invariance of Eq. (40) is a result of the

condition of integrability

[L'(x'), L'(x")]=0 for (x' —x") space-like. (42)

We shall compare the two expressions (47) and (48) by
finding the Fourier transform of Eq. (47). This is most
easily done by means of a theorem of Fourier trans-

7 F.J. Dyson, Phys. Rev. 75, 486 I'1949').
More generally, e+ is based on the ordering in time of space-like

surfaces on which x' and x" are situated (reference 7), but we may
specialize to constant time surfaces for the present application.

A similar result has been given by F. Koba, Prog. Theor. Phys.
5, 139 (1950).

'0 J. Schwinger, Phys. Rev. 75, 651 (1949).
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forms, " which gives the Fourier transform of A(x) in
terms of the transforms of D(x) and 6 (x):

A (x) = ~ i f(k) exp(ikx)(dk)4,
J

where

f(k) = (1/16+') 2' b[(k—p)'+ & ']
4 al

(50)

&& Dk' —P')/ I
k' —P'I 3~'(P') (P'/l P'l)(dP)' (51)

This is the integral J2 which is calculated in the Ap-
pendix; the result for f(k) is, therefore,

f(k) = [1/(2x)'] I [1/(k'+x ')j—(1/2k') I (52)

In using this result in further integrations, it is implied
that a principal value is to be taken whenever this part
of the integrand becomes singular. " The first term of
Eq. (52) obviously agrees with Eq. (49), while the
second term is a consequence of the combination of the
8-function with a discontinuity on the light cone.

The result (52) shows that we must modify the
S-matrix (3) if that expression is to reduce properly in
the limit of local held theory. This can be accomplished

by a modification of the D function such that the dis-
continuity occurs outside the light cone. Since D is
an odd function of x', this cannot be done in an invariant
manner; but we can do the calculations with the
modified D function and then let the discontinuity
approach the light cone. The result will be that the last
term of Eq. (52) wiH disappear, thus bringing about
agreement of the two 5-matrices in second order. The
calculations are given in the Appendix.

We must now re-examine the self-energy calcula-
tions in terms of the limiting process. We nov find that
both Eq. (30) and Eq. (31) contribute to the self-energy;
in terms of the interaction (36), the additional terms to
be added to the self-energy are

—,'(ig/kc)'( V ~UV+DV+*UV
for the V+- or the V -particle.

In the self-energy calculation of Sec. II, there was a
divergence due to a singularity in the integrand at a
6nite value of the intermediate momentum. The addi-
tion of the second type of self-energy process and the
use of the limiting process on D serves to eliminate this
difFiculty; the calculations are discussed in the Ap-
pendix. For the V+-particle, the operator V+ corre-
sponds to a fixed momentum; from the considerations
of Sec. II, it is therefore apparent that this contribution
to the self-energy is not convergent. For the V -par-

"This theorem is briefly:
Given G(x) = J'g(k) exp{ikx)dk; H(x) =J'h(k) exp(ikx)dk, then

G(x}H(x) =J'f(x) exp(jkx)dk, where f(k) = J'g(k —l)h(l)d/. When
this is applied to Eq. (50), it is necessary to use care in handling
the limiting processes implied by the principal value in the defini-
tion of D. These limiting processes are to be left as the last step
of the successive integrations in Eq. (50); the result of this is that
we have an ordinary principal value implied for the singularities
which occur in f(k).

ticle, the operator V corresponds to a 6xed momentum,
and this contribution to the self-energy is convergent.
Using the interaction (36') makes the self-energy of
both types of particles divergent. The self-energies
calculated with the S-matrix (3) and with the modified

D+ function are accordingly divergent. For this reason,
the S-matrix (3) will have to be modified or replaced by
another method of introducing interactions; but when
this has been done, it seems likely that a convergent
theory can be obtained with the use of non-local fields.

In higher orders it becomes more difFicult to make a
comparison between the two 5-matrices. Ke can note,
however, some further difliculties with Eq. (3); for
example, the third-order term is given by

n= 8'/BX„BX",

'r = rp8/BXp)

(54)

(55)

(56)

with eigenvalues —E, L, and iM, respectively. For cor-
respondence to particles with real mass, —E must be
positive, but L and M are unrestricted in value (except
that they must be res, l). ln addition, the field may be
further decomposed into separate parts characterized
by the internal angular momentum. It will be the pur-
pose of this section to produce an operator for the

S"&= (i/kc)' i . L'(x') D+(x' —x")I.'(x")
J

XD+(x" x'")I—.'(x'") (dx') 4(dx")4(dx"') 4 (53).

The presence of the D+ functions insures that (x' —x")
and (x"—x"') must be space-like, or time-like in the
future. These functions do not directly impose condi-
tions on the character of (x' —x"'), however; in fact, it
is even possible for this vector to be time-like in the
past. No such situation occurs in the case of Eq. (40),
where all of the interactions have a de6nite ordering in
time.

The conclusion of this section would seem to be that
the proposed method of introducing interactions in
non-local field theory is not correct in its present form,
but that an approach along this line is not yet ruled
out. The essential difficulty is that the commutation
relations for two non-local fields depend not only on
their properties as creation and annihilation operators,
but also on their matrix character with respect to space-
time coordinates. It may be that the matrix character
of non-local fields has been overemphasized; that is, it
may perhaps be better to consider them simply as fields

depending on a center-of-mass coordinate (X) and an
internal structure coordinate (r).

IV. INTERNAL ANGULAR MOMENTUM OPERATOR

In the preceding paper' Yukawa has discussed the
process of decomposing general non-local 6elds into
irreducible parts. The reduced fields U(X, r) were
eigenfunctions of the operators
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internal angular momentum. This operator should

satisfy the following conditions: (i) it should be an
invariant operator; (ii) it should commute with the
previous three operators. Except for a multiplicative
factor and an additive constant depending only on 0.,
p, and y, the desired operator is determined by these
two requirements. The calculation is a little lengthy, but
it is completely straightforward. We shall merely sketch
in the procedure here.

Using the operator (8/ar„) along with r„and (8/BX„),
we can form three new invariant operators.

8'/ar„ar", r„B/ar„, 8'/ar„aX». (57)

No linear combination of the elements (57) commutes
with a, P, and y; we therefore form from elements (57)
an operator 8, which is the most general linear dif-
ferentiaI. operator of second order in r, with arbitrary
coeKcients depending only on 4K, P, and y.

84K= (8'/ar„ar")a+(r„a/ar„}'b+(8'/ar„aX")e

+ (r»a'/ar„arKBX") d

+(r„B/8 „)e+(8'/ar„ax )f+g. (58)

Equation. (58) satis6es the condition of invariance (i).
The commutation conditions (ii) are

La, j=o, La, pj=o, La, ~]=0. (59)

The relations (59) determine the 6rst six coeScients of
Eq. (58) except for a common factor; at this stage, the
operator takes the form

an= I (8'/ar„ar»)(np y") (r„—a/a-r„—)2n

(a'/ar —aX») 'p 2r„(a'/ar„ar, a—X")7

7r„(a/ar„)n+—8(a'/ar»ax»)y+g'uI a'. (60)

If —K= ~', the rest system is characterized. by

/ 8B»X= xK84». (61)

Using Eq. (61), we have the following reductions in the
rest system

(P~—V') =g r 4K, (8'/ar„aX")'= (8'/ar4ar')e4

The meaning of this operator is somewhat clearer if we
note that in the rest system

e4r» d l4=1, 2, 3
Af'p = '

IO if l4=4
(66)

As is well known, the eigenfunctions of b in the rest
system are the spherical harmonics and the corre-
sponding eigenvalues are 0'l(l+1) (where1=1, 2, 3, ).
Thus a, P, and y have continuous eigenvalues and 8 has
d.iscrete eigenvalues. These four operators allow us to
decompose completely a general non-local 6eld into
irreducible parts because an expansion in terms of
simultaneous eigenfunctions of these operators is unique
and no further decomposition is possible. Each irre-
ducible part is characterized by the four quantities a2,

I., M, and t. This justifies the procedure of Sec. II, in
which the non-local fields had I.= X', M =0, and internal
angular momentum given by t=0.

%e have yet to show that there are no other inde-
pendent invariant operators which are functions of
elements (57) and which commute with n, P, and y.
We shall prove this for operators which are fjnite
polynomials of the operators (57). The most general
operator of this form may be written as

d = g P (r„a/ar„)" (8'/arKBX") a„, (68)

where the a are functions of 4K, P, y, and 8; the
operator (8'/ar„ar") does not appear explicitly because
it can be expressed in terms of (r„a/ar„), (82/ar„aX"),
and a. Commuting Eq. (68) with P and y, we 6nd terms
of the form

so that Eq. (65) represents, in a sense, a translation of
coordinates. Using Eq. (65), the internal angular mo-
mentum operator becomes

a'8 = —-'h'[(r '8/ar )—(r'"8/ar») j
x L(""8/ar") (r—'8/ar. )3~'

h'(8'/ar—„ax»)'(y ap). (6—7)

(8'/ar„aX")y= (8/ar4)r4n,

so that 8 reduces to

(62) $(r»a/ar„) "(8'/argax")", P]
= 2r4(r»a/ar») " '(8'/argax")~P

3 ( 8 8)
8= — Q I

r, r, I
+12+g' a'. ———

2'. l=4 E ar; ar;&

+2r44(r 8/ar„) "(8'/argax")~ 'y+ . (69a)

P(r»a/ar») "(8'/argaX")", yg

This will reduce to the usual form for an angular mo-
mentum operator if we choose the arbitrary constants
to be

g'= —12, a'= —A,". (64)

This result can be put into simpler and more compact
form by introducing a new operator by

4Kr» = 4Kr» 'ra/BX» (65)

=44(r»a/ar»)" '(8'/arKBX") "—y

+rr4(r»a/ar )"(8'/arKBX") '4K+ ~ ~ .. (69b}

The dots indicate terms in lower powers of the operators
(r„a/ar„) and (8'/ar„aX») Applying Eq. (69) t.o d and
investigating the highest order terms, we 6nd that it is
necessary to take S=M =0; thus d is a function of n,
P, y, and B.
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We can easily write a tensor operator J„"who~e

components may be considered to be the components
of the internal angular momentum; this operator is

aJ„"= (Pt/i) Dr„'r)/Br„) (r'"8—/r)r&)]n

—())/i)L(r„'8/AX„) —(r'"8/r)X&)]8'/)rrxBX'. (70)

In the rest system, this reduces to

0 if d'or v=4
(71)

(Po/s)[(r„r)/r)r„) —(r"8/r)r„)] if lo, v= 1, 2, 3.

The total internal angular momentum is easily seen to
be given by

(72)

The components of the internal angular momentum
also commute with a, P, and y.'

LJ." a]=LJ.", P]=LJ.", v]=0 (7~)

We also have the following commutation relations
between the components of the internal angular mo-
mentum and the total internal angular momentum:

n[J " J,']= (trt/o) I J„"Ig."n (Bs/—r)X„r)X')]

—J "[g„"a (8'/—8Xt,r)X")5

—g-J. Lg""n—(~'/~X»X. )]
+g" J~"[g. a (Bs/r)—X'r)X&)] I, (74)

In Eq. (A-1), the symbol P standing before the integral denotes
that a principal value must be taken when performing the integral.
We define this principal value in the following manner. Delete
from the region of integration a small volume about p„=0; the
volume deleted is to contain the point p„=0 and to be invariant
under the reflection p„—+—p„. As this deleted volume shrinks to
zero, the integral approaches a limit which is the desired principal
value. For definiteness, we assume that a similar sort of limiting
process is implied for p„—+ ~.

To show that Eq. (A-1) is correct, we note first that the quantity
on the right is an invariant function of x and therefore depends
only on xo and x'/( x4

~

. (Note that (P4/
~
P'() is really an invariant

quantity because p must lie on the light cone, and also that the
volume of integration is invariant in the limit. ) In addition, owing
to the factor (P4/~ p4~), the integral is an odd function of x4.

Because of these two conditions, the integral must vanish for
space-like distances x. For time-like x, we specialize to that
Lorentz frame in which x=0, x'=a. The integral becomes

( 4 /—)Pf'dpo J p dp(po/IPol)

Xexp( —ippa) Bb(p' —pp') /2 pa p.

Integration by parts with respect to p, yields

(»/x)Pf dPof, dP(Po/I pol)~(p' Po') exp( ——iPoo).

The integrated part does not vanish, but is rapidly oscillating in
a (before the limit is taken) and would average to zero in any
application. Integrating over p makes

D=(i/or)Pf dpo exp( ipoa)—/po

P now stands for the ordinary principal value, and we have

D(0, 0, 0, a)=

This verifies that Eq. (A-1) is the correct Fourier expansion of
D(x)-

0
g gvX

1
v=X=1, 2, 3
v=X=4

(76)

where the g„q are the components of the metrical tensor:

J Pf" =fs(&& P)'+ ')s'(P')(P'—/lP'l)(dp)', {A-2)

2. Evaluation of Certain Integrals

Consider the integral (34), which arises in the self-energy
calculation; after the integration over k is performed, the inte-
gration with respect to p becomes

g~"= g~&g' .
where

(l —p)4&O

For convenience, we note the following relations which
are useful in proving Eqs. (72)-(75):

ar)sr„'/r7 X"r)rx= 0, nr„'r'&= nP —y',
r„'8/dX„=0, J„"8/r)X„=O (77).
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APPENDIX

1. Fourier Expansion of D(x)

The desired expansion of D is

D(*)= (ol+)Pf "—f(P'/l p'l ls'(0') exp(oP*)(dP)' (A-1)

l =k4 —q.

This integral is an invariant function of l and is therefore most
easily carried out by using special Lorentz frames to simplify the
calculation. For l time-like, we choose l=0, l'=/'; Ji then becomes

~ exo

J1=4mP dpp pdpb(p —pp' —l'+2/'pp+K )

x (po/ I po I )&'(p' —po'),
o)o

= 2o P dpo(po'+l" 2l'po o„')t(p—o/[ po[)—b'(l" 21'po e,o)— —

= (m.//') P dpp(1 —/'/pp) b(2/'pp —l"+K,2)

~

~ I
~

4 ~

I
II II

I

0 if /'&0
71.I )1/( —/"+K,2) )+1/2/'2I if /'&0.

For l space-like, we take l'=0, and we take the vector 1 of mag-
nitude l ' as the direction of the polar axis for a set of spherical
coordinates in the three-dimensional space part of (dp)4. J1 then
becomes

0 |r Cxo

J1———2w dpp sin8d8 p'd pb(l'" —2/"p cos8
oo 0 0

+P' —Pp'+ Kp') ~'{P'—Pp').
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Integrating over po and making the substitution cos8=y gives

Jg = —ef dpf PedPk'(2/"Ppc —/"e —»„e)/(Pe+/ "e—2/" Pp+»„e) t

= (—~/2/") f, dpk(2/"P /"—* »'—)+( /4/") f,„, „dp/P'
= v/2I Dl(/'"+»') j f—/2/" I

%e can express both of these results in terms of a function

J= I t 1/(P+.~))-1/2PI. (A-3)

~

eJ„for / space-like
Jq= 0 for L time-like, L4&0

~ J, for / time-like, /o)0.
(A-4)

L'&0 if ff:,&rc„,
Q 0 lf Ky g cqs.

(A-6)

These are the relations which determine the factor A(go) occurring
in Eq. (35).

The integral J~ occurring in Eq. {51)is:

J.-If f4'("k p)+~-j//'(p)
x C(ko P')P'(dp)'—/I k' P'I IP'I j —(A-2)

Using the results of the J& integration, this integral is readily
evaluated. It is an even function of k', and for k time-like with
k4&0, it is easy to see that J= J&. Also, for k space-like, Jz has
an integrand which is an even function of po, and, therefore,
J~=2J~. In general, then

J2=J,. (A-8)

3. Limiting Process for D Function

The D function is to be modified so that its discontinuity
occurs outside the light cone; such a function is D', defined by

D'(*)= —(o/+)I'f "f( P'/I P'I) //(0') exp(o/o *—eo P'e.")(dP)',

(A-9)
where

p&1
In some I.orentz frame we may take p to be a constant; in this
system the discontinuity occurs outside the light cone at
Ixl =pl»'I) I»ol. /th a change of variable Eq. (A-9) can be
written as

D(*)= {'/~)If" f-{p/I p I)k(~-.p.*)

X xp('p }(1/ )(dp)', (A-10)

e = 1/p'& i.

The space- or time-like character of L depends on the sign of

P= —pf '—x,'+2f/:go, (A-5)

If L is time-like, it is easy to see that

Ke shall illustrate the use of this modified D function by a
calculation of the modified J function when k is time-like. Take
k=0, k4=k'; then this integral becomes

I'=4rrI' J dpef pedpb(pe po'—k"—+2k'po+» )

X LPo(k' —Po) / I Po I I
k' —Po I

gk'(P' —orPo') (t/e )
s cro= 2m.P o&dPp(P(P+k'2 —2k'Po —I(."}&

X&Pe(k' po)/—I po I I

k' p Ie]s'I po (l —&)+k' —2k'pe» j
co k' k' k' —pp= ~P a&dpp

& o I « ' —c)I&—
Xb'Lpo~(1 —o)+k~ —2k'po —~j.

The argument of the 8-function vanishes at two points:

po{'&= (k'~ —8)/2k' po& & =2k'/(1 —cr).

The contribution to J from the singularity at po&'& is simply J
{ifwe let o~i, cr&1}.The contribution to J' from the singularity
at Po&'~ turns out to be (—2r/2k"), so that we have

J'= x/(k'+2). (A-11)

This result is true for both space-like and time-like k. This shows
that the use of the modified D-function does eliminate the unde-
sirable term from J.

Ke wish to discuss finally the eGect of the limiting process on
the self-energy calculation. This will be done for small intermediate
momenta so that the effect of the convergence factors may be
neglected. In calculating the self-energy of the V+-particle, we
must now add in the contribution from Eq. (31), which no longer
vanishes; after the momenta have been renamed in a suitable
manner, this contribution may be written

Ie(ko) = f —f(d.k) '(dq)'(d p)' I ii(k+q k,+p)—
&o&0, go&0

Xk(k'+)k»(q'+» ')(P'/lP'I)k'(P' —p )el oe(A-l2)

This may be combined with I&(k4), Eq. (34), by inserting under
the integral sign a factor $(ko/Ik'I+qo/lqol). The resulting
integral can be expressed in terms of the modified J' function just
calculated, so that we have for the contribution to the self-energy

I(k&) (v/2) f=J//(q"'+"')/C(ko q)'+»'—3(dq)'

+{v/2)f" fb{ke+».e)./p(ko k)ey».o]{d—k)o (A-l3).
In Eq. (A-13), it is to be understood that a principal value is to
be taken at all singular points of the integrand. "This eliminates
the difBculty of Sec. II, in which a singularity in the integrand
was coincident with a discontinuity. For higher momenta, this
procedure is no longer valid because the convergence factors in I~
and I2 may be different. The two processes are then to be con-
sidered separately.


