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Effects of Plasma Boundaries in Plasma Oscillations
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The discussion of electron plasma oscillations is extended to include some of the effects of boundaries.
11 is first shown that an electron taking part in a traveling plasma oscillation will be reflected at a sheath
tif infinitesimal thickness with velocity appropriate to the oscillation traveling in the reverse direction. This
means that standing waves may be built up without loss at the sheaths. This approach is extended to sheaths
v here a finite time of penetration is necessary before reflection occurs and also to the case of reflection at.
metallic electrodes. In both cases expressions for the damping are derived and it is concluded that for low

pressure discharges damping resulting from imperfect reflection from electrode sheaths may be comparable
with collision damping but that damping arising from conducting electrodes is unimportant.

The excitation of the plasma by sharp beams is considered briefly and expressions are derived for the
energy transfer of a beam to growing and of stationary amplitudes. It is pointed out that beams should
excite oscillations only when a regular geometry exists. Kith irregular geometry bunching pulses are to be
expected, of t,he type observed by Merrill and webb. A detailed analysis is given of the bunching and of the
AIerrill and Webb experiments. Good agreement. is obtained if one assumes that the pulscs are maintained
because high harmonic waves in the pulse cannot be shielded out by the plasma. These feed back energy
t.owards the cathode and continuously modulate the beam.

I. INTRODUCTION is present, each particle experiences a small periodic
shift in velocity and in its contribution to the net charge
density, which depends on the amplitude and wave-
length, according to reference 1, Eqs. (12) and (4). The
important question here is whether the electrons which
rebound from the sheath come o6 with velocity per-
turbations which have a phase and amplitude appro-
priate to a reflected wave. One can see that because each
electron experiences a phase lag in the process of reflec-
tion, it may turn out that all of the energy of the inci-
dent wave does not appear as a single reflected wave.

Let us first consider the idealized case of a sheath of
infinitesimal thickness, so that there is no phase lag on
reflection. We take the reflecting plane to be a=0, and
consider a wave of propagation vector with com-
ponents (o, 0, k). The analysis is easily generalized for
waves with x and y components of the propagation
vector.

In this section we shall show that the bounded plasma
permits the existence of standing plasma waves in
which the reflection of particles at the boundary does
not give rise to energy losses. Let us consider the
standing wave
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X two previous papers" we have developed a theory
& - of oscillations of an unbounded plasma describing
the origin of medium-like behavior, and some of the
conditions under which plasma oscillations become
unstable. In this paper, we extend these results to
include the effects of boundary walls, which are espe-
cially important in discharge tubes.

II. REFLECTION OF PLASMA WAVES AT A
PLASMA BOUNDARY

In a discharge tube a plasma is usually bounded by a
positive ion sheath, the thickness of which depends on
the ion density and on the electrode potential, but which
is usually of the order of O. l mm thick. This sheath
surrounds the boundary electrode and shieMs it from
the rest of the plasma. Within the sheath all those
positive ions which strike the sheath edge as a result of
thermal motions are accelerated, while all but a very
few of the most energetic electrons are repelled. Since
the sheath potential drop is usually of the order of
several times the mean kinetic energy of the plasma
electrons, one can as a first approximation neglect the
few electrons which are not reflected, and assume that
the process of reflection of electrons is elastic. The elec-
trons do, however, penetrate part of the sheath, with
the result that the time taken for an ejectron to be
reflected is of the order of 10 " second, which is also
of the order of a period of a plasma oscillation. Further-
more, the time required for reflection is not the same for
all reflections, since the faster electrons penetrate
further into the sheath than do the slower ones.

We must now investigate the e6ect of these processes
on the reflection of a plasma wave. When a plasma wave

* Now at the Laboratory for Insulation Research, Massachusetts
Institute of TechroOIOg, Cambridge, Massachusetts.
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g~/gs Q~ [e)()a ca)) ~
—i(kz+~t)]—

The potential has an antinode at the boundary, the
field has a node, as is easily seen by taking the real parts
of the potential and field.

A particle of velocity Vp, according to reference 1,
Eq. (12), has a velocity perturbation

i(A'z —c t) gPpp e
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8Vi, =
m cu —k Vp, m a)+k Vp,

(2)

Immediately after such an electron rebounds from
the plane, the s component of its total velocity, per-
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turbed plus unperturbed, is reversed, while the other
components are left unaltered. Thus the electron be-
comes a particle with unperturbed velocity Uo which is
the negative of its previous unperturbed velocity, and
which has at the plane s=0 a perturbed velocity which
is the negative of its previous value. The key question
in studying the energy loss at boundaries is whether the
perturbation in velocity after collision is appropriate
to a particle taking part in the organized oscillation. In
the present case dealing with an idealized boundary we
shall verify that the correct perturbation for a particle
of velocity Uo= —Vo, at the boundary, is indeed the
negative of Eq. (2), but this will not be the case when
the finite time necessary for reflection is taken into
account.

To verify the above statment we note that the
perturbation of a particle of velocity Uo= —Vo at the
boundary is according to Eq. (2)

ekp) e '"' ek(p e
p Vp. (Up) =

m or+kt/"0, m o)—kt/'0,
(3)

III. REFLECTION FROM A SHEATH

Let us now consider the eA'ects of finite sheath
thickness. Since the time taken to penetrate the sheath
is usually comparable with the period. of a plasma oscil-
lation or greater, and since this time varies strongly
with the velocity of the particje, any perturbation in
velocity with which the particle strikes the sheath will.

lose its coherence with the wave, by the time the
particle gets back out. In order to form a reflected wave,
however, the perturbation in velocity of the reflected
particles must ma, tch that demanded by Eq. (3). Since
such a match is impossible after particles have pene-
trated the sheath, the variation in perturbation in
velocity which exists when the particles strike the
sheath will not give rise to an organized reflected wave.
Instead, this part of the ordered wave energy is dis-
sipated in the form of random thermal motion.

One can describe this process in terms of the results
of reference 1, Sec. VI, where it was shown that for
each k, an arbitrary angular frequency, or, is possible,
but that only the value of or corresponding to the dis-
persion relation Eq. (9) leads to organized motion of all
the particles, for which the potential persists indefi-

(.'omparison of Eqs. (3) and (2) shows that

bVp. (Up) = —IVY.(Vp)

at the boundary, as required.
For small k Vp/&o the s component of 8V reduces to

8V,(Vp) (2p/mpp')Jp'Vp, q
—pe

' '. (4)

This means that, in general, a particle arrives at x=0
with some perturbation in its velocity, produced by the
action of the wave. As the wave-length approaches
infinity, however, this perturbation approaches zero.

nitely. Other values of m correspond to waves in which
most of the potential is due to density fluctuations of
small groups of particles of some definite velocity. Such
motion is disorganized, in the sense that contributions
of diGerent groups of particIes to the potential soon get
out of phase with each other, so that the macroscopic
average of the potential is very small.

In our prob]em, we use the result to note for each or,

waves of arbitrary k are possible, but only those waves
for which tt; is given by the dispersion relation can
produce a macroscopically observable potentia1 at an
appreciable distance from the sheath. Hence, the dis-
organized motions involved in waves which do not
satisfy the dispersion relation are just another way of
describing random thermal motions.

In general, if the phase of bV for the reflected par-
ticles is not equal to that demanded by an organized
reflected wave for which k satisfies the dispersion rela, -

tion, it will still be equal to that demanded by a wave
with some other value of k, not satisfying the dispersion
relation. This means that the ordered component of
velocity perturbation 8V, with which a particle strikes
the sheath will give rise on reflection to waves which
lead only to disorganized motion. The result of this
energy dissipation will be, of course, to cause the
reflected wave to have a smaller intensity than the
incident wave has.

In order to estimate the energy dissipated in this way,
we note that the time average of the ordered component
of the energy of particles of velocity Vo striking the
sheath is

(AE)a = ~((Vp+A') Vp )a

=tB(Vp'6V+-', 5V')Av 2~((~V) )Av (5)

since (6V)A, vanishes. ' For small k, we obtain 8V from
Eq. (4). The result, averaged over velocities is

[(gE),„]=( k'pq /mpP)p(pV ') «Tp'y 'k'/mpp—'. (6)

To obtain the mean rate of energy dissipation per unit
per unit time, we multiply by three times' the mean
current of particles striking the sheath, which is

j=np(~T/2~m)'

' For a damped wave ~ is complex and (BV)A„doesn't vanish.
However, we shall be concerned mainly with plasmas in which an
exciting source of energy is present so that a steady state is reached.
This term then gives no contribution to the energy loss.

'The factor 3 enters because we are looking for the energy
striking unit surface of electrode per second. This is

f lnv, aE)A,dvp
Vo. &0

This may be written

-m ((npVp +Vp bn+npBV )AE}A„dVo
Vo: &0

=~~pg (up Vpub V''/A, dVp.
Vo: &0

The second term has been neglected since k is assumed small.
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obtaining

dW /dt= ( T/m) «[3e'yo'/(2 )~m/(k'/ ')no. (7)

This result shows that for long wave-lengths, the energy
dissipated in this manner becomes very small. The
reason is that, according to Eq. (4), the sheath is very
nearly a node of velocity, so that there is only a small
component of the ordered oscillatory velocity present
here.

IV. REFLECTION FROM A GROUNDED ELECTRODE

In order to obtain a reflected plasma wave, one must,
according to Eq. (1), have an antinode in the potential.
This is possible at an insulating electrode. The reflection
of a plasma wave from a metallic electrode presents
problems beyond those due to penetration of the
sheath. We shall first indicate how this problem is solved
for the special case of a one-dimensional plasma, con-
tained between two metallic electrodes at Z=O and
Z= a, which are kept at zero potential. ' If the electrodes
were not conducting, each incident wave would have a
reflected wave with a potential antinode at Z=O and
Z= a. The potential would be

q =2qoe ' 'cos(nvrZ/a),

where n is an integer.
I,et us now recall that, as was shown in reference 1,

Eq. (8), an arbitra, ry solution of Laplace's equation is
always a solution of the plasma equations. For the one-
dimensional problem the most general such solution. is
y=AZ+8. One can then choose 2 and 8 such that
the potential is zero at the electrodes. When n is even,
one chooses A =0 and h= —2qpe '"', obtaining

q = 2q, e ''[cos(n—ir2/a) 1]. — (9)

For n odd, we choose 3= (4qo/a)e ' 'and 8= —2poe ' '

obtaining

p= 2(poe *"'[cos(n7rs a)+ (2s—a)/aj.

It is now necessary to investigate whether particles
rebound from the sheath with a velocity appropriate to
that of the reflected wave. We shall in this work assume
that the sheath is of negligible thickness since for small
k the finite sheath thickness causes only a very small
energy dissipation. '

For a particle moving toward the electrode at Z= 0
with a velocity Vp, Newton's equation of motion, refer-

'This is a problem treated by J. R. Pierce for the one beam
plasma. For treatments of boundary conditions for a one beam
plasma see: J. R. Pierce, J. App. Phys. 15, 721 (1944); W. O.
Schumann, Zeits. f. Physik 121, 7 (1943). More general problems
involving circuit elements are treated by Schumann.

6 For n odd we shall see that plasma waves are damped because
of the presence of conducting electrodes. For n even, that is, for
wave-lengths such that k is an even multiple of ~/f2', Eq. (9) for
the potential shows that the addition of solutions of Laplace's
equation introduces no additional terms in the electric 6eld. Hence
there is no additional component of BV and we obtain the result
that even for conducting electrodes, undamped waves of appro-
priate wave-length can exist.

ence 1, Eq. (19), shows that because of the additional
component of electric field in Eq. (12), Eq. (2) for 81'
must be replaced by (at Z=O)

6kpp
e—ieat+ e—f,cat

m

47) Cgp
bVi, =i

.~—kVp. ~+kVp,

tea f

m ~—kVo, ~+kVp,

where Up= —Vp is the unperturbed velocity of the par-
ticle after reflection. We see, that as was to be expected,
the second term on the right yields a contribution to bV,
which is appropriate for a particle going in the reversed
direction. The first term, however, has the wrong sign,
since Eq. (11) demands a positive sign for all velocities.
A similar result is obtained, of course, for particles
reflecting at Z= u.

Once again, we have a situation in which the reflected
particles do not have exactly the right velocity per-
turbation to make up an ordered reflected wave. This
part of the energy is therefore dissipated and becomes
random thermal motion, as in the case of the particles
reflecting from the sheath of finite thickness. The
amount of energy dissipated by a single particle striking
the sheath corresponds to the component of BV resulting
from the solutions of Laplace's equation. From Eqs. (5)
and (11), we get

(DE)a„=16e'q /orna)' 'a (13)

To obtain the mean rate of loss of energy per square
centimeter per second, we multiply by three times the
mean current of particles striking the sheath,

j=no(aT/2nm) '*

and obtain

dH~2/dt =48(aT/2nm) &(noe'rpo'/mid'a') (14).
Note that for large electrode separations, the above
becomes small. If one had a standing wave trapped
between two conducting electrodes, it would then be
damped, ' both because of the above-mentioned energy
loss, and because of the losses at the sheath. To obtain
the net rate of loss of energy per cm', one adds Eq. (7)
to Eq. (14) and doubles the result to take into account
the two electrodes, thus finding

dIV d8'i dB'g
= —2 +

dt dt

«T

&2 m)

npe'pp' 16 ~I k'—+——
mco2 Q2 m A@2

(15)

'The damping because of the conducting nature of the elec-
trodes occurs for n odd.

The process of reflection changes Vp to —Vp, 8V to —8V.
Immediately after reflection, one has therefore

4''6 (Pp

8Vg, = —i e ''



PLAS'AI 3 OSC I LLATIONS

To obtain the rate of damping, we must know how
much energy is in the system. The potential energy is
J'e'dr/Sar where ~ is the electric field. This is equal to
k'po2u/16ir per unit area of electrode. Since in a har-
rnonic osci11ator the kinetic energy is equal to the
potential the total energy is

lli = k'@Pa/Sw.

Elimination of po from Eq. (13) yields

(16)

d tV roe' 1 ( ~T ) & 16 ~T k4 '—+——H'. (l7)
dt m(o' k'u &2m.m) u' m co4

This shows that the wave is damped, and that the
damping rate resulting from dissipation at the elec-
trodes is

V. EXCITATION DUE TO FAST BEAMS EMITTED
FROM AN ELECTRODE

In reference 2, it was shown that, in an unbounded
plasma, groups of particles above the mean thermal
speeds, or groups of particles of well-defined velocity,
could make the plasma unstable. In this section, we
wish to discuss the corresponding problem in which
beams of electrons are introduced into the plasma at an
electrode, which is heM at a 6xed potential, and emits
electrons at a fixed rate. Just as in Sec. V of reference 2

the system acts like two interpenetrating plasmas, and
the beam of sharply defined velocity adds another
degree of freedom. The main plasma, with a smooth
and Maxwellian-like velocity distribution, can then be

For a typical case, co—+I 10" c.p.s., k—10 cm ',
a—IOcm, ~T—1 ev, one obtains

R= —(12/10+m)10'[16X10 '+2]——10' sec. '.

This compares with 1/r«i~=10' sec. ' for damping due
to collisions [reference 2, Eq. (12)].We conclude that
for rari6ed gases damping resulting from imperfect
reflection from the electrode sheaths may be comparable
with or greater than collision damping, but that in most
cases imperfect reflection from the conducting elec-
trodes is quite unimportant.

One can give a similar treatment for electrodes of
arbitrary shape. First, one solves the plasma problem
ignoring the conducting properties of the electrodes; then
one adds suitable solutions of Laplace's equation to
make the electrode potential vanish, and notes that these
latter can lead to energy dissipation by partides which
are reflected from the electrode. A rough estimate of
the energy dissipation can be obtained by replacing q 0/a
in Eq. (16) by e, where e is the electric field at the elec-
trode, which results from that solution of Laplace's
equation needed to make the electrode potential vanish.

treated approximately in terms of the organized motions,
described by the dispersion relation Eq. (9) of reference

I, if we are interested in osciHations which persists for
a long time.

In an unbounded plasma an arbitrary disturbance
can be Fourier analyzed as a sum of waves of the form
exp(ik x), but one is restricted to real values of k, since
complex values imply that the potential becomes in-
finite in some direction. If the system is bounded, one
can use complex values of k, as well as real values. In
studying the stability of a bounded plasma, however,
one must be careful to distinguish oscillations which

grow exponentially in time because they are really
forced oscillations, produced by an ever-increasing
external emf, impressed on a boundary electrode. In
order to illustrate the problems involved, consider the
dispersion relation [reference 1, Eq. (11)],

(u'= (up'+ (3~T/m) k'.

By writing k= kii+iP, co= coii+iX one can obtain waves
of complex k and z. From the dispersion relation, it
follows, for small k, that

cop'+(3g—T/m)kii2, X (3~T/m—)Pkp/coii (19).
The wave then takes the form of

~ e
—Pz+Xtei (k gz —or It t)

which increases with time, but decreases with increasing
s. In order that p remain finite, it is necessary thtat the
plasma be bounded on the left-hand side; for con-
venience, one can take the boundary at s=0. Ke see
that Eq. (19) corresponds to a wave in which the elec-
trode potential is p= poe '"'. Since the group velocity
V, = Ba&ii/Bkii is positive, one concludes that the wave
energy must be coming out of the electrode; hence such
a wave does not represent a genuine internal instability
of the plasma. This is generally true whenever the am-
plitude decreases in the direction in which energy is
carried; for in this case, the exponential growth is due
to a transport of energy from the more intense to the
less intense parts of the wave.

Let us now return to the one-dimensional problem of
studying oscillations of the fast beam of electrons,
entering the plasma at Z= 0 with a fixed density, ni and
a fixed velocity, V&. We seek solutions of the form,
exp[i(k x—ut)], where co and k may be complex. Ac-
cording to reference 2, Eq. (41), the dispersion relation

where cop' ——(4irn06'/m), and no is the density of the
main plasma, a&P=4ire, e'/m and 8 is the velocity
spread of the beam. Let us choose 6=0. In order to

' Analogous problems have been discussed by Pierce, Haec, and
others in the theory of traveling wave tubes and double stream
ampli6ers. See J. R. Pierce, Bell Sys. Tech. J. 29, 1 (1950).
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demonstrate some of the properties of the solutions in
a simple way, we shall also take a special case for which
~= ~~, the resulting equation is

(3~T/m) k'[1 —(k V, ,
'co p) j-' = —~ &-'

small)

1
2

with the solution

(
idp 43KT)

(20)

All four roots are complex. If (~~V&/cur)(m/3xT)& is
small, for example, as usually is the case, one obtains

One can readily choose o. so that both co and k are coili-
plex; thus one obtains waves which grow with time, and
which increase exponentially in space. If the wave is
growing with time, then the dissipation caused by im-
perfect reflection of the wave at the electrode will merely
slightly decrease the rate of growth.

k, ,= Rico, (m/3~T) l

The most general solution is

where 3„are arbitrary constants, and n runs from 1

to 4.
The boundary conditions on the fast beam particles

may be taken as bvi=0, 80&——0 at Z=O. As for the
particles in the main plasma, the boundary conditions
are discussed in Secs. II, III, IV. According to Eq. (4),
one must have Bp/Os=0 at Z=G to satisfy these con-
ditions. If the electrode potential is held fixed, then one
also has p= 0 at Z= 0. These boundary conditions can
be satisfied by a proper choice of the four arbitrary
constants to which, however, it will be necessary to add
a suitable solution of Laplace's equation, which will

introduce a small dissipation of ordered energy at the
boundary (see Sec. IV). In this solution we shall obtain
two waves which increase exponentially in amplitude
as one leaves the electrode, and two waves which
decrease. The physical significance of the exponentially
increasing waves is that small perturbations which may
be present near the electrode produce bunching of the
fast particles which cumulatively amplifies the original
perturbation as it travels along the beam. The process
is very similar to that occurring in the "traveling wave
tube. "' Ke thus obtain a wave which grows exponen-
tially in space, as one leaves the electrode, until the
linear approximation breaks down.

Thus far we have assumed that en=col. One can
readily show that similar results are obtained for co

near ~I, even when ~ is complex. To do this, one writes,
for example,

a = (co' —cop')/k-'.

Equation (41) of reference 2 becomes

and the approximate solutions for k are (with kV&, '&u

(dlV/dt) g IV(2X+R+1/—r), (22)

where R is given by Eq. (20).
Let us now compute the mean rate of transfer of

'This method v as used in reference 2, Sec. V, to demonstrate
that in an unbounded plasma particles slightly faster than the
wave excited it, while particles slightly lower damped it.

VI. THE ENERGY TRANSFER METHOD

When the charge density of the fast beam is con-
siderably less than that of the main plasma, one can
study the stability of oscillations by calculating the
mean energy transfer from particles to the plasma oscil-
lations of the rest of the ion gas. If this is positive and
greater than that dissipated, the wave will. be excited;
otherwise, damped. '

In order to illustrate the method, we being by apply-
ing it to the problem already treated in the last section,
in which a beam of particles enters the plasma at a fixed
velocity from an electrode of fixed potential. We assume
that the beam enters at an electrode at Z=0, and leaves
by striking another electrode at Z= a, which is held at
the same potential as the electrode at Z=O. Although
this is a somewhat idealized problem, it does yield a.

fairly good indication of what is to be expected under
more general conditions.

It may often happen that for a wave of fixed am-
plitude the mean energy transfer vanishes, while for a
wave of exponentially increasing amplitude it does not.
In order to maintain such a wave, however, it is neces-
sary that the beam supply enough energy not only to
balance what is dissipated, but also that needed to
maintain the assumed rate of growth. If co=co~+iA,
one can show that the energy density grows at the rate
W= W e'"' so that dW/dt= 2XW.

The energy dissipated is the sum of that due to col-
lisions, and that due to reflection at electrodes. Ac-
cording to reference 2, Eq. (12), colhsions tend to
create a damping factor e "', where r is the mean time
between collisions, from which one concludes that the
rate of dissipation due to collisions is (dIV/dt). = —W/r
The rate of dissipation at the electrodes is given in Eq.
(20). To obtain excitation the total energy that must
be supplied by the beam must then be
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where bU is the change of velocity of the particle as it
moves from one electrode to the other. We shall be
interested in averaging this over a long time, covering
many periods of oscillation. To And the mean rate per
unit area at which the wave gains energy, we must
average the above over all possible times, tp, at which
the particle enters the plasma, and multiply by the
current, which we take to be constant and equal to
n»Vp. Thus we get

(dW/dt) All N 1Vam(—vofi V+-', (fi V)')Ay. (23)

We shall see that the 6rst order terms in yp may drop
out of this average; hence it is necessary to go to the
second order. Let us write bV» as the erst order ex-
pression, and bV2 as the second order correction to 6V.
Then to second order, we get (noting that (5vi)A~=0)

(dW/(A)Ay Slvam[VO(~V2)Av+(~vi /2)Avj (24')

8 V» and 6V2 must be obtained by solving the equations
of motion in the assumed potential,

@=Re {p, exp[i(it x—(ut)] t.

For ie real, one obtains from Eq. (39), of the Appendix

d W &i~'q p'&' ~Vp

dh g, 2m (kva —co)'

(k Vp —co)z (k V0—id) z (k Vii —c0)zX— sin —4 sin'— (25)
2VpVpVp

It is clear that the energy transfer is largest when Vp

is close to &o/k. For smail values of z of VD —cui„ it is
readily shown that the energy transfer is positive when
V0& ~/k. negative when V0«o/k, a result in agreement
with that obtained in reference 2 for a plasma without
boundaries. For large va]ues of Z, however, the con-
ditions for positive energy transfer become more com-
plicated and by varying Z in Eq. (25) we find regions
of positive and negative energy transfer.

When co is complex, the expressions become much
more cumbersome. If, however, 'A is small, while ZX/VD
is fairly large, then the following relatively simple

energy from the beam particles to the wave. Although
one actually has a standing wave, such as, for example,
that given by Eq. (9) (with e an even integer) one can
write it as the sum of two running waves.

p= ya[cos(rut 2am—z/a) +cos(cdt+27raz/a) 2]—

As shown in reference 2, Sec. V, the energy transfer
will be large only when the beam particles are moving
with very nearly the wave velocity. Hence one need
consider onIy the effects of the wave which moves in
the same direction as the partic)e.

The energy transferred by a given particle to the
wave is

expression is obtained (see Eq. (46), Appendix).

dW n»e'yp'k'e'~'0
~2 (az/ Vp)

Ch „„2m(kVD —a&ii)'

cog
X +- V0 (26)

k Vp —cog 2

Here one obtains positive energy transfer when
VD& ~/k, and also when V0& cg/k.

It is readily verified that if V0 is close to M/k, one can
usually choose ni large enough so that (dW/dt)i, „ is large
enough to overcome the dissipation given in Eq. (24).
Hence we verify by this method that a plasma with a
beam entering at a definite place and leaving at a dif-
ferent place is, in general, unstable in the linear approxi-
mation.

VII. ENERGY TRANSFER METHOD IN
NON-LINEAR THEORY

As was shown in reference 1, Sec. III, the eGect of a
very large potential will be to trap particles in the
wave, so that the linear approximation fails. This will

happen whenever

ey& —',m(Vp —ce/k)'.

As in the theory of the unbounded plasma given in
reference l, one can easily see that non-linear effects
tend to reduce the energy transfer below that calculated
in the linear approximation. Consider, for example, a
particle which starts out faster than the wave. As the
particle begins to climb out of the potential trough, it is
slowed down and, if it is trapped, it eventually falls
back in. At this stage, it is actually going backwards in
the coordinate system in which the wave is at rest, so
that it is slower than the wave. Eventually the particle
begins to climb the trough in the opposite directions
and gains energy at the expense of the wave. These pos-
sibilities are neglected in the linear approximation,
which does not permit the correct description of such
large changes in the velocity. For particles with Vp near
id/k, the linear approximation overestimates the possible
energy transfers, since it treats such particles as
though they remained in phase for a long time experi-
encing velocity changes of the same sign.

One can obtain an upper limit on the possible ampli-
tude of a plasma oscillation by setting the maximum
rate of energy supplied equal to the rate at which it is
dissipated. The rate of dissipation is Kyp, where the
constant, IC, can be obtained from Eq. (15), for the
special case of a one-dimensional plasma. More gener-

ally, K depends on the shape of the plasma region, and
must be calculated for each specihc case. The maximum

energy which can be given up by a particle to a wave
will be that obtained from a particle which is barely
trapped. If such a particle enters the plasma at the
trough of a wave and leaves at the same trough when
it is traveling backward rela, tive to the wave, its change
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of velocity is 8V= —2(4epo/m)'* as can be verified by
going to the coordinate system in which the wave is at
rest. Its transfer of energy in the laboratory system is

aw=mvo 2(4eyo/m)& —seq 0. (27)

The condition for a balance of energy supplied and
dissipated is then

j&t 2raVO(4~go/iii)' S~—qoj=Zq0', (2S)

where y& is the current of beam particles entering the
plasma. If q 0 is not too large, one can neglect the second
term on the left, obtaining

q,. —[ji 2mVO(4e/m)&/E]&. (29)

Another limitation on the amplitude of oscillation,
often more stringent, arises from the processes de-
scribed in connection with the breakdown of the linear
approximation, which cause the particle to gain energy
if it stays in the wave too long before it strikes a col-
lecting electrode. The calculation of the conditions
under which this happens is very similar to what is
done for the klystron. ' Although the precise details are
rather complex, it may be expected that as in the
klystron calculations one can get a fairly good estimate
of the most favorable condition for energy transfer by
considering two extreme particles, one of which is
emitted into the trough of the wave„and the other into
the crest. Ke require that the particles emitted into the
trough undergo the maximum possible deceleration.

This means that these particles must be returned to
the trough just before they strike the anode; if they
stayed in the wave any longer they would begin to be
accelerated. Ke then require that a particle entering at
the crest barely reach the next crest, just as it is col-
lected, so that it undergoes no net energy exchange.
Investigations of klystrons have shown that this opera-
tion condition provides very nearly the maximum pos-
sible energy transfer. If po is increased much beyond
this point the particles entering at the crest begin to
be accelerated again, and it turns out that this more
than compensates for the additional deceleration ex-
perienced by particles collected near the trough.

The oscillations described above resemble those found
in a resonance cavity containing electromagnetic waves.
As with electromagnetic waves, strong oscillations of
this kind occur only with simple geometries and small
loss systems. This conclusion has been verified experi-
mentally by Sluzkin and Maydanov, "who have shown
that a plasma with cylindrical geometry excited by a
beam of fast electrons oscillates with much greater
intensity than does one with a less regular geometry.

One can see that large amplitude oscillations can have
a new kind of stability not possessed by small oseilla-
tions. This consists of a tendency to remain near a
definite state of oscillation, and to return to this state,

' J. Marcum, J. App. Phys. 17, 4 (1946)."A. Sluzkin and P. Maydanov, J. Phys. USSR VI, 7 (1942).

when perturbed. Thus, if we have a state of stable oscil-
lation in the previous example, and if yo is increased, the
losses increase, while the energy supply decreases, or
increases at a smaller rate, so that the wave tends to
return to its original amplitude. Similarly, if q(l is
reduced. the losses are decreased, while the energy
supply is increased. This stability may be incomplete,
however, in that the excitation may be transferred from
one mode to another in relaxation oscillations, because
of non-linear coupling.

VIII. NON-LINEARITY IN BUNCHING—
PLASMA SHOCK WAVES12

In the energy transfer method of treating instability,
one assumes that the interaction of the fast beam par-
tic1es with each other can be neglected. Because of the
possibility of bunching, however, the interaction of the
beam particles with each other may be surprisingly
large even with very small currents.

In order to illustrate this e8ect, let us imagine that
a homogeneous beam of velocity Vo receives at Z=O a
small trigonimetric modulation in its velocity, which
could be produced, for example, by a small localized
electric field. The velocity of a beam particle then
becomes Vo+bUo sin~to where to is the time at which
the particle passes through Z=O. If the particle meets
no electric fields, it just drifts with constant velocity
thereafter. A particle emitted at Z=0, t = to, will at the
time, t, reach the point Z= (Vo+bVO sin&a/o)(3 —tp). Tile
particle starting at to+ Qo, will have a velocity,
Vo+&Vo since(to+@o). The separation of the two par-
ticles as a function of time is therefore

bZ= 8to I Vo+8 Vo sin~(f0+ No) I

+ (t to) 8 Vp {sincotp —sin(id(/p+ Ro) I . (30)

For small bto, this becomes

8s= Vogp+5Vpblp I sin(0/p —M(t (o) cosMtp I.
We see that for t—to ——(Vo+6V, singlet, )/(u&8Vo cosa&to),
R vanishes; all particles emitted in a range, bt(), then
reach the same point at the same time (to first order
in 8to. To obtain the density, one writes

p(s) =p(0) iso/R

Uo —,(31)s) cos ( s)
Vo+ 6 Vo since

(
t4 [

————cosa&
)

t
Vo~ Vo E Vo)

'~ The following sections contain a treatment of the well-known
Webster bunching theory in a form adapted to our purposes and
also an analysis of the experiments of Merrill and Webb. Delays
have held up the publication of this paper and in the meantime a
note by ¹illhas appeared, describing experiments similar to those
of Merrill and Webb. The explanation given is substantially the
same as that of Sec. IX. Neill's experiments seem to establish
conclusively that this mechanism is correct. However, only a very
brief description of his results has been published and we have
though it worth while to include our analysis of the Merrill and
Webb experiments. See T. R. Neill, Nature 163, 59 (1949).
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where to is now replaced by t—z/Vo, which is adequate
for a first order calculation. One sees that there is an
in6nite density at the point

Z= Vo'/cob Vo. (32)

As one approaches this point, the variations in density
become larger and larger, taking the form of waves
which travel toward the point, rising very steeply in
amplitude when they get near it. The rate of rise is so
abrupt, in fact, that they resemble shock waves in
form.

The denominator can become in6nite at some time
for all values of Z larger than V02/cub Vo. But the value
chosen produces a singularity when cosco(t —Z/Vo) = 1,
a,t which times the cosine has a maximum. This means
that the degree of singularity is higher than that for
any other value of Z. It will be seen that this value of
Z corresponds to the crossing of a whole range of orbits,
i.e., it is a focus, while in6nities at other values of Z
correspond to the crossing of only two orbits.

To estimate the width of the pulse, one must go to
higher powers of bto. Let us therefore expand bz as a
function of bto, retaining only up to third order terms.
Differentiation of Eq. (30) yields

(&&z/&@0)mo=o= Vo+ 5vo sinu&to
—GD(t tp) 8Vo cos(dt„,

(8 8z/8 go )Bto =0= 2c05VO coscd tp

+ (t —tp) afb Vp sin(uto, (33)
(8'8z/Bbto') m, o= —3=oP8Vp sin(uto

+(t—to)bvo&u coscoto.

Choosing &
—&0= (Vo+SVO sinsdo)/(cd8Vp cos(a)/o) and ~to—2nm, me get

~z= (~3z/6V, )~ V, (m,)'. (34)

This shows that the width of the beam depends on
what range of emission times, 8to, one wishes to con-
sider. For example, if we choose coQO—1 we include
about o~e-sixth of the total charge injected during a,

cycle. This charge is then focused into a region of
width.

bz—Z8 Vo/6 Vo.

Hence if 6VO is small, the width of focus will be only a
small fraction of the distance from electrode to focal
point. As a typical numerical example, take

bvo/Vo=0. 01, VD ——3 10' cm/sec. , co= 10io r.p.s.

One obtains for the focal point, Z=3 cm, and for the
width of the pulse, hz=5. j.0 ' cm.

If this beam of space charge is moving through a
plasma, the latter tends to shield out the pulse, but
since the pulse is very sharp it contains Fourier com-
ponents far above the plasma frequency which cannot
be shielded out in this way. Hence, while the pulse is
broad, it may be partly shielded, but this will only
increase the abruptness with which the potential
appears when the particles focus. As a 6rst approxima-

tion one can therefore neglect the eGect of the beam
space charge on itself until the actual focus appears.
When the focus appears, however, the resulting poten-
tial will spread the velocities of the beam particles,
because the diferent particles go through at diferent
times, and the potential is changing very rapidly.

Let us estimate the maximum potential drop across
the focus. To do this, we take a simpli6ed model, in
which the charge is assumed to be in a sheet of thick-
ness, bz. If j is the current per unit area in the beam,
then j/w will be the amount of charge per unit area in
the pulse. The electric field (in e.s.u.) developed in this
layer will be of the order of 4ir(j/2'), and the resulting
potential drop across the pulse will be

8p—(2irj/co) bz. (35)

IX. RESULTS OF MERRILL AND WEBB"

It has long been known that beams of electrons in a
plasma are scattered much more rapidly than can be
accounted for by collisions with other particles. "
Furthermore, although the scattered particles lose
energy on the average, some of them gain energy.
Plasma oscillations have already been suggested as an
explanation. "As shown in the argument in reference 2,
Sec. V, it has been realized that a small oscillation
potential can transfer very large quantities of energy.
Ke have seen in this paper, and in reference 2, that the
beam is generally unstable so that such oscillations are
to be expected. If the geometry is simple, e.g. , plane or
cylindrical, one can expect to build up large oscillations
of the entire system. Kith unsymmetrical geometry,

"H. J, Merrill and H. W. Webb, Phys. Rev. 55, 1191 (1939)."I.Langmuir, Proc. Nat. Acad. Sci. 14, 627 (1928).

With a typical beam current of 100 ma/cm', and
mr= 10 r.p.s., one obtains

e = 2z y/u&=(2n. /10") 300 10'
=0.2 e.s.u.—60 volts/cm.

The potential drop across the pulse given in the previous
example will then be 0.3 volt.

After the particles bunch, further bunching will

develop, as a result of the velocity changes produced by
the 6elds generated by the pulse. Because bVO will
usually be larger than it was originally, the second
pulse will be closer to the first than the 6rst was to the
modulated electrode. In this way a cascade of pulses
will develop and will continue until the beam is so
spread out in velocity that no more bunching is pos-
sible. It is not necessary to assume, as in our example,
that the oscillatory 6eld causing the original bunching
is localized. Waves of arbitrary shape can produce
essentially the same result. Although the precise loca-
tion and width of the focus will depend somewhat on
the shape of the field, the example given here will

provide a general order of magnitude estimate of what
can be expected.
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however, localized pulses due to bunching are more
likely to be the most important type of oscillations
present.

Merrill and Webb have made a more precise inves-

tigation of the space distribution of oscillation, and have
found that the points of scattering of the beam are very
well-defined. Briefly, they show that an electron beam
of 19.5 ev energy and a current density of about 100
ma/cm' has a spread of only &1 ev as it leaves the
cathode, but that at a point about 4.3 mm from the
cathode the spread increases abruptly to &5 ev, within
a space of less than 4 mm. At about 6.1 mm an equally
abrupt scattering takes place, after which the velocity
distribution is practically uniform from 0 to 30 ev.
Beyond this point very little scattering takes place. iso
appreciable plasma oscillations were observed in the
region from the probe to the first scattering point, but
beyond each scattering point it was found that strong
oscillations were picked up in a region a few mm wide.
It was believed that these were not genuine oscillations
of the main plasma but variations in probe current
resulting from the bunching of fast particles at the
previous scattering points.

With higher current densities and pressures the scat-
tering point moved closer to the cathode, and the beam
as it emerged from the cathode had a greater spread.
At very high densities only irregular oscillations close
to the cathode were observed.

It seems clear that these experiments should be inter-
preted in terms of the plasma shock waves discussed
previously. Let us defer, for the time, consideration of
how the initial bunching is maintained in the region
between the cathode and the first scattering point
except to note that it is due to feedback of some of the
oscillatory energy developed in the shocks. If the
original bunching impulse had a sine wave form, then
from Eq. (32) setting Z=4.3 mm, Vo ——3X10' cm/sec. ,

and ~= 10" r.p.s. (observed value), one obtains

8VO i Vo ——Vo/(os= 3 10'/10" (0.43)—0.07.

This implies that the original velocity spread was seven
percent, or the energy spread about 14 percent of 20 ev,
which is about 2.8 ev. This is almost twice the observed
spread, hence there seems at first sight to be a dis-

crepancy. Let us remember, however, that the original
bunching impulse is due, in part, to feedback of the
bunching shock, which latter contains many high har-
monics. The general eGect of such harmonics is to
increase the value of cv appearing in the denominator
of (32), and thus to decrease the va, lue of 8VO needed
to produce bunching at a given Z.

If we tentatively assume that the first few harmonics
were the most important cause of bunching, we obtain
bV0/'Vo —0.04, leading to bE—1.6 ev which agrees with
that observed.

The width of the bunching shock becomes

8s—g(0.04) (0.43)—0.03 mm.

To calculate the potential drop across the pulse, we
must know the current density, which was of the order
of 100 ma/cm'. With co—10" r.p.s. one obtains
Dy= 60R volts, which is of the right order of magnitude
to explain the observed increase of velocity spread
suGered by the particles as they cross the bunching
point. The next bunching process will be more corn-

plicated, and the exact bunching produced by the
shock is probably almost unpredictable, but a bunching
distance of 6.1—4.3=1.8 cm is certainly not incon-
sistent with the greater spread of velocities. After the
second pulse the definition of the beam is too poor to
allow further bunching.

Let us now return to the question of what produced
the original bunching. Because a plasma containing a
beam of fast electrons is unstable the plasma is certain
to start oscillating, as a result of random fluctuations.
These oscillations will start the bunching process. On
the other hand the fields produced by the bunching will

feed energy back into the plasma oscillation, and in this
way it is maintained indefinitely. It is necessary, how-

ever, for a steady state of oscillation, that the feedback
of energy from bunching be just that needed to maintain
the dissipative losses in the plasma oscillations. In order
to show that such an adjustment tends to occur auto-
matically we first note that the bunching pulse consists
of a, wave moving with the beam velocity, V [see Eq.
(31)].Hence plasma oscillations near this velocity are
the ones which are excited most electively.

In order to see what determines the wave-length,
note that the electric field of the bunching pulse is
strong only for a short time, and in the neighborhood
of the pulse itself. This field therefore transfers energy
and mostly to the particles of the main plasma which

happen to be near the pulse; whether they absorb
energy from the field, however, depends on whether on
the average they are moving in a direction such that
the field tends to push them. If, for example, there is a
node of velocity at the pulse, then only a negligible
energy will be delivered to the wave. Now the plasma
does not actually dissipate much energy, "hence it may
be expected that there will be a node of velocity near
the pulse in the steady state. The adjustment of the
energy transfer to equa] the energy dissipated requires
only a slight shift in pulse position, which correspond-
ingly shifts the distance between the pulse and the
node. That this adjustment is automatic can be inferred
from the fact that if too little energy is supplied, the
wave amplitude drops, and causes the pulse to move
out [see Eq. (32)]. If the system has been oscillating
in such a way that pulse is slightly beyond the nodal
point then this will move the pulse into a position such

'5 The energy dissipated is the sum of that due to collisions,
plus that lost at the cathode sheath, plus that carried away by
the group velocity of the electrons; it is readily shown that under
the conditions of this experiment this is much less than could be
supplied by the pulse if the plasma wave had an antinode at the
pulse.
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that the wave gains more energy. If too much energy is
supplied by the pulse, the opposite adjustment takes
place.

Since there is also a node of velocity at the cathode
sheath, the pulses at 4.3 mm and 6.1 mm imply a wave-
length of 1.8 mm. The wave velocity is

V~= co/'= 10"(0.18)/2m —3&& 1p' cm/sec.

This is very close to the velocity of the beam, a result
which is in agreement with our own conclusion that the
wave velocity must be close to the beam velocity for
strong excitation, Hence the position of the pulses in
these experiments is consistent with the explanation
offered here.

At large current densities and high pressures the
neglect of the beam space charge in the region between
the cathode and the pulse is not valid; in fact, it is
known from klystron theory that space charge decreases
the bunching. This explains the fact that the peaks
were much less distinct at high currents and pressures.

APPENDIX

We wish to calculate BVi, and BV~, which are, respectively, the
first- and second-order changes of velocity resulting from the
interaction between fast beam particles and wave, in order to
insert this result into Eq. (24), for the mean rate of energy
transfer to the wave. We begin with the equation of motion

d Vjdt =Re I (i' q o/m) e'

wllere G)=G)p+lX. From this, we must solve for the value of V
for a particle at the point z, under the assumption that it starts
at. :=0ancl t= tp with t'he velocity Vp. Let us begin by calculating
8 V.. If we in trocluce the abbreviations u = k Vp —cia and r = t —tp,

Eq. (49) of reference 2 (Appendix) may be written'

iek(p) . e' '—1
V2=~e e

—i to +1k eiargzidz
m Zu 0

uzi is given in Eq. (50) of reference 2 (Appendix) as

ek~ . e' '—1

mu lu

a cycle vanishes. To evaluate the second order terms, we use the
theorem that if f and g are complex numbers proportional to
e ) then

(«(f).«(g) )Ay= 2Re(f*g)Ay.

We get

1 ~k~ 2 1 8 1 —cosuz/Vo

8 1—cosuz/ Vp

To obt.ain the total energy transfer we must also compute
(8 Vi /2)A, . This is simple and gives

(6Vi /2)A„——(ok~/mu) sin uz/2Vp. (38)

The rate of energy transfer is then

For small uz/Vp this expression becomes

(dW'/dt) Ay= (ni Vpm/24}(ek pp/m) clMx(z jVp)

The energy transfer is positive for Vo)co/k. For larger values
of uz/Vp the energy exchange is particularly large for Vp near
op/k, and by varying z we find successively regions of positive and
negative energy transfer.

The above expressions are valid for large z provided yp is so
small that we always satisfy ek~z/mVpu&&1. It is possible to
derive expressions which hold for all z as long as

I e~/m(Vp —co/k}2j&&1,

but we shall not reproduce this calculation here.
We start the calculation for complex or by using Eq. (36). We

treat only the case where ) is small but Xs/Vo»1. It is then
sufFicient to retain only terms proportional to e "' v. To this
approximation we may write

zkcpg e
—aao «exez/ Vp

~V =-—«
mVp mu 'lu

ek yg . z/Vp
e
—2(d tp

X~e
'

. . (m)

Evaluation of these terms gives, with u=u, —i)

~ —«utp i(az/Vp)g
mVp

ek ~ z/Vo
e ' " dre' 'hz {36)

m 0

Let us now average these terms over tp. We shall first consider
the case in which au is real. Then the average of the first term over

' Note that the condition kRi«1 requires ek~ jmVou&&1.

iVow 7 must be eliminated in terms of z since we want the energy
transferred by particles going a fixed distance. In a second order
term, such as the second, it is adequate to write V=z/Vo but in
a first order term, one must write z=Vpr+Ri or v=(z/Vp)
—(uzi/Vp). We then obtain to second order

e'(~z/ Vo)

BV~=Ee e
m u

For X«u, =kVp —oo, we obtain

1 ek1 ok~ ~z«p&, /v
2 m Vpur

In addit, ion we have

(gV 2 1 k 2 e2'A topaz/ Vp

2 Ay 2 m

The total average energy transfer is therefore

d8' nivom ~kqo 2 e "'oe "'/vo ~ 1I 0 o
2

~t~r~i~~
~

~~

r

~~l

dt Ay 2 m ur -ur

(43)


