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On the Quantization of Einstein's Gravitational Field Equations
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9'eiss' method of quantization of field theories characterized by first-order Lagrangians can be carried
out in a non-metrical "amorphous" space, as was first stated by Bergmann and Brunings. The gravitational
equations can be regarded as differential equations for the field variables g„„ in an amorphous space and
the quantization procedure can be applied to them. The gravitational field equations are written in canonical
form, the Hamiltonian being a function of generalized coordinates, momenta, and velocities. This Hamil-
tonian is obtained using a method developed by Dirac for Lorentz invariant theories.

I. INTRODUCTION

HE quantization of a Lorentz-invariant field

theory characterized by a Lagrangian has been
carried out by Heisenberg and Pauli' by consideration
of the analogy with non-relativistic quantum mechanics
of systems with a finite number of degrees of freedom.
Relativistic invariance was proved by direct computa-
tion of the transformation properties after the theory
had been set up. This quantization was first put into an
obviously Lorentz-invariant form by Weiss, ' and was

subsequently improved by Dirac. ' The quantization of
Lorentz-invariant field theories has been applied
mainly to quantum electrodynamics and to meson

theories.
It is of interest to apply the quantization procedure

to the remaining field theory of modern physics, namely
Einstein's theory of gravitation. The essential idea is

to regard the components g„„of the metric tensor as
field variables without any intrinsic geometrical signifi-

cance, at least as far as the formal procedure of quan-
tization is concerned. 4

In this connection, one point in particular deserves

special attention. In a Lorentz-invariant theory, the
field variables (e.g. , the F„„ in quantum electrody-
namics) are treated as c-numbers in the classical theory,
and as non-commuting q-numbers in the quantum
theory. Quite apart from these field va. ria, bles, there
occurs the Minkowski metric tensor q„„which is treated
as a c-number in both the classical and quantum
theories. Thus, in the theories of both Weiss and Dirac
there occur constructs involving the g„„, such as the
unit normal to a surface. However, when the g„„are
regarded as field variables, there is no such auxiliary

tensor which remains a c-number under the quantiza-

tion. It ls therefore important to realize that the formal-

ism developed by gneiss can actually be carried out in

I gr Heisenberg and W. Pauli, Zeits. f. Physik 56, 1 (1929).
& P. Weiss, Proc. Roy. Soc. A169, 102, 119 (1938).
3 P. A. M. Dirac, Phys, Rev. 73, 1092 (1948); Mimeographed

Notes, Canadian Mathematical Congress, Second Summer Session
Seminar (1949): this paper will be referred to as LDj. Added in
proof: Part of I Dj has now appeared in Can. J. Math. 2, 129
(1950}.

4After the quantization has been accomplished, there is no
reason why the geometrical character of the metric tensor should
not be restored.

an amorphous space, i.e., one without any metrical
structure. This forms the basis for an interesting paper
by Bergmann and Brunings. ' We shall now show heu-
ristically how Weiss' procedure can be carried out in an
amorphous space. Let a Geld theory in four-dimensionat
space-time be characterized by a Lagrangian density I.,
a function of the field variables y~ and their derivatives
y~ .' Weiss considers three-dimensional surfaces and
on these regards the y& as analogs of classical coordi-
nates, and expressions

for all infinitesimal displacements 6x in the surface.
We do not discuss here the normalization of the l„
which can be performed without difhculty.

The familiar Lagrangian (—g)&R of gravitational
theory contains second derivatives of the g„,. By
splitting off a divergence term, it can be replaced by
the first-order diBerential expression'

L —= (—g) 'g'"
Po PP

However, (—g)'R is a relative invariant, but the
Lagrangian defined by (4) is not.

' P. G. Bergmann and J. H. M. Brunings, Rev. Mod. Phys. 21,
480 (1949); this paper will be referred to as I Bg.

s See reference 8.
7 H. Weyl, Space—Time—Mutter (Methuen and Company,

Ltd. , London, 1922), p. 240. Weyl's notation diBers from ours
in the sign of the Ricci tensor.

s.~ = (BL)dy 4, .)f.
as their canonically conjugate momenta. Here the I,
denote the components of the normal to the surface.
The quantization procedure consists essentially in
writing down commutation relations of the form

[yg(P), 7r~(P)]= fi b(P P')

where the left-hand side is the usual quantum-mechan-
ical commutator and 5(P, P') is some Dirac 5-function
of a pair P, P' of points on the surface. In (I) it is
only the corn,rlnt components of the normal to the
surface which appear. These can always be defined in
an amorphous space by the relations
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where the terms indicated by dots spoil the tensor
character of the transformation. However, these terms
are independent of the g„„,, and will therefore commute
with the g„„.Thus, although the momenta in the present
theory will not be tensors, the commutators (2) will

have tensor character.
In order that they may be taken over readily into

quantum theory, it is necessary that the classical
equations of motion be in Hamiltonian form. Here we
follow Dirac's procedure [D], which differs from that
of Bergmann [B].Dirac's procedure yields an explicit
expression for the Hamiltonian which contains velocities
as well as coordinates and momenta. With this Hamil-
tonian the equations of motion reduce to the field

equations in a general form. On the other hand, any
explicit form of Bergmann's Hamiltonian corresponds
to a special choice of the space-time coordinates. "

II. GENERAL THEORY

(A) Canonical Variables

Ke consider a field theory characterized by a La-
grangian density I., which is a function of field variables

y~ and of their first partial derivatives:

L=—L(y~, y~, .)
The corresponding action integral is

5= )tLd4x, — (7)

and the variational principle 55=0 yields the field
equations. The field variables and the Lagrangian
density are assumed to transform as in [B, Section 1].

We now introduce a family of three-dimensional
surfaces in space-time. The points in each surface are
described by three parameters u' (s=1, 2, 3). The
individual surfaces of the family are labeled by values

' After completing the work presented in this paper, we learned
that Bergmann and his co-workers had independently obtained
a Hamiltonian for the gravitational 6eld, using methods quite
different from ours. Their work will be published shortly.

It can be shown that if L is a relative invariant, then
the m-~ de6ned by (1) transform tensorially; ~" trans-
forms essentially contragrediently to y&, i.e., if s&

transforms cogrediently to y~ then ~ s~ is a relative
invariant. It follows that the commutation relations

(2) are covariant. Since the Lagrangian (4) is not a
relative invariant, the covariance of the commutation
relations, using this Lagrangian, requires discussion.
Again we present a heuristic argument. In the gravita-
tional case the momenta (1) are homogeneous linear
combinations of the g„, , Under a transformation of
space-time coordinates we have

Bx Bxt' 0x&

g P, ~, n=geP, P
+' ' '7

8x'l" Bx "Bx '

of a fourth parameter t. The action integral (7) can
now be written as

5=~t JLdudt,

where J is the Jacobian

J—= i8x'/8(u' t) i.
The Lagrangian JI. is regarded throughout as a

function of the variables' x'~„yg, yg~„ i', jg.
Momentum densities, canonically conjugate to x&

and y& are introduced by the definitions'

w =B(JL)/By~= Jt, ,(BL/ay„, .),
Xp=B(JL)/Bx'= Jt, ,[—Lbp yg p(BL—/By„,)].

In analogy with systems with a finite number of degrees
of freedom, we shall refer to x', x'I„y&, y&~, as coordi-
nates, to i&, j~, as velocities, and to X„m"~ as moment@.

Following Dirac, [D], two standards of equality are
distinguished. An equation is called a strong equation
if it remains valid after an infinitesimal variation is
performed, coordinates, velocities, and momenta being
varied independently in pa—rticular, independently of
(10). Weak equations are those which, in general, do
not remain valid after such a variation. Strong equa-
tions are written with the sign =—,weak equations with
the sign =. Clearly (10) are weak equations, since
they do not remain valid when ), and x" are varied
independently of the coordinates and velocities which
compose the right-hand sides. All other defining equa-
tions, such as (7), are strong equations. Further strong
equations can be obtained by multiplying together two
weak equations: If A=O, 8=0, then AB=—0, since
5(AB)—=5A. B+A5 B=O. For example, from (10) we
can form the strong equations

(x" 8(JL)/By~)(7—r 8(JL)/8y&) =—0 (11).
By writing them out explicitly or by using Euler's
relations, the following expressions can be shown to be
homogeneous in the velocities x', yg'. The Jacobian J
is of degree 1; the yg„are of degree 0; it follows that
L is of degree zero and JI.of degree 1. Thus the right-
hand sides of (10) are homogeneous of degree 0 in the
velocities. Hence, in (10), the %+4 momenta are
expressed as functions of the coordinates and of g+3
ratios of the velocities. If the velocities are eliminated

' The notation is, thus far, the same as in $81: Greek sures
range over 1, 2, 3, 4 and refer to the space-time coordinates. A
comma followed by a Greek sufIix denotes partial differentiation
with respect tp a space-time coordinate: yg, =Byz/Bx . Capital
Latin sufhxes range over 1, 2, , X and refer to the 6eld variables
yA. Lower case Latin suSxes range over 1, 2, 3, and refer to the
parameters u'. A stroke followed by a lower case Latin suf6x
denotes partial differentiation with respect to a parameter o'.
ypI, =—Byp/Bu'. A dot denotes partial di6'erentiation with respect
to the parameter t: y~=8yg/Bt.

'Since t, ,x'I, =—Bt/8u'=—0, Jt, ~ is a normal to the surface
t—constant. This gives the connection between (10) and tbe
expression (1}.
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(B) Hamiltonian

The Hamiltonian density is defined in the usual
manner:

H—=)pi&+a~j.g —JL.

Using (10), this becomes

H= (B(JL)/r7il')x'+ (r7 (JL)/Byg)y„JL, —

(13)

This expression vanishes because JI is homogeneous of
degree 1 in the velocities ip, j~. Thus II vanishes in
the weak sense:

H=0. (14)

In [D] it is shown that. H can be expressed in the
strong sense as a linear combination of the Q, :

H =P.y. ,
— (15)

where the P, are functions of the coordinates, velocities,
and momenta. Since this result is of importance here,
we now give a short sketch of Dirac's proof.

Varying (13), we find that the terms in 8H which
involve 6i& and 5j~ are

X,6i &+7r"bye (8(JL)/Bx') —8x' (8(JL)/By~) 5y—g

These vanish by virtue of (10).Thus AH is independent
of the variations of the velocities. It follows from (14)
that

6H=0 (16)

if the coordinates and momenta are varied in such a
way that (10) can be satisfied both before and after
the variation. The only restriction that this imposes
on the variations of the coordinates and momenta is
that they comply with the relations (12):

b@.=0. (17)

More concisely, (16) holds, provided that 6x&~„bye,
by&~„hX„kr~ satisfy the linear Eqs. (17). This shows
that 0H must be a linear function of the 8@, for arbi-

from these equations, there must result at least one
relation involving coordinates and momenta only. In
general there will be several such independent relations:

@.(x i„y,i, y~i„)„m-)=0, a=1, 2, , M. (12)

These relations hold only in the weak sense. The

argument above shows that Mp1. However, for a
completely covariant theory of the type considered
here, M is at least 8. As will be seen later, this is because
the four parameters and the four coordinates can be
chosen in a completely arbitrary way, so that any set
of covariant field equations must have an eightfoM
infinity of solutions. Any further invariance property
of the field theory (e.g. , gauge-invariance) gives rise to
additional relations @,=0 (see Section IIIC). In [B],
seven of the P are obtained explicitly for a general
Lagrangian JI.. One of the principal objects here is to
find the eighth @,for the case of the gravitational field.

trary variations of coordinates, momenta, and ve-
locities:

&H=P.fiP.=P.~4.+4.~P.= ~(PA.),

by (12). Integrating, we now obtain (15) except for a,

possible constant of integration. However, such a
constant must be zero, by (12) and (14).This establishes
(15).

The result (15) is important. Besides giving a Hamil-
tonian which can be used to write down the equations
of motion, it gives also a method for the discovery of
the explicit forms of the @,. Note that the transition
from (13) to (15) must be made using only strong
equations.

(C) Poisson Brackets

We introduce Poisson brackets in an abstract manner
by listing their properties. The reason for this is twofold.
The identities satisfied by classical Poisson brackets
are also satisfied by the commutators which are their
quantum analogs. ' Also, we shall have to consider
Poisson brackets of functions of velocities; these can
be written down formally but they cannot be equated
to ordinary functions (i.e., they cannot be evaluated).
However, such Poisson brackets will always be multi-
plied by zero in the final equations and will thus appear
only in intermediate stages of the theory.

We consider only the Poisson brackets of functions
and functionals of coordinates, velocities, and momenta,
assigned over the same space-like surface /=constant.
Such Poisson brackets are assumed to satisfy the usual
algebraic relations of skew-symmetry and linearity,
and the Jacobi identities. If F is any function of Bj,

then

[.4, F]= (i7F/BBi) [—,4, Bi]
+ (BF/BBg) [A, B2]+ . (18)

If .4 —=a constant, then for all 8,
[A, B]=0.

This is not in general true if 3 is constant in the weak
sense only.

In addition to the general properties postulated
above we define some particular Poisson brackets: If
u refers to a point (u", u2, u') of a 3-surface t= constant,
and u' to another point of the same surface, then

[yg(u), m. (u')]=6g 8(u —u), (20)

[x&(u), X.(u')]—=6.'b(u-u'), (21)

and all other Poisson brackets formed from pairs of
the variables x&, X„y&, m-i vanish. Here 5(u —u') is the
usual three-dimensional Dirac b-function.

We assume 6nally that the process of forming Poisson
brackets commutes with ordinary limiting operations.
Then the differentiation and integration of Poisson

"P. A. M. Dirac, Princ~pIes of Quantum Mechanics (ClareIIdon
Press, Oxford, 2935), second edition, Section 25.
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brackets follows at once from the linearity properties.
Poisson brackets involving the x'), or the yg), can be
deduced from (20) and (21) by differentiation. It is
then possible to obtain the Poisson bracket of any two
functions or functionals which involve the coordinate
or momentum variables only. "

(D) Equations of Motion

In order to derive canonical equations of motion,
the expression (13) for the Hamiltonian is used. If
[y~(u), H(u')] is formed, some terms are obtained
with Poisson brackets which involve velocities. These

&,(u') [y~(u), x'(u')]+~'(u') [y~(u), y~(u')]
—(~(JL)/~x')

l 'I y~(u), *'(u')]
—(~(JL)/Ws) I. [y~(u) y~(u') l.

This expression vanishes in the weak sense by (10).
The remaining terms can be computed from the
postulates of Section IIC. We 6nd

[y~(u), H(u")] =y~(u) ~(u —u') (22)

Similarly

[x~(u), H(u')]=x&(u)8(u-u'). (23)

Ke now introduce the 6eld equations obtained from
the variational principle 65= 0, where S is given by (8).
The field equations are

b(JL) 8 (B(JL))
bye at k ayg )

b(JL) B(JL) /8(JL) i—
) , (24)

by~ ayg E ay~), ) ),

8(JL) 8 /B(JL) ) 5(JL) (B(JL))
bx& W& Bi& P bx& & Bx&(, & (.

where X is the Hamiltonian functional

l

3C—=) H(u)du. (31)

where F is any function or functional of coordinates
and momenta only.

In order to derive the equations of motion (30), the
form (13) of the Hamiltonia, n density was used. How-

ever, in order to write down the canonical field equations
we must use (15). The Poisson brackets which contain
the P„and thus involve velocities, do not enter the
final equations because they are multiplied by the @„
which vanish:

[F(u), H(u')]
=J5.(u')[F(u), @.(u')]+[F(u), P.(u')]@.(u') (33)
=P.(u') [F(u), y, (u') ].

By integration with respect to u' we obtain the left-hand
side of (32).

The equations of motion do not determine the
functional dependence of the P on the parameters u*

and t. For example, in the case of the gravitational field

[see Eq. (50)], four of the P, are x&, and the equations
[x', 3C]=i' reduce to the empty statements x'=x' In.
general, the P, are arbitrary functions of u', t. As was
indicated in Section IIA, this arbitrariness reflects the
eightfold freedom inherent in the choice of space-time
coordinates and parameters.

Since @„=0must hold on all surfaces t=constant,
we must have

4 (u) [~ (u) ~] Pb(u )[4' (u) 4'b(u )]du

Using the general properties of Poisson brackets, it
follows from (30) that

[F,x]=F,

By (10), we can write these equations

8(JL)/8y~ x"=0,—

6(JI.)/5x' —X,=0.

(26)

(27)

In the general case discussed in [D], Eqs. (34) impose
further constraints on the dynamical system. Here we
restrict ourselves to the case in which"

[@.(u), 4b(u')]= o (35)

From (13), (26), and (27), a straightforward computa-
tion yields

[~"(u), H(u')] =~"(u') b(u —u')

+B(JL)/Bygi, i
„(8/Bu")8(u —u'), (28)

[X,(u), H(u')] =k, (u') 8(u- u')
+a(JL)/ax~[, )

„(a/au")B(u —u'). (29)

Integrating with respect to the variables u', the
equations of motion take the more familiar form

yg= [yg, BC], 2~= [x~, K], (30)x"=[~",X], i,= P.„Se],
"Bergmann's de6nition of Poisson brackets I 8. 3.23j can be

deduced by integration.

by virtue of the relations @,=0, so that Eqs. (34) are
satisfied automatically, and there are no additional
constraints. This special case includes the gravitational
and electromagnetic 6elds.

(E) Quantization

Once a field theory is expressed in canonical form,
the transition to quantum mechanics proceeds in the
usual manner; coordinates and momenta become non-
commuting Hermitian operators and Poisson brackets
are replaced by commutators according to the scheme

[F&, F2]= —ik—'(F,F2—F2Fg). (36)
'2 In the language of LDj, all the p are fIrst class, and there

are no g equations.
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'1 he non-commuting terms in the Hamiltonian must be

arranged so that B is Hermitian. It will be seen that
all terms in the Hamiltonian of the gravitational field

are products of momenta and functions of the coordi-
nates, so that H can readily be made Hermitian by
symmetrization.

III. GRAVITATIONAL THEORY

(A) Canonical Variables

The usual Lagrangian of gravitational theory is

(—g)&R where Jl. is the curvature scalar. By splitting
off a divergence term, (—g)1R can be replaced by an
alternative Lagrangian which contains only 6rst deriva-
tives of the field variables g„„:

L -=(-g)'g'

l ( —g)' l
—2g-g"g"' g'g—"g"' 2g —"g"'g"'

+g "g'"g"l g-~g"', (», )

The canonical variables are defined as in (10), v;ith

a slight change to preserve symmetry:

X,=8 (JL)/Bi &

l'8(JL) 8(JL))+( aj„„aj„„)
=l( g)'(2g-g—"g""+g"'g"g'+g"g"g'

(B) Hamiltonian

Multiplying (38) by l„, we obtain

where
H=—Xpi'+x pg p

—JL=—i&H~,

H~=—X~+x Pg p ~
—L/~.

(43)

(44)

Q'e know from the general theory that it is possible to
write H in the form (15). Because of the arbitrariness
of the space-time coordinates, the i& cannot be deter-
mined by the equations of motion and must remain
general functions of the parameters N', t; we can there-
fore assume that the i& are identical with four of the P, .
It follows that it must be possible to write H, in the
form

(45)

where y~ are four functions of coordinates and mo-
menta only, @ are as in (42), and c~, are functions of
coordinates, momenta, and velocities. Then

x""l =4( g)—'g"'(2g-g" a'—g")I'-s-4

Noting that the right-hand side is a function of the
coordinates only, this gives us four of the functions @,:

~'"1 4(—g)
'*—g"(2g'g" g'—C")2'-».l.=o (42)

These are essentially four of the 4, obtained in LR(3.6)j
for a general Lagrangian.

The Hamiltonian density (13) is now

where

H =X'y(@~+i'y C~+'. (46)—2a'a""a"- 2a "a"a"-2f: "a"'a"
Since H=O and P'=0, it follows that x&y~=o, and

p~ prr l / (38,3+ & & & ~& p &' ' ' since thei7 are independent, that

lp—=Jt, (39) (p~ =0.

is a normal to the surface t= constant.
Before proceeding to the computation of the functions

@. and of the Hamiltonian density, we require two

simple lemmas:
(a) The expressions l, of (39) are the minors of i& in

the Jacobian determinant

J=—
f
x'(., i' f.

Thus l, is a function of the coordinates (x'~,) only and

does not involve the velocities (i').
(b) If A is any function of the coordinates only, then

2, ,1,—A, ,lp A i.(u'pl, ————u', ,l,), , (40)

the terms in A canceling. It can be shown also, by
writing them out explicitly or by diGerentiation, that
the expressions (u', ,l,—u', ,l,) do not involve the

velocities i . Thus any expression of the form of the
left-hand side of (40) is a function of coordinates only.
In particular

(41)

is a function of the coordinates only.

Thus y» p' are the eight functions @, of (15), and i&,
x~c~, are the eight coefficients P,.

The main problem now is to express (44) in the form

(45), using (42) and strong equations obtained by
forming products of the weak Eqs. (38). This means
that, with the exception of terms proportional to @,
we must eliminate all velocities from (44).

In (44), x sg p, „contains momenta as well as ve-
locities, L/~ contains velocities and coordinates but
no momenta. Ke now proceed as follows: %e ignore all
terms containing velocities but no momenta and all
terms containing no velocities. The remaining terms
containing velocities and momenta are of a simple
structure, and it is easy to eliminate the velocities from
these terms. When this is done all other terms must
automatically be free of velocities, so that our objective
is achieved. If this were not so, then there would have
to be some strong equations involving velocities but no
momenta for the elimination of such terms from H~,
since we know from the general theory that it is possible
to reduce H~ to the form (45). However, the only
strong equations which can be used to eliminate
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velocities are obtained from (38) and therefore contain
momenta. This contradiction proves the assertion
above.

Let us rewrite (38) in the form

C»"=~»" ,'(a(—JL—)/8(/,.)+a(JL)/a('j„„)=0. (48)

where R is given by (31) and (50), and F is any function
or functional of coordinates and momenta only. The p,
variables i& and 2Jt 'g ~[np, o ) are arbitrary functions
of the parameters u', t. The formal quantization of the
gravitational Geld can now proceed as in Section IIE.

(C) Combined Gravitational and
Electron, agnetic FieldsFrom these weak equations we can form the strong

equations
The addition of an electromagnetic Geld to the

gravitational field introduces no new difhculties. The
electromagnetic Geld variables are the potentials A„
and the Lagrangian is now

C""C„„=—0, C'=—0,

where C,„=—g„g„pC ", C=—g ~C t'. Using the technique
outlined above, it is easy to see that we must add
l„(C»'C», ,'C'—)/-( g)(g—t'l ts to (44) in order to reduce

0„to the form (45). After a straightforward computa-
tion we obtain the following expression for the Hamil-

nian densit

(57)

(58)

L=L, x( g)1—F F—»"

where
PW~= gI r g~PI(

to
where K is the gravitational constant, and where I.I is

ff= &'vpv+—2Jl 'g &[np, 034', (50) the Lagrangian (37) of the gravitational fieM.
The momentum variables x&" conjugate to the g„,

where [up, oj is a Christoffel symbol of the first kind, remain unchanged and are given by (38). The new
whele momentum variables conjugate to the A„are

vp, = 'A, +l '~ ~T—p„tp+l '1„[2g»nTp. , . ~»= —4x(—g)(F»"t„. (59)

+ l ( g) '(2g—-.gt. g.sg")~—'~""

+Gaga primp T p T „] 0 (51)

GaPpprrkr —1
( g)(IgaPgrr 2gargpr)gprgpx

The 'A, are no longer those of the purely gravitational
field; they are still given by (10), but their explicit
form is of no interest here.

From (59) we derive immediately the new identity

—8(g pgspg
"gr)' —g'sg'pga"g'x) I, (52) @=—~~l„=0. (6o)

lp= g"l., l2= l,l~, (53)

and where @,T,ti„are given by (42), (41) respectively.
The Hamiltonian formulation of the gravitational

equations consists of the equations

The expressions (42) for the P' are the same as before.
Using the method and results of Section IIIB a

short computation yields the Hamiltonian density:

H=i Pvp~+2JL -"g—&[uP, o]4p'+—1 1 'A P (61)

@ =0 q~=0

the Poisson bracket relations

(54) Here the new p~ are given by the expression (51) with
the added terms

[xp(u), X.(u')]=—b.p5(u —u'),
(55)

[g-s(u), ~""(u')j=-k(~."4"+4"4")~(u-u'),

l 'T.p„(l x& t&—s. ) t,L '[(—8x) '( —g) 'g px x~—

+x( g) 'g" (2g."g» —g"gs")T.&,T„.„— (62)

where
(63)T pp—=A pl'p —A pip.all other Poisson brackets between pairs of the variables

x', g„„)„, x"" being zero, and the equations of mo

F=[F,x.g

tion
In (61), the ninth P, variable 1 l 'A corresponds to

(56) the freedom in the choice of gauge.


