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A theory is developed for the contribution to the coercive force of iron of randomly distributed non-
magnetic inclusions. Two contributing efFects are examined: (1) the surface tension efFect, and (2) the effect
of internal magnetic poles. It is found that the coercive force depends both on the total volume fraction of
inclusions and the state of dispersion. For a given composition of alloy, for particles both much larger and
much smaller than the thickness of the domain wall, 8, the net contribution to the coercive force is small.
The largest effect occurs for particles whose diameter is about equal to b. Measurements have been made
using a dispersion in iron of Fe3C in the shape of spheres, the diameters of which could be varied over the
desired range. The maximum efFect on coercive force is found to occur for particles of size about 1200
angstroms, indicating a value for b of about this magnitude. For this value of d the measured value of the
coercive force is found to agree well with the calculated value.

I. INTRODUCTION

N recent years considerable progress has been made
~ - in understanding the origin of the coercive force in
ferromagnetic materials. The effect on coercive force of
non-magnetic inclusions was fjLrst clearly recognized by
Kersten. ' He proposed that the increase in coercive
force caused by the presence of inclusions was a simple
surface tension effect; the domain wall has a dehnite
surface tension and therefore a strong tendency to stick
to the inclusions in order to reduce the total wall energy
(Fig. 1a and 1b).

Kersten's work was criticized by Neel, ' who expressed
the idea that the main effect was caused by the presence
of internal poles at the interface between inclusions and
matrix. In passing an inclusion the domain wall causes
a redistribution of these magnetic poles. This results
in a lowering of magnetostatic energy (Fig. 1c and 1d)
and hence a tendency of the wall to stick to the in-

clusions.
The experimental work described in this paper deals

with the effect of inclusions in iron. The paper itself has
two aims: (1) to re-examine the various contributions
to the coercive force which non-magnetic inclusions can
make, and (2) to interpret the results of the experi-
mental work in the light of this analysis.

state is divided into a larger number of domains, which
for simplicity are assumed to have the shape of cubes
with edges of length J. The coordinate system x, y, s
has its axes along the cube edges. The x direction is a
preferred direction of magnetization. ' The 180' domain
wall, which we consider as moving through a particular
domain, is parallel (except for a possible slight curva-
ture) to the xy-plane. On the —s side of the wall the
magnetization I, is in the —x direction; on the +s side,
in the +x direction. Under the action of an applied
field H in the +x direction the domain wall thus has a
tendency to shift in the +s direction. Each domain
contains n non-magnetic inclusions distributed at
random in the matrix. The exact shape of these particles
is immaterial so long as their dimensions in all directions
are about the same. In carrying out the calculations
we shall assume that the particles are spherical with
diameter d.

III. GENERAL ANALYSIS

First we consider the domain wa)l as being rigid and
plane. The wall, to which we attribute the thickness b,

II. EFFECT OF INCLUSIONS

In examining the effect of inclusions we shal) follow

a diferent procedure from that used by Neel. ' He used
a three-dimensional Fourier series method to represent
the lattice inhomogeneities, both inclusions and lattice
strains. In this paper we use a less e]aborate mathe-
matical treatment, but shall keep closely from the very
outset to the physical picture of inclusions which we

set up. Lattice strains we neglect entirely, even those
strains set up by the inclusions themselves.

The assumptions and conventions used are the fol-

lowing. The ferromagnetic matrix in the demagnetized

s

FIG. 1. {a) and (b) show how the total wall energy is reduced
by non-magnetic inclusions. In Fig. 1a the diameter of the inclu-
sion is larger, in Fig. 1b smaller than the wall thickness b. (c) and
{d) demonstrate the re-distribution of internal poles which occurs
when a domain wall passes the inclusion. The magnetostatic
energy in Fig. 1(d) is lower than in Fig. 1(c). I, is the intensity
of magnetization.

' M. Kersterf, Ferromagnetische Hysterese n,. E'oersitioekraft (S.
Hirzel, Leipzig, 1943). 3 For a general picture of the present view of domain theory' L. Noel, Ann. Univ. Grenoble 22, 299 (1945—1946). the reader is referred to C. Kit tel. Rev. Mod. Phys. 21, 541 (1949).
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= Z-axis from Eq. (2) we obtain

f zp+~{d+5) 'dz
4(H'(z o))I,'L4= n —y(s —zp) —. (3a)

~ zp —~s {d+b) BZ I

IP

Fro. 2. Model for the calculation of the magnetostatic energy for
an inclusion inside the domain wall.

In this expression I, is the intensity of magnetization
and the P; is to be taken over all particles in the
domain for which p/0.

Since the equilibrium value of H(sp) deterinined by
Eq. (1) depends on sp, there is for each domain a par-
ticular value of so for which H (sp) is a maximum; this
maximum we denote as H '. We will then define the
coercive force for the specimen as a whole to be
H, =f(H, ')gt; the double brackets indicating the
average over the domains. If (H'(sp)) is the mean value
of H'(sp) over so, then the relation between f(H . ')g
and (HP(zo)) is, according to Neel, ' most conveniently
given as

where p is the number of essentially independent values

H(so) can assume over a distance L. With H, defined in
this way we are left with the problem of determining
the rms values of H(sp). This we do by analysis of Eq.
(1)

From Eq. (1)

4&H'(so) )I.'L'= 2 Z
I BZQ

4(z —so)
BZQ

4(s —so)

8
=n —Q Z —

Zp )
BZ

(3)

since B&(z,—zp)/Bsp and B&(z, zp)/Bsp are—independent
if iW j, and B&(z.;—sp)/Bzp ——0. The probability that the
center of a particle lies between s and z+ds is ds/L, so

is located at zp. The average number of particles cut or
absorbed (partially or completely) by the domain wall

and which have their centers on either the +z or —z

side of the wall is n(d+B)/2L. The mean deviation of
this number [which is of order (n(d+8)/2L)tj gives
rise to the coercive force H, . We introduce the function
p(s —sp) as being the reduction in energy of the system
due to the interaction between the domain wall and an
inclusion centered at (x, y, s); p(s —zp) will be specified
later. If we distinguish among the various inclusions by
the index ~, , then the equilibrium value of H necessary
to hold the wall at zp is given by

2H(zo) I,I.'= g B[@(z; sp)]—/Bso

&p+t(d+8) 2 —I/2

X —y(s —zp) ds
~ zp—$ {d+&) BZ

2I,L"-". (4)

With this expression the problem of computing the
value of H, is reduced to that of finding the function
p(s —zp). The remainder of this section will be devoted
to an evaluation of this quantity for the "surface
tension" effect as well as for the "internal magnetic
poles" e6ect.

The Surface Tension Effect

The reduction in energy of the system in this case is
considered to be caused simply by the lowering of the
net wall "volume" when the wall contains an inclusion. '
It is assumed that the presence of the inclusion in no
way aftects the direction of I, in the matrix or in the
wall. For calculation of this eGect it is convenient to
consider the two extreme cases: (1) for d»5 and (2)
for d((5.

For the first case

y(s —zo) = m.y, oo [-,'d' —(s—so)'] for
~

s —so
~

(-,'d, (3)

where yI8p' is the wall energy per unit area for a 180'
wall. Direct substitution of this expression into Eq. (4)
gives for the coercive force for this case

H.=1.75(yiop /I. L)o.**(ln2L/d)' for d))B, (6)

where n has been eliminated by means of the expression
nn. d'/6L'= n, the volume fraction of inclusions. Equa-
tion (6) is identical with the result of Neel, ' if one takes
his "distance de correlation" g to be of the order of d.

For d&(6

@(z—so) =-,'prd'E(s —so) for ~s —zo~ (-,'8. (7)

Here E(s—sp) is the energy per unit volume of the wall
at a point s inside the wall. E(s—zp) can be calculated
exactly but since we are interested only in ((BP/Bs)')
(see Eq. (3)), the approximation BE/Bs=const. must
lead to a reasonably accurate result for H, . By this
procedure H, is underestimated somewhat. Since

zp+$8

Edz —p] 8Q

zp —~8

The factor p in Eq. (2) must yet be determined in terms
of the geometry of our picture. Clearly, for values of zp

for which ~Azo~ is at least of order —,'(d+B), the dis-
tribution of particles will show no correlation. This
means that p is of the order 2L/(d+5). Hence from
Eqs. (2) and (3a)

(2L q
H, = 2n in(

Ed+&)
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we approximate E by

E= (2pisp'/6)I 1&2(z zp)/6j for z (zp or z & zo. (7a)

It is a simple calculation to show that

II,= 2.8(~,„/I, ,I ) (d/S) 4t(ln2I/5) *
for d&&b. (8)

k

Ed
~dip

10 ' cm ( 100&)
30
0.8X10 4 ergs
1X10 4 ergs

30X10 4 ergs

10 'cm ( 108}
5
1.2X10 ' ergs
2.5X10 ' ergs

30X10 ' ergs

TABLE I. DePendence of Ed, p on Particle size.

Analogous calculations can be made for any value
of d/ii. For the limiting case d=5, (6) and (8) give the
same value apart from a small numerical factor. A more
exact calculation gives

("urve a in Fig. 4 gives a plot of H, vs. d for constant n

according to Eqs. (4) to (9). For this purpose we have
used the values n=3X10, pisQ 2 ergs/cm'-, I,=1700
gauss, I.=10 ' cm, ' and 8=10 ' crn. For d=56, II,
passes through a faint maximum of about 0.2 oersted.

"Internal Magnetic Poles" ESect

A spherical non-magnetic inclusion present in the
matrix corresponds to a magnetic dipole of self-energy

nating from the internal. magnetic poles tends to rotate
I, in the vicinity of an inclusion out of the original
direction in such a way that the magnetostatic energy
is partially released. In neglecting this interaction one
v ould obtain for particles for which d~ 6 a value for the
coercive force which is much too high.

For the case in which d((8, however, the interaction
between I, and the internal magnetic poles can be
safely negjected since the exchange forces oppose a
rotation of I,, on such a local scale. The main term of
4(z —z,) in this case is obtained in the following way.
For any point s inside the wall the vector I, makes a
certain angle 0 with the preferred direction, In a small
region about z we split I, up into the two components
I„and I„, respectively, normal and parallel to I,, at s.
(Fig. 2.) For a region in which the total change of
direction of 1„68,is small we can write

Ed;„-',(4ir/3) I, '-'

V, —-— (10) I„=I,[1 ,' (Azd0, , dz—)'-j—; I„=I,Azd0', 'dz. .

ivhere V is the volume of the particle (Fig. 1c). As soon
as a particle is partially or completely enclosed by a
domain wall a redistribution of the internal magnetic
poles takes place. This results in a lowering of the mag-
netostatic energy. In principle this e8ect can be under-
stood from the symmetrical situation shown in Fig. 1d.
A 180' wall passing through the center of an inclusion
gives rise to a magnetic quadrupole of self-energy'

It is easy to see that for a particle with center located
at s the component I„gives rise to a dipole, I to a
quadrupole. Because of the symmetry, there is no
mutual interaction. Taking average values for I„and
I„over As, we find for the corresponding energy terms

2m. 1 (88)
Eg;p' I 'V 1——

I
————

)
d',

12 &dz)

I:,„„g=i2Eg; p .7rI, '-V/3. —— (10a)

In treating the effect of internal poles it is in general not.
correct to assume that I, remains unchanged in the Hence
vicinity of these inclusions. The magnetic field origi-

f d8~
'-'

48 L dz)

4 (z z0) +dip (Edip +I' guad )

FIG. 3. {a) Observed domain pattern around a non-magnetic
inclusion. {b) Structure after a 180' wall has passed the inclusion.
The lowest energy state in the absence of a magnetic held is
obtained for the wall passing through the center of the inclusion.

' Bozorth and Dillinger, Phys. Rev. 41, 345 {1932).' L. Noel, Cahiers phys. 25, 21 (1944).

The function 0(z) can be calculated. ' However, to

simplify the calculation we shall follow the same pro-
cedure as we used previously; namely, since in Eq. (2)
((Be/Bz)') occurs, we take

(«/dz)'= (2 '/~')Li~(2/b)(z —z ))
for z(zp or =)zo. (11a)

By carrying through the remainder of the calculation
indicated by Eq. (4), one readily finds that

II = 2 8(I d i'/I. b'i')n'(in2I/5)& for d«6. (11b)

It is instructive to make a comparison here. By
comparison of Eqs. (8) and (11b) it is seen that for
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i i i i I ill I i l i I ill Minimizing E=E;„.+E~+EyI with respect to l one
easily finds

8waI, 'd (ln2k —2)
k'=

3x'y go 2HI,.d
(12)

50

Porticle diometer
los

l'iG. 4. Expected behavior of the coercive force II, in iron caused
by a volume fraction of a random distribution of non-magnetic
inclusion equal 3X10 ' as a function of the particle diameter d.
Curve (a) is for the surface tension effect, curve (b) for the "in-
ternal poles" effect; {a1), (a2), and (bl) are the extrapolated
curves according to Eqs. {8), (6), and {11b),respectively. Point
8 is calculated from Eq. {13).The curves give only orders of
magnitude.

'%'illiams, Bozorth, and Shockley, Phys. Rev. 75, 155 (1949).
Seeker and Doring, Ferromagnetismls (Verlag Julius Springer,

Berlin, 1938), p, 192.

small particles (d((5) the effect of "internal magnetic
poles" is Igd'/y~so 8 times as large as the "surface
tension" effect. For extremely small particles the
surface tension e6ect, though itself small, is the larger
of the two. For particles of the order 4b the two effects
are about equal„ for particles larger than this the
magnetic pole effect starts to predominate.

For d —.8 the interaction between the internal poles
and the vector I, can no longer be neglected. For d»b
almost complete release of magnetic energy takes place
with the appearance of a secondary domain structure
as drawn in Fig. 3a."The relation between d and the
equilibrium value of l (2&& the length of a secondary
domain) follows essentially from an early study by
Doring. ' The usual approach is to assume that the
domains have the shape of an eIlipsoid of revolution
with short axis d and long axis /. Then the total wall
energy

E,„.= ygo &surface area=-,'m'ygo ld.

The magnetostatic energy, E~, stored in the demag-
netizing held is given by

E~= aAI 'Xvol= 6marVI '/d.

The demagnetizing factor iV = (4''/k') (In2k —1) if
k = l/d))1. The factor u has been introduced by
Williams, Bozorth, and Shockley' to take into account
the permeability of the matrix. For pure iron a= —,'6.
Finally the energy term due to the applied field II,

Ea ——HI, Xvol = —,
' ~HI, ld'.

Taking H = 1 oersted, y9o'= 1 erg/cm', one can calculate
k for values of d up to 3X10 ' cm when the denominator
goes to zero, which means that the secondary domains
grow until they join the domain walls. To show that by
this secondary domain structure an almost comp1ete
release of magnetostatic energy E~;„does take place
Table I shows values calculated neglecting the term
2III,d in Eq. (7). We see from Table I that for very
large particles the release of energy is almost complete,
but that less is released as the size of the particle de-
creases. As d approaches 8 a yet smaller fraction of the
dipole energy is released, especially when the inclusion
becomes too small for the formation of well-developed
secondary domains.

It is not difficult to show that when well-developed
secondary domains are formed the average equilibrium
held is given by

2((H')) tI,L'= (1/L) nsdy~so

Since l = kd

H.= ((H')) t= (3py p8'k /I d)a for d»8. (13)

According to Eqs. (12) and (13) H, will decrease rather
slowly with increasing d. In case 1.»kd the right
member of Eq. (13) must be multiplied by (2 ln2L/kd)'
to account for the difference between (H'(so)) and
g(H „„')g. The application of Eq. (13) to practical
cases is rather limited, since, in general, for a well-
developed domain structure kd is of the same order as I..
For n=3X10 ', formal substitution of d=10 4 cm
yields H, 0.4 oersted.

For d=b, the secondary domains have shrunk to a
disturbed region of dimension 6 around the inclusion.
A calculation of the energy terms involved in this case
is rather dificult, and we shall only make a rather
crude estimate by interpolating the results for d»8
and d«b. According to the preceding paragraphs, the
release in magnetostatic energy Ez;, as given by Eq. (1)
due to the interaction between the internal charges at
the interface and the vector I, is complete for d»8 and
negligible for d«8. For d 8 it seems reasonable to
assume a reduction of E&;„by this interaction of about
~. To find the magnitude of @ we must make a further
estimate; neglecting the foregoing interaction between
dipole and matrix we hnd by interpolation of Eqs.
(10a) through (11) that for a particle, for which d=8,
located symmetrically in the domain wall E&;„ is
reduced by a factor of about —,'. Hence the magnitude of
@ is about E~;,/8. We compare this to the surface ten-
sion e8ect, where the corresponding value of @ is of the
order y,«V/8. Hence the "magnetic pole effect" will
be of the order of st;,/(pyso'V/5) 4 times as large
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as that due to the surface tension effect. (It is clear
that this may be in error by a factor of 2 or more. ) The
expected behavior of II, is shown in Fig. 4 by the curve
b taking +=3&10 '. After a rapid increase for d &6,
H, tends for d & 8 to approach a behavior as expressed
by Eq. (13). For d~b, H, passes through a maximum
of the order of one oersted.
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FIG. 5. Coercive force and precipitation as a function of time
for an alloy of 0.02 percent of carbon in iron which was tempered
at 250 C.

IV. EXPERIMENT

It is apparent from the foregoing analysis that one
might expect inclusions to have a pronounced eGect on
the coercive force; for a given value of n the most
striking effects might be observed for particles of the
same order of size as the thickness of the Bloch wall.
Ke have examined experimentally this possibility in
iron using the compound Fe3C in finely dispersed form.
Since for iron the 180' Bloch wall has a theoretical
thickness of about 1000A, it was necessary to have
particles of controllable dimensions of about this size.

By the metallurgical treatment described below it was
possible for us to prepare samples of iron containing
inclusions of Fe3C in the form of randomly distributed
spheres, the diameters of which were varied between
400 and 3000A. With these samples we were able (1) to
find the "critical size" for maximum e6'ect for given n
on the coercive force, and (2) to determine the mag-
nitude of H, for a given volume fraction of inclusions
of this critical size.

The samples were prepared and the measurements
were made in the following manner. The specimens were
Puron iron wires drawn to a size of 0.03 in. diameter

by one foot long. Highly super-saturated solid solutions
of C in Q.-Fe were prepared by quenching to room tem-
perature from 720'C an alloy of 0.02 percent in O.-Fe.
These specimens were then tempered at selected tem-
peratures in the range 125'C to 350'C, which tempering
resulted in the gradual disappearance of C from solid
solution into a second phase, Fe3C, in n-Fe. This phase
change was traced by means of the internal friction
found in this alloy. During the phase change the
coercive force was also measured at intervals at 20'C.

The detailed analysis of the results depends entirely
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FiG. 6. Coercive force and precipitation for an alloy
tempered at 200'C.

upon certain facts which we believe applies to this
phase change. These facts are the following: (1) the
FerC precipitates in the form of spheres, and (2) the
number of these spheres per unit volume remains con-
stant during the major part of the precipitation at a
given temperature. Originally these proposals were
supported only by some rather indirect analyses of
earlier experimental work. ' More recently, however,
these proposals have been given additional support by
examination of specimens using an electron microscope. '

Since we wish to know the manner in which the
coercive force varies with the particle size, we must
have some way of computing the particle diameter.
Clearly this is given by the expression

n = -'md'S',6 (14)

' C. Wert, J. App. Phys. 20, 943 (1949); C. Zener, J. App. Phys.
20, 950 (1949).

Unpublished results of an investigation made by J. Radavich,
Purdue University.' C. Wert and C. Zener, J. App. Phps. 21, 5 (1950). This ex-
pression was given incorrectly in this reference. All calculations
in this paper and in reference 10 were made with the correct ex-
pression, Eq. (15).

» C. Wert (to be published).

where V' is the number of particles per unit volume.
This expression, of course, is valid if the particles are
all the same size; a condition which is a consequence of
the two proposals made above. Since a can be calculated
readily, d can be computed once,V' is known. X' itself
may be calculated from the expression, "

iV'= (3/4rr)(2Dr) 'Dno n, )/(n—„(0) n, )5' —(15).
In this expression no, n~ and n„(0) are carbon concen-
trations referring to (1) concentration of C in Feiic,
(2) equilibrium solid solubility at the temperature of
tempering and (3) initial concentration in solid solu-

tion, respectively. D is the dift'usion coefFicient of C in
0.-Fe, which has been determined accurately as a func-
tion of temperature by one of the authors. " 7. is an
empirically measured time constant, it is the time
required for the phase transformation to become 60
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percent complete. 3~' is found to vary rapidly with tem-
perature, decreasing by about a factor of 10 with each
100 C increase in temperature of tempering.

A typical measurement is shown in Fig. 5. Here the
carbon was precipitated at 250'C. At intervals during
the tempering the amount of precipitate formed and the
coercive force were both measured; the time dependence
of both of these quantities is shown. At this tem-
perature 0=1.3X10 '" cm%ec. , 7. is seen to be about
70 sec. , n„(0) was about 0.02 wt percent, it&=0 and No'

is about 6 wt percent, hence X~;0
' was calculated using

Eq. (15) as about 1.8&&10i2 particles(cc. Since we have
concluded that this number, E', is about constant
during the tempering, d can be computed at any stage
of the phase change by means of Eq. (14). For example,
at the 95 percent precipitation point +=0.003, hence
at this point d 1400A. The increase in coercive force
due to this volume fraction of precipitate in this state
of dispersion is about 1.9 oersteds. (The initial value
of about one oersted is apparently caused by other
inclusions (perhaps oxides), internal stress or grain
boundaries. )

There is one aspect of the curves in Fig. 6 which must
yet be explained; this is the decrease in the coercive
force when the precipitation is slowly drawing to a
close. We can offer at present only a qualitative ex-
planation of this phenomenon; we believe it to be due
to the coalescence of precipitate particles, which
coalescence takes place only after the precipitation is
essentially complete. It results in a decrease in E' and
an increase in d; as we shall show shortly, particles of
diameter 1400A are already "oversize;" a further
increase in d can only lessen the coercive force. Hence
in this case II, drops upon coalescence. It must not be
supposed, however, that this coalescence after pre-
cipitation always results in a decrease in coercive force;
Fig. 6 shows this not to be the case. At 200'C for 95
percent precipitation d~1000A; this, as it turns out, is
"undersize" for maximum effect. Hence coalescence
will at first increase the coercive force until the particles
reach an optimum size, after which further coalescence
causes a decrease as the particles become now "over-
size. " Since we have no way even of estimating the rate

of coalescence, we can o6'er at present no quantitative
arguments to support our view.

Data and calculations pertinent to the theory de-
veloped in Sec. II taken from data shown in Figs. 6 and
7 and from numerous other measurements not shown
in detail are presented in Fig. 7. Here is plotted the
coercive force as a function of partizle size for a given
value of a, namely, 0.003 (which we have seen occurs
at the 95 percent transformation point). The curve in
Fig. 8 shows that the critical size for maximum effect
on coercive force is about 1200A. Since the theory
developed earlier indicates a maximum effect for d
this means that 8 for n-Fe must be about 1200A also.
The magnitude of IZ, at the maximum, two oersteds is
also in reasonable agreement with the order of mag-
nitude of one oersted predicted in Sec. II.

Unfortunately„Fe&C is ferromagnetic itselt with a
saturation magnetization of about 1200 gauss and a
Curie point of 200'C. If the magnetic anisotropy of
Fe3C would be very small compared with Fe, the
internal poles effect would be smaller by a factor
IP(Fe)(IP(Fe3C)=10 below the Curie point of Fe~c.
At the Curie point a rise in II, could then be expected.
On the other hand, for a very large anisotropy particles
of this small size will approximately give the same con-
tribution as if they were non-magnetic.

It is not clear then how to take into account the
ferromagnetic properties of Fe3C in consideration of
either the "surface tension" or "magnetic poles" efrect.
To try to throw a little light on this problem we have
made one further measurement. A specimen of iron
containing carbon in solid solution was tempered at
210'C to give nearly complete precipitation. The Fe3C
in this state was dispersed in spheres of diameter 3200A.
The coercive force of this sample was measured as a
function of temperature up to 300'C. That part of the
coercive force due to the inclusions is shown plotted as
a function of temperature in Fig. 8. It is to be observed
that no sudden change in the coercive force occurs at
200'C, the Curie point of Fe3C. The simplest way to
account for this effect is to consider the small Fe3C
particles to behave as non-magnetic inclusions.

APPENDIX

To allow for a small curvature of the domain wall we represent
the plane of the wall by a Fourier series as follows:

z=z0+Z z,

0
400 800 I200 I600 2000 2400

ParticIe diameter f Angstroms)

2800

Fit. 7. Coercive force as a function of particle size for
0.=0.003.

where z0 is the mean distance of the plane above the ry plane.
The x-components in the Fourier development can he neglected
for, as Neep pointed out, since I, is along the x-direction these
components would give rise to very large extra energy terms due
to the appearance of internal free magnetic poles at the surface
of the wall. The energy E of the system can be written as
E=E1+E&+E3. E1 is the energy of the slightly curved wall if
no inclusions were present and is equal to

El L +180 + 2++180 ~ IIf zq ~
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E is the decrease in E by the inclusions and is given by

Eg ———Z @Iz;—z(x, , y;) j.
'oo

0
75 — a

O

I';t is the magnetic energy terms, hence

Es———2HI, L'zo.

For equilibrium of the wall at zo, H, and z, have to satisfy
DE/Rzo= 0 and &ATE/Bz, =0. The first condition gives

HG 50—
Oe

25—

2HI, L~= —5 —Lzi —z(~„y,)j.
Bz

"I'he second condition gives

t9 . 2x'qadi—@Lz;—z(x;, y;) ) sin(cos)
Bz

(A3)

20 50 ioo t50 200 250 500
Temperature 'C

Frc. 8. He vs. temp. for a stable alloy consisting of 0.003 volume
fraction inclusions dispersed in particles about 3200A in diameter.

Equations (A2) and (A3) determine one or perhaps more solutions
for H and -,. Since these equations are dificult to solve we shall
approximate @{z,—z) by the following linear expression

2
@(z—z, ) =&(0) 1+ (z;—z); & for z; ~z. (A4)d+5

Consider, for example, the surface tension effect.
In the case that d)&b the factor @{0)=-,'m.d'yeso and for a

slightly curved wall Z; i'= nd/L, This gives I {(z—™0)~)I &

=0.17n&L. In the experimental work the volume fraction of
inclusions a=3)&10 '. For this value

i({r;sp}')&=10 ' em=8.
From (A3) and (A4) we 6nd

2@(0) . 2~qY;
vr'»so q'z, = ZW sin(cos)

d+5
(A5)

For d&(b the value of @(0)=mds/248 and Z; i =nb/L. From
these values and Eq. (6) we And

I {(z—zo)'} I '=o.23(d/8) ' 'L= ~(d/~) '.

I &(
—-'0)'& I

'= @(4 o

6»so'(d+ ~)
(A6)

As we see the main. contribution in (A5) comes from the two
terms with q

= 1. Substitution of z~ given by (A5) in (A1) gives

2' {0) 1 2~q
Z —,Eicos—(Y,—y)~y, so (d+a), q'; L

and the "mean" value

These results justify the calculations for the given value of a.
From Eqs. (A2) and (A4) we see that in this approximation the

coercive force H, is the same as for a rigid, plane boundary. One
remark must be made. For the usual particle shape quadratic
terms enter in the expression for @(z—zo). Because of these terms
value of (H'(zo) ) and of H. when the domain wall adjusts itself
to the particle distribution is somewhat smaller than in case of a
rigid, plane wall.


