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Quantttm Theory of Non-Local Fields. Part II. Irreducible Fields and their Interaction
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General properties of non-local operators are considered in connection with the problem of invariance
with respect to the group of inhomogeneous Lorentz transformations. It is shown that irreducible fields
can be classi6ed by the eigenvalues of four invariant quantities. Three of these quantities can be interpreted,
respectively, as the mass, radius, and magnitude of the internal angular momentum of the particles asso-
ciated with the quantized non-local field in question. Further, space-time displacement operators are
introduced as a particular kind of non-local operator. As a tentative method of dealing with the interaction
of non-local fields, an invariant matrix is de6ned by the space-time integral oi a certain invariant operator,
which is a sum of products of non-local 6eld operators and displacement operators. It is shown that the
matrix thus constructed satis6es the requirements that it be unitary and invariant and that the matrix
elements are difFerent from zero only if the initial and final states had the same energy and momentum.
However, the remaining conditions of correspondence and convergence cannot be ful611ed simultaneously,
in general, by the S-matrix for the non-local 6elds. It is yet to be investigated whether all of these require-
ments are satis6ed by an appropriate change in the definition of the S-matrix.

I. ELEMENTARY NON-LOCAL SYSTEMS

HE notion of an elementary particle has been
~ ~ intimately connected with the procedure of

decomposing a quantized 6eld into its irreducible parts.
Accordingly, if the concept of the 6eld itself is so
extended as to include the non-local 6eld, the de6nition
of the elementary particle will be altered in its turn.
In Part I,' we con6ned our attention to certain types
of non-local 6elds which satis6ed a set of operator
equations and were supposed to represent assemblies of
elementary particles with 6nite radii. Our problem is
now to decompose more general non-local 6elds into
irreducible parts. Again we start from an arbitrary
unquantized non-local scalar 6eld V, which can be
represented by an arbitrary matrix (x'~ U~ x"), where
x' and x" stand for x„' and x„" (lr= 1, 2, 3, 4), respec-
tively. The matrix (x'~U~x") can be regarded as a
function U(X, r) of two sets of real variables,

X„=-,'(x„'+x„"), r„=x„'-x„"
as in Part I. Then an arbitrary function U(X, r) can
be expanded in the form

U(X, r) = N(k, r) exp(sk„X&)(dk„)' (2)

and further in the form

Lorentz transformation,

where x„' (p= 1, 2, 3, 4) denote this time the space-time
operators in the new coordinate system. Therewith,
two sets of parameters, X and r, are transformed into

I
Xls ~lsvxvp ~ls Cls) t v

and U(X, r) becomes

U(X', r') =
~I

I e'(k', l') exp(sk„'X'")
~J

Xgh(r„' —l„')(dk„')'(dl„')', (6)

where e'(k', 1')=ts(k, l). k', l' are connected with k, l
just as X', r' are connected with I, r. In order that
Eq. (6) retain the same form as Eq. (3) for an arbitrary
Lorentz transformation (4), either one of the following
two requirements must be satis6ed:

(i) N(k, l) is a function of k and l, which retains its
form under an arbitrary Lorentz transformation;

(ii) sr(k, l) is nota mere function of k andi, but is an
ensemble of quantities, which are distinguished by the
parameters k and l and which are to be subject to
second quantization.

In the 6rst case, it is required that

e(k', l') = ts(k, l) (7)
U(X, r) = )' N(k, l) exp(sk„X&) for an arbitrary transformation

XII~(r„—1„)(dk„)'(dl„)', (3) (g)

where N(k, r) and N(k, l) are arbitrary functions of so that N(k, l) must be the function of invariant quan-

parameters k, r and k, l, xespectively. tities such as k„k&, I„l" and k„I& alone. In many cases,
if we perfprm an arbitrary homogeneous however, we can con6ne our attention to the subgroup

of the homogeneous Lorentz group which does not
* publication assisted by the Ernest Kempton Adams &und. include the reversal of the time, so that N(k, l) mayt On leave of absence from Kyoto Utuver~ty, Ky ' Japan' depend also on k /~ k

~
provided that k is a time-iilte'H. Yukawa, Phys. Rev. 77, 219 (1950). See also B. Kwal, 4 4, a „csa Ime-I e

J. de phys. et rad. 11, 213 (1950). vector, and similarly for l„. Thus U(X, r) can be
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written, in general, in the form

U(X, r) = ~ ~ u (K, L, M) h(k„k" K—)h(l„l" L)—

X h(k„lI' —M) exp(ik„X") g h(r„l„)—
p=1

X(dk„)'(dl„)'dKdLdM, (9)

where w(IC, L, M) is an arbitrary function of the real
parameters E, L, and M, which can be positive,
negative, or zero. If we restrict the transformations to
those belonging to the subgroup mentioned above, m

may depend also on k4/~ k4~ (and on 14/~14~). In any
case, the operator U of this type has nothing to do with
the quantized non-local 6eld, because there is no room
for the application of the method of second quantiza-
tion. However, an important family of space-time
displacement operators belongs to this category as will
be shown later on.

The case (ii) is the more imports. nt, because the field
operator V can be quantized as in the usual theory.
Namely, the coefficients u(k, l) can be regarded a,s an
ensemble of creation and annihilation operators for the
quanta associated with the 6eld U. The requirement
of invariance is fulfilled simply by identifying u(k, l)
[=u'(k', 1')] with the creation or annihilation operator
for a particle in the quantum state characterized by k
and l according as k4 is positive or negative. The only
effect of a transformation of the type (4) or (8) is to
give a new notation u'(k', i') to the operator u(k, l),
owing to the change in name for the same quantum
states caused by the change of the reference system.
Thus, there is the one-to-one correspondence between
u(k, l) and u'(k', l') in two representations, (3) and (6),
of the same operator U. Since k„k&, l„l&, and k„l& are
invariant with respect to any Lorentz transformation,
the one-to-one correspondence remains, even if the
domain of integrations on the right-hand side of Eq. (3)
is restricted to dehnite values E, L, M of these in-
variant quantities k„k&, l„l", and k„l&, respectively. In
such a case, U(X, r) reduces to

U(X, «) =
) ) u(k, l) exp(ik„X&)gh(r„—l„)

X &(k,k" K)h(i„l" L)h—(k„l" M) (—dk„)'(dl„) '—. (10)

It is now clear that the scalar non-local 6eld, which
was dealt with in detail in Part I, is a particular
example with

E=——~', L=—+X', M—=0. (11)

More generally, L and M can be either positive or
negative including zero, but E can only be negative or
zero, because a positive E has no correspondence with
the classical model of particles with real mass. Positive
values of I. correspond to the assembly of elementary
particles with a 6nite dimension which is extended to
space-like directions, whereas negative values of I

corresponds to that which is extended to time-like
directions.

It should be noticed, however, that the 6eld char-
acterized by a set of values of E, L, and M can be
decomposed further into irreducible parts, each of which
corresponds to a definite value for the absolute magni-
tude of the internal angular momentum. Namely, as
shown in Part I, the non-local scalar field U with a
given set of values K, J., M can be expanded in the form

U= P P (2n/L)'[X/4~(k'+~')l]
ktk2k3 l, na

X[u(k, l, m) U(k, l, m)+@*(k, l, m) U*(k, l, m) j, (12)

provided that E is negative, L is positive, and M is
zero, where I, e*, U, U* are defined by the expressions
(43) and (44) in Part I. The parameter l in (12) is the
quantum number which characterizes the magnitude of
the internal angular momentum in the coordinate sys-
tem moving with the particle with a given wave vector
k~, k2, k3. Since l thus defined is invariant with respect
to Lorentz transformations, each part of U with a
definite value of l transforms into itself and constitutes
an irreducible representatio& of the non-local scalar
6eld. Thus, it is possible that the elementary particles
with the integer spins are classified by the value of four
constants E, L, M, and l, provided that they are
represented by irreducible representations of the non-
local scalar field. Among these four constants, —E, L,
and l can be interpreted, apart from the numerical
factors depending on k and c alone, as the mass, radius,
and magnitude of the internal angular momentum of
the particle, whereas M has no immediate physical
meaning. '

As was pointed out recently by Fierz, ' each of these
irreducible representations of the non-local scalar field
6nds its counterpart in the usual field theory of ele-
mentary particles with arbitrary integer spin, so far as
the behavior with respect to Lorentz transformations is
concerned. The essential difference between local and
non-local fields will be clear only when the interaction
between fields is taken into account. In the case of the
non-local spinor 6eld, however, the situation is some-
what diGerent. Namely, a non-local spinor operator
f; (i = 1, 2, 3, 4) is equivalent to a set of four functions
P;(X, r), which can be expanded in the form

|k,(X, r) = ~ . u, (k„, l„) exp(ik„X")

Xiih(r„—l„)(dk„)4(dl~)4. (13)

This can be decomposed into parts in an invariant
manner by giving each of k„k&, l„l&, k„l& a definite
value. Each part can further be regarded as a sum of
operators, which dier from one another by their
behaviors with respect to space rotations in the rest

' D. Yennie, Phys. Rev. , fo11owing paper.' M. Fierz, Phys. Rev. 78, 184 (1950); Helv. Phys. Acta 23,
412 (1950).
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system. Each of these operators thus obtained is not
yet irreducible in general, because it is a mixture of
two types of fields belonging to the same resultant
(half-integral) spin. For instance, the operator corre-
sponding to the resultant spin 1/2 may have an internal
orbital angular momentum of either zero or unity. In
the usual local 6eld theory, however, a spinor field with
the spin 1/2, for example, is already irreducible. Thus
the difference between the non-local spinor 6eld and
the local spinor fields with arbitrary half-integral spins
is apparent without taking into account the interaction
between the Gelds. 4

So far we have considered the problem of invariance
of non-local operators with respect to homogeneous
Lorentz transformations. Now we go over to the more
general inhomogeneous Lorentz transformation of the
type

tation relations for u(k, t) and u*(k, 1) as given by
Eq. (37) of Part I, for example. Of course, it must
always be kept in mind that the time-reversal is
associated with the interchange of the annihilation
operator u(k, l) and the creation operator u*(k, f).

These arguments can be applied to non-local spinor
Gelds without essential change. In this way we arrive
at the following suggestion: according to the non-local
field theory it is possible that there are only two kinds
of elementary particles, Bose-Einstein particles and
Fermi-Dirac particles, which are described by a scalar
6eld and a spinor 6eld, respectively. The customary
discrimination of particles with spins 0, 1, 2, etc. ,
among Bose-Einstein particles, for instance, may well
be reduced to the diGerence in the quantum number l
for the internal motion of the same kind of particles.

x„'=a„„(x„+b.) (14) II. 8-MATMX IN NON-LOCAL FIELD THEORY'
OI

xp = a~)x~+bfs ~ (15)

with b„'=a„„b„,X and r are transformed thereby into

X„'=a„„(X„+b„), r„'=a„„r„. (16)

Accordingly, we have

k„'=a„„k„, 1„' a„,l„ (17)

'Detailed discussions of non-local spinor Geld will be made
elsewhere.

u'(k', l') = exp( ik„b"—)u(k, l), (18)

in order that U be invariant with respect to the trans-
formation (14). The implication of the relation (18)
must be considered for the cases (i) and (ii) separately.

In case (i), relation (18) is compatible with the
assumption that u(k, l) is an invariant function of k

and f, only if u(k, l) is zero for all values of k„except
k„=0 (u = 1, 2, 3, 4). This is equivalent to the following
statement:

(i)' A non-local operator U which satisfies require-
ment (i) is invariant with respect to the whole group
of inhomogeneous Lorentz transformations only if
U(X, r) is an invariant function of r alone.

It will be shown in the next section that some of the
invariant operators satisfying the requirement (i)' will

be of importance in constructing the 5-matrix for the
interacting non-local 6elds.

In case (ii), relation (18) reQects the situation that
the creation or annihilation operator u(k, f) or u"(k, 1)
is de6ned unambiguously except for an arbitrary phase
factor. In spite of this ambiguity or complication, the
operator u*(k, l)u(k, 1)/~ k4~, which is to be identified
with the occupation operator for particles in the
quantum state characterized by k„and l„apart from
the purely numerical factor, is de6ned uniquely and is
invariant with respect to the whole group of inhomo-
geneous Lorentz transformations. So are the commu-

Now we must undertake the problem of interaction
between non-local Gelds. In the usual 6eld theory we
could always start from the Schrodinger equation for
the total system. The Hamiltonian in the Schrodinger
equation is derived from the Lagrangian which, in turn,
is so chosen as to give the correct 6eld equations for
unquantized 6elds, when the classical variation principle
was applied to the system consisting of unquantized
6elds. In the non-local Geld theory, however, it is
dificult to follow the same procedure as in local field
theories for two reasons. Firstly, even in the case of
the free field, it is difFicult to deduce all of the 6eld
equations, (4), (5), and (12), for example, for the scalar
non-local Geld from an invariant operator which is
supposed to correspond to the Lagrangian in the usual
theory. Moreover, the procedure of variation itself is
ambiguous. ' Secondly, it is rather dubious whether the
difkrentiation of the Schrodinger function with respect
to time will play an important role in non-local 6eld
theory because other operators, in general, are related
to two time instants, which differ from each other by a
6nite amount. Even the existence of the Schrodinger
function in the same sense as in the local 6eld theory is
not at all certain.

Although it is not yet clear whether these difhculties
could be overcome without renouncing the fundamental
principles of quantum mechanics, there seems to exist
a tentative solution which retains many of the char-
acteristics of the present field theory. Namely, we can
start from the so-called interaction representation in
the usual theory, laying aside for the moment the
question of whether the free field equations in non-local
6eld theory can be deduced from the Lagrangian
formalism or not. Furthermore, we can adopt the
integral formalism of the usual theory, which has been

'A preliminary account of the subject was published by H.
Yukawa, Phys. Rev. 77, 849 {1950).

6 Variation principles in the non-local field theory were discussed
by C. Bloch, Kgl. Danske Vid. Sel. Math. -Fys. Medd. See also
C. Gregory, Phys. Rev. 78, 67, 479 {1950).
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proved to be equivalent to the diGerential formalism
and in which the S-matrix, instead of the Schrodinger
wave function, came in the foreground. Then the
5-matrix for local Gelds can be transformed in the
following manner so as to be easily extended to the
case of non-local Gelds. %e consider a system of local
fields, for which the interaction Hamiltonian density
II'(x, y, z, t) is invariant and is equal to L'(x—, y, z, t),
where J' is the interaction part in the Lagrangian
density for the system. In the usual one-time formalism,
the Schrodinger equation has the form

ihct+(n', t)/Bt=p(n, 'IH'(t) In")4(n",'t), (19)
a"

where each of n' and n" stands for a set of eigenvalues
of occupation operators of various types of particles in
the system in various quantum states II'.(t)= I'(t)—
is the space integral of the Hamiltonian density
II'(x, y, z, t) or —L'(x, y, z, t). The differential equation
(19) can be integrated with respect to time, at least
formally, by the method of successive approximation
and we obtain

(n', +'~)=4'(n', —~)

+(i/h) g(n'I L'(t) In")dt e(n", — )

+(i/h)' t P (n'I I,'(t)
I
n")(n"

I
L'(t')

I

n'")

Equation (21) can be written in the form

(n'I SIn") = (n'I1In")

+(i/hc) (n', x'I L'I n", x")(dx')'(dx")'n n

X(n"', x"'IeIn' x' )(n' x' IL'In" x")

X (dx')4(dx")e(dx"')e(dxiv)e+ . (24)

If we define j A I for an arbitrary non-local operator A

by

(n'I (A ) In")

~ ~ ~ (n', x'I A In", x")(dx')'(dx")', (25)

the 5-matrix with matrix elements as given by Eq. (24)
can be written symbolically in the form

5= 1+(i/hc)( L' t+ (i/hc)'t L'eL')
+ (i/hc)'( L'eL'eL' )+ . . (26)

This could be used as the definition of the S-matrix in
non-local field theory as well as in local field theory.
Alternatively, we can define 5 or 5—1 by

Xdtdt'0'(n"', —~ )+ . , (20)

where 4(n', +'~ ) and +(n', —~ ) are Schrodinger wave
functions in the infinite future and infinite past, respec-
tively. Thus the 5-matrix for this case is given by

+('/h)' 2 (n'IL'(t) In"')(n'"IL'(t') In")
t'

Xdtdt'+ . (21)

In order to generalize this expression for the 5-matrix
to the case of the system of non-local Gelds, we introduce
an invariant Hermitian non-local operator L' which is
represented by a matrix (n', x'I L'In", x") and which
reduces to

(n', *'IL'In", *")= (n'I L'(*')
I
n")g&(x'" *"") (2—2)

in the limiting case of the system of local Gelds, where
each of x' and x" stands for a set of eigenvalues of
space-time operators x'=x, x'=y, x'=s, x'=ct. %ith
the help of Eq. (22) and of another non-local operator e

which is represented by the matrix

(n', x'I eIn", x")
= l t L(x" *'")/I x'4 —x"41)+1—}(n'I1I n4) (»)

R= (e/hc)L'+ (e/hc)'L'eL'+ (e/hc)'L'eL'eL'+ . (28)

Incidentally, the non-local operator E satisfies a linear
operator equation

R= (i/hc) L'+ (i/hc) L'eR (29)

The physical interpretation of the S-matrix remains
the same as in the usual theory in spite of the fact
that the S-matrix is non-local field theory is defined
directly by Eq. (26) or by Eqs. (27) and (28) without
recourse to the Schrodinger equation of type (19).
Thus, I(n'ISIn") I' is the probability that the system
will be in the state characterized by n' in the infinite
future provided that it was in the state characterized
by n" in the infinite past. In fact, the 5-matrix as
defined by (26) satisfies two conditions:

(i) 5 is a unitary matrix which satisfies the relation

5*5=55*=1.

(ii) The matrix element (n'ISIn") is different from
zero only if the states characterized by e' and e",
respectively, have the same total energy and momen-
tum.

Before going into the proof of these statements, we

have to take into account the third condition:
(iii) S must be an invariant matrix.

In local Geld theories, the 5-matrix defined above is
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invariant, in spite of the fact that the operator ~ as
defined by Eq. (23) is not invariant with respect to
Lorentz transformations. This is due to the fact that
the Hamiltonian density EV(x') at a point x' is com-
mutative with the density P'(x") at any other point
x", which is located in a -space-like direction with
respect to x'. It is not so, in general, in non-local 6eld
theory. An obvious way of guaranteeing the invariance
of the 5-matrix in such a case is to replace the operator
e in Eq. (26) by a suitable invariant non-local operator
D+ such that conditions (i) and (ii) are still fulfilled.
Thus the 5-matrix for the system of non-local fieMs
takes the form

S=1+(i/hc)(L' j+(i/hc)'(L'D L')
+(i/hc)'( L'D+L'D+L' I+ . (31)

The actual form of the operator D+ can be determined
in the following manner. If we assume that the invariant
operator I.' is a sum of products of non-local 6eld
operators, condition (ii) is satisfied for any displs, cement
operator D+ whose matrix element (x'I D+I x")=D+(X, —
«) is an invariant function of «„alone. The proof is simple.
Any non-local operator A can be represented by a
matrix (x'I A Ix") or a function A(X, «) and Eq. (25)
can be written alternatively in the form

If the operator A consists of a sum of products of I'
and D+, (n'I A(X, «) I

n") can be expanded into a series
with the typical term

(I'I a(k„"&,«„) I
n") exp(iE„XI'), (33)

where
E =Q I"'@k io —Q 1~k "' (34)

Evidently hK is the difference in momenta between the
initial state n" and the 6nal state n' and —AcE4 is the
difference in energies of the states n" and n'. If we
insert Eq. (33) into Eq. (32) and integrate with respect
to X, we find that each term of (n'I I A ) In") contains
a factor g„b(E„'—E„"), so that (n'l(A)l«i") is
different from zero only if the states n' and n" have the
same energy and momentum. It should be noticed,
however, that we mean by the energy and momentum
of a particle the energy and momentum of its center of
mass. Thus the energy of internal motion is supposed
to be included already in the mass h~/c. In other
words, 1%(: must be, in general, a function of other
constants such as ) and l. The problem of determining
the form of such a function is still completely open.

The condition (i) is also fulfilled, if we further
imply the condition

(35)

on D+, where D+ is the Hermitian conjugate of D+
and E is an invariant displacement operator with the
matrix element

(«i', x'IEI e", x")= («i'I 1I«i") (36)

for any values of x' and x". In order to prove this,
we have only to multiply S as given by Eq. (31) by
S*= 1 —(i/hc) ( L')+ (i/hc)'( L'D+'L' I—(i/hc)'I L'D+*L'D+*L' I+ . (37)

Then the condition of unitarity

P (n'Is*le"')(e"'Isl«i")

= P («i'
I
S

I
n'") (n"'

I S I
n") = (n'

I
1

I
«i") (38)

comes out by the help of Eq. (32) and the relation

(AZa)=(A )(a), (39)

which holds for any two non-local operators A and B.
The operators D+* and D+ which satisfy all of these

conditions are given by matrices

(n', x'ID «i", x")=(n'I1le"), —,'(«i'I1ln"), or 0;
(«i', x'

I
D+* n", x")=0, 2 (n'

I
1

I
n"), or ( Nl 1

I
e"), (40)

according as x' —x" is future-like, space-like, or past-
like.

This modi6cation of the definition of 5-matrix gives
rise to the new question: does it reduce to the usual
definition (21) in the limit of local fieldsP This question
is very intimately connected with another, and probably
the most important, question: is the S-matrix for non-
local 6elds convergent? In order to answer these
questions, we begin with the investigation of the
particular matrix element (OISIO) of (n'ISIS"), where
both the initial state n" and the 6nal state e' are
complete vacua; i.e., all eigenvalues n' and e" are zero.
Now (OISIO) has the general form

(OISIO) =1+(i/hc)(OI (L') lo)
+(i/hc)'(0I (L'D+L'I I0)+ . . (41)

I.et us consider a very simple case of a system consisting
of a complex non-local scalar 6eld V, V~ and a real
non-local scalar 6eld U with the interaction of the form

L,'= g V*VV. (42)
We have 6rst

(Ol (L') IO) =0 (43)

because I.' is linear in U and hence has no term which
connects the state 0 with itself. As for the third term
in Eq. (38), we have the relation

(ol IL'D,L')
I 0) =-,'Z(OI I

L' ) I
~') (~'I f

L'
I I 0)

+,'(Ol(L'DL') -I0) (44)

on account of relations (32) and (36), where the
operator D is defined by

D= D+—D+* (45)

with the matrix element

(I', x'IDln", )x=(n'I 1I n"), 0, —(n'I 1I e"), (46)

according as x' —x" is future-like, space-like, or past-
like. ' The first term on the right-hand side of (44)

~ This operator was introduced by Koba independently. See Z.
Koba, Prog. Theor. Phys. 5, 239 (2950).
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vanishes on account of the fact that (e'~(L')~0) is
zero provided that ~U &2ay and the second term also
vanishes for the following reason: 6rst we expand U,
V, V*, and D in Fourier series and integrate each of
the terms of (0~ &, L'DL') ~0) with respect to all of the
space-time parameters. Actually we have eight sets of
such parameters. Then we are left with the expression
of the form

r~&
,

I j(k„& '&) k„& &, k„&'&)fI'(E„E~)

X (dk„'")'(dk "')'(dk "')' (47)

where E„=P k "' and k &" k &'& k„@& are the wave
vectors of the three particles created in the intermediate
state. The 6rst of them is a particle of U-type and the
other two are particles of V—V*-type. f( ) is a func-
tion of k„&'), k„&", k„(3), which could be determined by
elementary calculations, but it is not necessary for our
purpose to write it explicitly. 8' denotes the derivative
of the 8-function with respect to the argument, which
comes from the Fourier transform of the operator D,
as discussed in detail by Yennie. ' Thus, (0

~ &
L'DL')

~
0)

must be zero, unless the condition

E„E;&-0 (48)

is fu16Bed. The condition (48) can be satisled by
certain sets of k„"), k„"', k„(3) only if both types of
particles have the rest mass zero.

The above arguments can be applied to local 6elds as
well as to non-local 6elds. According to the usual theory
of local 6elds, the third term on the right-hand side of
Eq. (41) must be the divergent self-energy of the
vacuum, whereas it is actually zero according to our
formalism, except for the very particular case of
particles both with the rest mass zero. The same argu-
ment can be applied to the case of charged particles
interacting with the electromagnetic field, and according
to our formalism the self-energy of the vacuum is zero,
at least up to the second order, if we assume that
there is no charged particle with the rest mass zero.
Thus, the discrepancy between our formalism and the
usual theory is already clear; they give diGerent
answers to the same problem for local 6elds.

Next we consider the matrix element (1~S~ 1) of S,
where only one particle of the same type in the same
state exists in the initial and final states. The second-
order term of (1~S~1) corresponds to the divergent
self-energy of the particle in local 6eld theory. As
discussed by Yennie in detail, ' if we start from a
system of two non-local scalar 6elds of U-type and
V—V~-type with the interaction operator J' as given

by Eq. (42), the self-energy term is again divergent.
However, the 6elds U and V—V* can be decomposed
further into positive frequency and negative frequency
parts without destroying the invariance with respect to
the subgroup of Lorentz transformation, in which the

direction of time is not reversed. Namely, we can write

U= U++U, V= V++V, V*=V+*+V *, (49)

where U+, U are positive and negative frequency parts
of U, while V+, V+* and V, V * are corresponding
parts of V and V*. If we take the new interaction
operator

L'=g( V+*UV++V UV *+V+*UV +V *UV+) (50)

instead of Eq. (39), the self-energy terms for the U-type
particle as well as the V—V*-type particles are con-
vergent, although there still remains an undesirable
feature, as discussed by Yennie. '

Now, in order to remove the discrepancy between the
present formalism and the usual formalism in the limit
of local fields, we may imagine that D-operator above
defined is a limit of the operator with the matrix
element, which is a function of r„and is diferent from
zero in a narrow region outside the light cone in r-space.
Then the correspondence between the present formalism
and the usual formalism in the limit of local 6elds is
restored up to the second order, but the essential
difference between ~- and D-operators remains in the
third- and higher order terms. Moreover, the diver-
gences reappear in the case of non-local fields. It is
very dificult to construct an S-matrix which is con-
vergent and which reduces to the usual S-matrix in the
limit of local 6elds. It is not yet clear whether the
S-matrix formalism itself is not adequate for dealing
with the problem of interaction of non-local fields. It
might be possible that the S-matrix as defined by Eq.
(24) is invariant, if the interaction operator L' has an
appropriate form, even in the case of non-local fields.
However, it is more probable that the clean-cut sepa-
ration of the free 6elds from their interaction is justified
only if we are dealing with the weak coupling between
local 6elds. If so, we must go back in search of the
Lagrangian formalism for the whole system of non-local
fields interacting with one another. In any case, the
compatibility conditions for the 6eld equations or the
integrability conditions for any substitute for the
Schrodinger equation will be of fundamental importance.

In this connection it should be noticed that so far
we have not been able to 6nd any relation between the
mass and other constants. It is clear that a relation
which connects the mass of an elementary particle with
other constants such as the radius, the internal angular
momentum, and the constants of coupling with other
particles will be of vital importance in any future theory
of elementary particles. Again this is closely related to
the problem of finding the Lagrangian operator for the
whole system or any substitute for it.
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